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Abstract: We solve two numerical experiments described
by 2D nonconstant coefficient advection—diffusion equations
with specified initial and boundary conditions. Three finite
difference methods, namely Lax—Wendroff, Du-Fort-Frankel
and a nonstandard finite difference scheme, are derived and
used to solve the two problems, whereby only the first pro-
blem has an exact solution. Stability analysis is performed to
obtain a range of values of the time step size at a fixed spatial
step size. We obtain the rate of convergence in space when
the three methods are used to solve Problem 1. Computational
times of the three algorithms are computed for Problem 1.
Results are displayed for the two problems using the three
methods at times T = 1.0 and T = 5.0. The main novelty is the
stability analysis, which is not straightforward as we are
working with numerical methods discretising 2D nonconstant
coefficient advection—diffusion equation where many para-
meters are involved. The second highlight is to determine the
most efficient scheme from the three methods. Third, there
are very few published studies on analysis and use of numer-
ical methods to solve nonconstant coefficient advection—dif-
fusion equations, and this is one of the very few rare articles
treating such topics.
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Nomenclature

k temporal step size

Ax spatial step size in the direction of x

Ay spatial step size in the direction of y

¢ amplification factor

Dy, D, coefficients of dissipation

t time

Cif; numerical solution at the grid point (¢, x;, yj)

1 Introduction

The advection—diffusion equation describes the transport
of a quantity due to two processes: advection and diffusion.
This equation is widely used in various fields of science
and engineering such as fluid dynamics, heat transfer, che-
mical engineering, and atmospheric sciences [1-3]. The
numerical solution of advection—diffusion equation is gen-
erally a challenging problem due to its nature as it consists
of advection and diffusion terms [4].

Finite difference method is one of the most popular
classes of numerical methods used to solve advection—dif-
fusion equations. Finite difference methods for advection—
diffusion equations with uniform flow and constant coeffi-
cients have been extensively studied and developed [5-9].

One of the most common ways of measuring the rela-
tive merit of a numerical scheme for advection is to con-
sider the scheme’s dispersion and dissipation [10]. The
pioneering work of the theoretical study of finite difference
methods was made by Courant et al. [11]. Von Neumann and
Richtmyer [12] developed Fourier analysis method of finite
difference schemes. Kreiss [13] initiated work on the disper-
sion and dissipation of finite difference schemes discretising
partial differential equations using Fourier method. The dis-
sipative and dispersive features of the Lax-Wendroff (LW)
and the MacCormack schemes discretising the linear and
non-linear advection equation are discussed in the study
of Winnicki et al. [14]. Hirt [15] and Ru-xun and Zhao-hui
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[16] worked on the remainder analysis approach of finite
difference methods. The relative phase error is a measure of
the dispersive character of a numerical method [17]. The
relative phase error is a ratio that measures the velocity
of the computed waves to that of the physical waves [17].

Appadu [18] used the LW, Crank-Nicolson, and
a nonstandard finite difference scheme to solve a one-
dimensional advection—diffusion equation with constant
coefficients. Two optimisation techniques based on mini-
misation of dispersion error were implemented to find the
optimal value of the time step size when the spatial step
size is chosen as h = 0.02, and this is validated using some
numerical experiments. Appadu et al. [8] used three numer-
ical methods to solve two problems described by advec-
tion—diffusion equations with specified initial and boundary
conditions. Two test problems were considered. The first test
problem considered has steep boundary layers near x = 1,
and this is a challenging problem as many schemes are
plagued by non-physical oscillation near steep boundaries.

The regions of stability of forward-time central space
(FTCS) and LW schemes discretising the 1D advection-dif-
fusion equation given by [19]:

ac  aCc o
9 g% 2 (4]
at  ox - ox?
) —p2
are - <s < % and 0 < s < 1Tc, respectively, where s = %

and ¢ = %t. We note that a is the coefficient of advection
and a is the coefficient of diffusion.

Hutomo et al. [20] used Du-Fort-Frankel scheme in
order to solve some nonconstant coefficient advection—
diffusion equations on regular and irregular grids. They
considered five numerical experiments, out of which
only one of them has exact solution. However, no detailed
proof of the stability of the Du-Fort-Frankel is given.

In this work, we derive three methods to solve two
problems described by nonconstant coefficient advection—
diffusion equation. Exact solution is known for only one
of the problems considered. Obtaining the stability of
numerical methods for advection—diffusion equation is
not straightforward and there were several attempts in
the past by various authors and some of the previously
published studies [15,21-25]. Complication arises for non-
constant coefficient advection—diffusion equations. In this
current work, the amplification factor is a function of x;,
V> Wy, Wy, Ax, Ay, k, u;j, and v;; and the constants D; and
D,. Two approaches are used in order to obtain the range
of values of for stability. In the first approach, we fix
Dy, Dy, Ax, Ay and select some values of x; € [0,1] and
Y € [0,1]. We then obtain 3D plots of the modulus of
amplification factor ¢ vs wy € [-71, 7] Vs wy € [-7, 7] at
some selected value of k, starting with a very small value
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of k and check if || < 1 for stability. We then increase k
gradually until |{] <1 no longer holds. In the second
approach, we use the technique of Hindmarsh et al.
[25]. We fix Ax, Ay,D,, D, to obtain the amplification factor
¢ in terms of k, x;, ;. Then, we obtain 3D plots of |¢] vs
x € [0,1] vs y € [0,1] and obtain range of values of k for
which [€] < 1.

This article is organised as follows. We describe the two
numerical experiments in Section 2. In Section 3, we derive
the three methods, namely Lax—Wendroff, Du-Fort-Frankel
and nonstandard finite difference method (NSFD) methods
to solve Problem 1. Section 4 is devoted to derivation and
study of stability of the methods to solve Problem 2. Sections
5 and 6 provide the numerical results from Problems 1 and 2,
respectively. Section 7 highlights the salient features of this
article.

2 Numerical experiments
We solve the 2D nonconstant coefficient advection—diffu-
sion equation given by:

ac
ay?

ac  d d d*C
— + —(uC) + —(C) =Dy|—|+D
at T ax MOt 5,0 1[aXZ] 2

], )

where D; and D, are the constants and u and v are the
nonconstants.

2.1 Problem 1 [20]
We solve Eq. (2), where

u(x) =

DB - %l + pePx, @)

v(y) = [DzV - %] + qeV, @

with the following parameters:
a=-0.029,8=05,y=05p=0.05q = 0.05,
D, =0.004, and D, = 0.004.
The exact solution is given by [20]:
C(x,y,t) = ey, (5)

and the boundary conditions are deduced from exact solu-
tion. Dirichlet boundary conditions are used at the bound-
aries. The domains are x,y € [0,1] and t € (0, T]. We
choose the spatial step sizes in the x and y directions as
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Ax = Ay = 0.05. For the domain selected, the range of both
u and v is 0.06 to 0.08, and this can be easily obtained using
any suitable numerical software such as Maple. We have
decided to obtain profiles at short and longer time propa-
gation, and this is why we chose T as 1.0 and 5.0.

2.2 Problem 2 [20]

In this numerical experiment, we solve Eq. (2) where the

nonconstant coefficient advection terms are given by:
u(x,y)=0.01 + 0.005x — 0.005y,
v(x,y)=-0.01 - 0.005x + 0.005y,

with domain x, y € [0, 1] and the constants

D, = D, = 0.0004. The initial condition is given by:
e Z0y= 10, if x=05,y=05
X) b} = .
»t 1, otherwise.

The boundary conditions are as follows:
Cx=0,y,t)=C(x=1Ly,t)=1,
Cx,y=0,)=C(x,y=1,t)=1.

There is no exact solution for this problem. We display the

results at times T =1 and T = 5 using Ax = Ay = 0.05.

3 Derivation and stability analysis
of the three methods for
Problem 1

3.1 LW method

We first obtain the family of explicit and implicit schemes
in order to discretise the constant coefficient advection—
diffusion equation [18]:

o, oc _ ¥c

at ax ax?
The family of methods is given by:

Cin+1 _ Cin
k

1-¢ ' -ay | Ch-ah4
1-x) +
u[ AX [( O T

= 0. (6)

¢ Cin+1

+ —

Ax

Cn+1 N C,Til Cn+1
Ax 2Ax

a-x

Gl = 2¢1 + Cly)

_pl=¢
o
¢

Ty

(it -2t + Cirfil)l =

Nonconstant coefficient advection-diffusion equations = 3

where ¢ and are the temporal and spatial weighting factors.
To obtain the LW scheme, we use ¢ = 0 and y = I_T" Thus,
the LW scheme when used to discretise Eq. (6) is [6,26]

Cin+1 - Cin Cin - Ciril irj-l - l'rll
+ +(1-¢)——
X ulc 1-o0 TAx
G -2+ Gy
(Ax)? ’

uk

where ¢ = .

Suppose we have a 1D nonconstant coefficient advec-
tion—diffusion equation of the form:

oC 0%C
—( €) - D

=0,
ot

where u = u(x) and D is a constant. This equation can be
written as:

S euS 2o pZt o )
ot ox

When Eq. (7) is discretised using the LW scheme, the fol-
lowing discretisations are used:

% _ Cin+1 _ Cin
at k7
6C Cl‘n - n Cl+1 Ciril
i C.i + 1 _—,
ox A Ty
aZ—C - l+1 zcn + Clnl
ax* (Ax)? ’
where ¢; = %. This gives the following scheme:
gt - ¢ -ct - Ch
i . l+ui[Ci lezll ( l)[zlezl]]
. ®)
+ a_u Cin -D l+1 ZC + C‘l 1
ox |; (Ax)?
Eq. (2) can be rewritten as follows:
oC  ou oc 9 oC
F Bovu= Loy
ot ox ox ody ay (
9
_ 7€), o[
" ax? Y ay?

The following approximations are used when Eq. (9) is
discretised using LW scheme:
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% B C;}+1 - Cltl]
ot kK
ac _ k Gl - Gl

u.,_i
ax Ax  Ax

Chyi- Chy
+ [1 - uiji]—l Y . 1,],
Y AX 20X
9%C _ i1 — 2G5 + Cly;
P (Ax)? :
%ﬂ)uicﬁ" Lj-1
ay oy by
Clty - C
+ 1_Vij£ ij+1 i 1’
7 Ay 20y
2%C _ tje1 — 2G5 + Cljy
ay* (ay)® '
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Figure 1: Plots of u(x) vs x € [0, 1] vs y € [0,1] and v(x) vs x € [0,1] vs
y €[0,1]: (a) u and (b) v.
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The LW scheme when used to solve Problem 1 is given by:

n+l _ en
- p L+ p(-BrePxCl + q(-y)emich
+ Uu; u.LL’lj _ Ciril’j +11 - u'i i’ll’j _ ﬁl’j
i lAX Ax le 20X
n n n n (10)
gy K G TG k|G = Gy
Pax oy Ay 20y
hay =20+ Clyy g - 200+ Oy
R LWy ’
where
a x
u = [D1f - 28 + pe, ()
a _
v = [Dyy - % + qe V. 2)

Plots of u(x) vs x € [0,1] vs y € [0,1] and v(x) vs
x € [0,1] vs y € [0,1] when D; = D, = 0.004, a = —0.029,
p=057y=05p=0.05 and q=0.05 are displayed in
Figure 1, and we observe that both quantities are non-
negative.

Using Eq. (10), we obtain

C = ¢l + pBkePiCl + qyke MICT

k C-Cly;

- uik ui——l’] T
Ax Ax

k ]Ci'h,j - Ciril,jl

+|11-u

‘Ax]  2Ax
k Cj-
B vjk‘vj Ax Ay
Cli1 — Clj
27y

.n‘
ij-1

(13)

+

k
1—\)]'E

Dk
o G =260 G

D)k

@(Q{}ﬂ - 2005 + Cj-p).

To study the stability, we use the ansatz C/} = "e/0itxe0 /b
[27], where 8, and 6, are the wave numbers along x- and y-
directions, respectively, and I = v-1. Let w, = ,Ax and
wy = ByAy. The amplification factor is given by:

+

+
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& =1+ pPke P + qyke ™V

k _ k | 2I sin(wy)
— 1. — (1 = plwx oy | =
k| iy e @ = €7 + [1 ”le] 20X
k k |2I sin(wy)
— viklvi——(1 - e7 v - |— 14)
Uy y)+[1 Ty 2y
Dik ) Dok
+ ——(efox — 2 + e7lox) + eloy - 2
(AX)Z( ) (A)’)z(
+ e loy),

We note that for Problem 1, the parameters are [20] as
follows:
a=-0.029, =05,y =05,p = 0.05,q = 0.05,
D;=0.004, and D, = 0.004.

However, different parameters can be used in future stu-
dies. We choose Ax = Ay = 0.05 and use the parameters
which Hutomo et al. [20] used for Problem 1. This gives
the amplification factor as follows:

& =1+ 0.0025ke05% + 0.025ke 0% + 0.124k2e~0-5x
+ T sin(wy)e %[k - 0.124k? - 0.01k2%e054]
+ I sin(wy)e Y[k - 1.24k* - k% 0]
+ I sin(wy)[3.82k — 0.3844Kk?] — 0.3844k2e T
+ I'sin(w,)[3.82k - 0.3844k2] + 0.01k2(e0-5x)2
+ 1.24k% 01 - e Ty] + k2(e 0)2[1 - e7Twy]
+ 0.7688k2 — 0.124k?2e~05%ig Ivx
— 0.01k%(e 05 )2evx — (.3844k2e 1y — 6 4K,

which can be written as follows:

& =1- 6.4k + 0.025ke 5% + 0.025ke™%%; — 0.7688k>
- 1.24k2%e705% — k2(e705%)2 + 1.24k% "%} cos(wy)
- 1.24k% 0% — k2(e %)% + k%(e"0%))? cos(wy)
+ 3.2k cos(wy) + 3.2k cos(wy) + 1.24k2%e™0 cos(wy)
+ k2(e705%)2 cos(wy) + 0.3844k? cos(wy)
+ 0.3844k? cos(wy) - 0.62Ik sin(w,)
- Ik[e %> sin(wy) + €7 sin(w,) + 0.62 sin(w,)].

We note that ¢ consists of five parameters: x;, Y k, wy, wy.

(1) Since x;, Y € [0, 1], we can choose x; = Y= 1. We obtain
3D plots of [¢| vs wy € [-71, ] VS wy € [-71, ] at some
selected values of k, starting with a very small k, say
k = 0.001, and gradually increasing the value. For stabi-
lity, we need |¢| < 1. We observe that the scheme is
stable when k < 0.14, as depicted in Figures 2 and 3.

(i) We now choose x; =y; = 0.5 and repeat the steps in (i).

We observe that the range of values of k for stability is

again k < 0.14, as displayed in Figures 4 and 5.

Nonconstant coefficient advection-diffusion equations
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Figure 2: 3D plots of [{] vs wy € [-71, 7] vs wy € [-m, ] when X; = y;
and using Ax = Ay = 0.05 and k = 0.001, 0.01, 0.1: (a) , (b) k = 0.01, and
(c) k=0.1.
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Figure 3: 3D plots of || vs wy € [-7t, ] vs wy € [, ] when Xx; =y = 1 Figure 4: 3D plots of |€| vs wy € [, ] vs wy € [, ] when
and using Ax = Ay = 0.05 and k = 0.12, 0.14, and 0.15: (a) k = 0.12, (b) X =Y; = 0.5 and using Ax = Ay = 0.05 and k = 0.001, 0.01, and 0.1: (a)
k = 0.14, and (c) k = 0.15 (showing unstability). k = 0.001, (b) k = 0.01, and (c) k = 0.1.
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3.2 Du-Fort-Frankel method

Du Fort and Frankel [28] proposed a modification of the
centred time centred space (CTCS) scheme to ensure
second-order accuracy while improving numerical sta-
bility [20]. The idea is to replace the middle term in the
numerator of CTCS method with an average value.
Hence, we have the following scheme to discretise

Eq. (9):
1 -1
Cif;-’f - Ci',} . Ujs1 — Uj—q o Ciri1,j - Ci'll,j
2k 20x J 20x
LYo Vj—lcin sy Gl ~ Clja
20y J 20y
_ 15)
~ hyy - O - Oy
! (Ax)?
R N o
2
(Ay)*
On rearrangement, we obtain
cltl = ;{(1 —9B. — 9B )Cn-_l
Y 1+2B,+2B, A
uk usk
S N
(16)

ij n ij n
+ E + ZBy Ci,/'—l + _E + ZBy ij+1

n
Gij

bl

k k
- E(u”l = Ui-1) + E(V}h = Vj-1)

kD
where By = (%2 and By = 5.

The amplification factor ¢ satisfies the following equation:

1
- - — -1
T 2B, ‘(1 2B, - 2B,
uk uk
+l==+ ZBX]e-wa + l—; + ZBX]eI“’x

==
0 oo

RS . N

17
+ % + ZB —lw _% Iw

yle™ + + ZBy ey
Ay Ay

Cooooo

k k
- E(u”l - Uq) * E(Vjﬂ - Vj—l)”-

We can express Ui, — Uj—q as pe P — pe -1 and v}'ﬂ — Vg
as ge W= — qe™Wi-1 using Egs. (11) and (12).

Let X+1, X;, Xi-1 be denoted by x3, X, X, and Vi1 Y Vi
Figure 5: 3D plots of |€] vs wy € [-7, 7] vs wy € [-71, 7] when be denoted by y;.y,,y;, respectively. ) )
xi =y, = 05 and using Ax = Ay = 0.05 and k = 012, 0.14, and 0.15: (a) We choose Ax = Ay = 0.05 along with the required
k =0.12, (b) k = 0.14, (c) k = 0.15 (showing unstability). parameters for Problem 1. This gives
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1 _
=17 ek d - 640

+ (20(0.031 + 0.05e709%)k + 3.2k )eTex
+ (3.2k - 20(0.031 + 0.05e052)k)elwx
+ (3.2k + 20(0.031 + 0.05e 0%2)k)e 1o
+ (3.2k - 20(0.031 + 0.05e"092)k)eley
— 20K[(0.05¢705% — 0.05¢7054)

+ (0.05¢™0%s — 0.05¢™01)]}.

¢

Since Ax = Ay = 0.05 and x, y € [0, 1], we can choose, for
instance, among the various possibilities: x3 = 0.55, x; =
0.5,x =045 and y, = 0.55,y, = 0.5,y, = 0.45. This then
gives the following equation involving the amplification
factor, ¢:
E(1 + 6.4k) = (1 - 6.4k)é1 + 0.0778819120k
+ 4.598800783k (e71ox + g7Tuy)
+ 1.801199217k(e'ex + elwy),

(18)

From there, we check if the scheme is stable for some selected
values of k. For stability, we need to have || <1 for wy, €
[-7t, ] and wy € [-7, 7] at those selected values of k. We
start with low value of k and increase k gradually. Let us
choose k = 0.01. We obtain the following quadratic equation:

&2 - 0.8796992482 - 0.04322181187(cos(wy)
- I'sin(wy))& - 0.01692856407(cos(wy)
+ I sin(wy))¢ — 0.04322181187(cos(wy)
- I sin(wy))¢ - 0.01692856407(cos(wy)
+ I sin(wy))¢ - 0.0007320318722¢ = 0.

(19)

Let the two roots be & and &. We obtain plots of |&| vs
wy € [-1t, ] vs wy € [-1, ] and also |&| vs wy € [-, 7T] vs
wy € [-m, 7] in Figure 6.

We now repeat the same procedures from Eqs. (18) to (19)
and use different values of k each occasion and check if the
scheme is stable at that value of k. We will not present all the
figures due to restriction in number of pages possible. We

Table 1: Checking stability of Du-Fort-Frankel scheme for Problem 1 at
some values of k when Ax = Ay = 0.05

Value of k Is scheme stable at that value of k?
0.001 Yes
0.01 Yes
0.1 Yes
0.16 Yes
0.17 No
0.18 No
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present Table 1, which summarises the range of values of k
for stability. For stability, we need k < 0.16.

3.3 NSFD

We refer to Kojouharov and Cheni [29] and Mickens and
Washington [30], who constructed a nonstandard finite dif-
ference scheme for an advection—diffusion reaction equation
of the form:

U + Vol = Duyy — Au — eul/3,
where vy, D, and A¢ are non-negative parameters.

To construct the NSFD scheme for Eq. (9), we use the
following approximations:

Figure 6: Plots of the modulus of amplification factors vs wy vs w, when
Ax = Ay = 0.05 and k = 0.01: (a) |&] vs wx vs wy and (b) |&] vs wy vs wy.
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ac -l

’

ot ¢k)

aC _ Gl - Cly;

ax v(Ax)
9%C _ Claj— 2G5 + Gy
ox* (¥(Ax))*

acC _ G- Gl

ay Y@y

n o _ n n
0%C _ Ciju1 — 2Gij+ Gijy

Ea

(W@ay)y

b}

where p(Ax) = exp(Ax) — 1and ¢(k) = exp(k) — 1. This gives
the NSFD scheme as:
Cit;')rl - CIZ

n _ rn

ou -1
— >+ — | C* + y——=
600 axl VT M gan
Clj - Cija
+ — C‘n, + V#
ay|. 7y
| ¥(ay) 20)
i1~ 2G5+ Clly;
L@y

‘D Clj = 2C05 + G4
L@@y
We choose the functional relation:

p(k) k) 1

= =5 21
[B@OP ~ [pay)P 2’ @b
and we obtain the following scheme:
cljt= ‘1 + pBo(k)e ™ - w; lﬁg;)) + qyp(k)e
o(k) Dy
Voo~ Dy - DZ’C;}/‘ + —Clhy
P(Ay) o 2 -
D; ., Di) .,
* 72 i+l T [uim + 71] i-1)
¢k) Dy .,

To run experiments, we use (21), choose Ax = Ay = 0.05,
and this gives k = In(1 + 0.5 x 0.05%) = 1.249 x 1073,

It is clear that the coefficients of ,-’11,]- and C{}-H are non-
negative. Also, the coefficients of C{;; and C/j_; are non-
negative as we see from Figure 1 that 0.06 < u; < 0.08 and
0.06 < v; < 0.08. We display the variation of coefficient of
Cjvsx € [0,1] vs y € [0, 1] in Figure 7 and see that it is in
the range of 0.9882 to 0.9890 for x € [0,1] and y € [0, 1].
We therefore conclude that NSFD replicates the positivity
of the continuous model when the functional relation in

Nonconstant coefficient advection-diffusion equations == 9

(21) is used. There is no need to obtain the stability of NSFD
using von Neumann stability analysis. We can just check if
the conditions for which NSFD replicates positivity of the
continuous model.

4 Derivation and stability analysis
of the three methods for
Problem 2

4.1 LW scheme

The scheme is given by:

C{?’l - le}
s 001
k Cij = Clyj
-y~
K \Chyi = Chys
+ [1 - ui,jg]% 23)
k Cj = Cija k |Cljr1 = Clj1
B et (Rl T
i)~ 2G5 + Clly; Cli — 2G5 + Gl
! (Ax)? : (Ayy? ’

where u;; = 0.01 + 0.005x; - 0.00Syj, v;j = —0.01 - 0.005x; +
0.005y;, D, = 0.0004, and D, = 0.0004.
Eq. (23) can be written as:

09882?

1

Figure 7: Coefficient of (j vs x € [0, 1] vs y € [0, 1].
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n+l _ ~n n k Cl{; B iril:]'
Ci,j - Ci,j - 001ka - ui’]‘k ul"jET
.\ [1 _ uiji]ci’il,j - Cly;
Y AX 20x
- v kv .i—q} - l{;’_l
Ty
k Cif}'ﬂ - Ci',}—1
T
Dik
+ X7 (Claj = 2G5 + Cly))
D,k
+ ———(Clh - 2C7% + C12)).
(Ay)z ij+1 ij ij-1

The amplification factor is given by:

0.00033§
0.00036-]
0.00034-}
000032
0.00030-
0.00028

i

C)

0.00012
0.00010-]
0.00008-}
000006
000004

=

(b) R

Figure 8: Plots of coefficients of C'; ; and Gj_; vs x € [0, 1] vs y € [0, 1]:

() coefficient of C{"4; and (b) coefficient of Cj_;.
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k 1- e

=1-0.01k - u; jk|u; /———
'3 Ui ul’]AX Ax

. [1 o 'Llﬂsin(wx)
YAx)  2Ax

(24)

X k1-eloy . k |2I sinw,
vl,/ vlJ Ay Ay vl:] Ay 2 Ay
le Dzk
+ 2 -2)+ ——=(2 -2).
( AX)Z( cos(wy) — 2) ( Ay)z( cos(wy) — 2)

To find range of values of kK when Ax = Ay = 0.05, we
use the approach of Hindmarsh et al. [25].

Case 1

We fix wy = 7 and wy = 7. We substitute u;; and v;; in
terms of x; and y; and replace Ax and Ay by 0.05 in Eq. (24)
to obtain

§=1- 129k - 1,600k%(0.01 + 0.005x; = 0.003,)2.

26
2.4
3
22
525
3 2
?
5 2
k] 1.8
£
15
3 1.6
1 14
1
1.2
p
(a)
26
24
3
22
5 25
= 2
?
5 2
S 1.8
£
15
2 1.6
1 14
1
1.2
]
(b) yoooe

Figure 9: Plot of numerical solution vs X vs y using LW at time T =1
using Ax = Ay = 0.05 and some values of k: (a) k = 0.01 and
(b) k = 0.001.
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We obtain a 3D plot of |¢| vs x; € [0, 1] Vs y, € [0,1] and |E > =1 + w?[0.0002k3(x; ‘)’j) - 0.32k + 0.0016k?
increase k gradually. Range of values of k for stability
is0 < k < 116.

Case 2 + w5[0.0002k3(—x,~ +y) - 032k + 0.0016k?

Here, we use the approximations sin(wy) = wy and

= 0.0001xy; k* + 0.0002k* + 0.00005k*(x{ + y]?)]

- 0.000Ly;k® + 0.0002k3 + 0.00005k3(x + y?)]
- 0.01k + 0.000025k>
§=1-0.01k - 0.002k%(w; + w}) + 0.02k’wI(~X; + y;) =1+ 0.0001k* - 0.002k.

+ 0.02k2w§(—xl- +yj) + 0.1kwy(x; —y}.) Solving for |¢] < 1 with k > 0, we obtain 0 < k < 200.

Hence, the intersection of the two inequalities gives
the region of the stability as 0 < k < 1.16.

2
cos(wy) =1 - % Then, the amplification factor is given by:

- 0.005k2w(x? + yjz) + 0.0Dqy kX (wy + w})
+ 0.2Ik(-wy + wy) + 0.1kwy(-x; + yj)
= 0.005K%wj(xf + y?) = 0.16k(w] + ). 4.2 Du-Fort-Frankel method

This gives The scheme is given by:

26
" 24
22
5 25
c E )
o
RNy -
2 L 1.8
= 154 5 5
RS} K> §1A5
GE) z 1.6
= 1
1 14
1.2
1
(a)
(a) y 0 0 X
26
: 24
25 2.2
525
5 2 % 2
5 10505050 %% % = 2
OO IS}
Qo ; E
SIS . 5
E 4
z 1 14
05 !
1 1.2
1
05 1
08 (b) 4 0 o X
(b) y 0 o X

Figure 11: Plot of numerical solution vs X vs y using Du-Fort-Frankel at
Figure 10: Plot of numerical solution vs x vs y using LW attime T=5  time T = 1 using Ax = Ay = 0.05 and some values of k: (a) k = 0.01 and
using Ax = Ay = 0.05 some values of k: (a) k = 0.01 and (b) k = 0.001. (b) k = 0.001.
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¢yt -yt Y e T Gl = Gy £ ¢
2k o W T oay 2k
(0.01 + 0.005x:+ - 0.005y;) = (0.01 + 0.005x;-1 — 0.003y;)
+
T Clja1 — Clja 2(0.05)
2Ay YUY oAy 0.01 + 0.005x - 0.00y,
n o _ Cn+1 _ Cn—l + Cn 2(0-05) (& sin(ay)
_ i+1j ~ Cij ij i-1
= Dy 0 . (-0.01 - 0.005x; + 0.00y,,,) = (<0.01 - 0.005x; + 0.005y, ,)
2(0.05) 25)
n o chtl - cntly cn
ij+1 ij ij ij-1 -0.01 - 0.005x; + 0.005)? )
2 ( Ay)2 , + 2(0.05) (2I sin(wy))
i . _ 0.0004 (el — £ 1+ oTon)
where u;; = 0.01 + 0.005x; - 0.005y]-, v;j = —0.01 - 0.005x; + (0.05)2
0.005y, D; = 0.0004, and D; = 0.0004. P 0000 e ey gt
We fix Ax = Ay = 0.05. The amplification factor satis- (0.05)

fies the following equation: We let X;1 = X3, X; = X, and X;-; = X;. and on simplification,

we obtain

Numerical solution
Numerical solution

25 25
s 2 s 2
g O g
S (XS S <>
215 “M = 15 0‘0::‘
o b < o
5 g COCSCSISISIIIS
E E
=] 3
Z Z
0.5 05
1 1
1 1
0.5 0.5
0.5 0.5
(b) y 0 o X (b) y 0 o X
Figure 12: Plot of numerical solution vs x vs y using Du-Fort-Frankel at  Figure 13: Plot of numerical solution vs X vs y using NSFD at times T = 1
time T = 5 using Ax = Ay = 0.05 some values of k: (a) k = 0.01 and and T = 5 using Ax = Ay = 0.05 and k = 1.249 x 1073 (a) T = 1 and

(b) k = 0.001. (b)T=5.
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&= &1+ 0.10kx — 0.10kx - 0.41k sin(w,)
— 0.20Ik sin(wy)y, + 0.20Ik sin(wy)x, + 0.10ky,
- 0.10ky; + 0.41k sin(wy) + 0.20Ik sin(wy)y,
— 0.20Ik sin(wy)x; — 0.64k cos(wy)
+ 0.64kE + 0.64kE - 0.64k cos(wy) = 0.

Case 1:
We fix wy = 7 and wy, = .
The amplification factor satisfies the following equation:

(1 + 0.64k)E2 — 1 + 0.10KE(X; — %) + 0.10KE(Y; ~ y;)
+ 1.28KE + 0.64k = 0.

For suitable values of x;, y, chosen, the difference x3 — x
and y, -y, will be constant. We have x; - x = 2Ax = 0.1
and y;, —y, = 2Ay = 0.1. We thus have

(1 + 0.64k)&2 - 1 + 1.3kE + 0.64k = 0.

(a) 0
g ois //f//l ' ‘\\‘* 6
477 RN :
1 LS TR
i N

(b) yoo0o

Figure 14: Absolute errors vs x vs y, using the LW at times T'=1 and
T=5usingAx=Ay=0.05andk=0.01: (@) T=1and (b) T = 5.
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Solving for |¢| < 1, we obtain
k € [0, ).

Case 2:
We consider the case wy —~ 0 and w, — 0, and Eq. (25)
gives
(1 + 0.64k)E2 - 1+ 0.10kE(xg — x) — 0.4TkwyE
+ 0.20Ikwyy, & + 0.20Ikwyx, + 0.10kE(y; — y; )¢
+ 0.4Ikwy ¢ — 0.20Ikwyy, & = 0.20Ikwyx,

- 1.28kE + 0.32kwy€ + 0.64k + 0.32kwjé = 0.

As wy, wy = 0, we therefore obtain
(1 + 0.64k)E2 = 1 + 0.10k&(0.1) + 0.10kE(0.1) — 1.28kE

+ 0.64k = 0.

Solving |¢| < 1, we obtain k € [0, 8.873565].
Hence, the range of values of k for stability is 0 < k <
8.873565, when Ax = Ay = 0.05.

S
@
o 0.02
E
[e]
8
© 0.015
0.01
0.005
0
(a)
0.16
0.14
02
0.12
_ 015
e 0.1
[0}
2 01
=]
= 0.08
8
S 005
0.06
9 0.04
-
0.02
0
(b) y 0 o X

Figure 15: Absolute errors vs x vs y, using Du-Fort-Frankel at times T = 1
and T = 5 using Ax = Ay = 0.05 and k = 0.01: (a) T = 1 with k = 0.01 and
(b) T =5 with k = 0.01.
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4.3 NSFD

When NSFD is used to solve Problem 2, we obtain the

following scheme:

¢t - ¢
: , .
S+ 0005

+ 0.005C{; + v,

Cil’lj - Ciril,]'
+ U
Y(Ax)
' 'Cif}- - Ci{}'—l
7 yy)
Gl = 2G5 + Cly;
b @oP

n n n
Gij1 = 2G; + Gijq

MECTTTNS T

%1073

[N N)

absolute error
o o o
» (o))

0.025
0.02
5 A8 D
£ 0015 7000000005\
o 1700 9 920005 ¢SS\
® 0005 '&0“:“\“
0
(b) ¥ 0 o X

Figure 16: Absolute errors vs x vs y, using NSFD at timesT =1andT =5
using Ax = Ay = 0.05 and k = 1.249 x 10-%: (@) T=1 and (b) T = 5.

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

DE GRUYTER

where ¢(k) = ek - 1, p(Ax) = e - 1, and P(Ay) = e¥ - 1.
A single expression for the scheme is

S ek (k)
Gj 1-0.01¢(k) ul’]l/)(AX) v”’l/)(Ay)
_ 90 _ k), D)
[W@AOP  [w@y)P) ™ [pax)pR Y 26)
Dy9(K) ., o) Dip(k) ),
" Tpayp ot [“’ Y0 T HOP ]C“”
9(k) . Dyp(k) ) .,
' [vjwmy) [w(AynZ]C”*'
We choose ] w‘fg]z =7 wfg}z]z = i. Eq. (26) reduces to
%1078
25
2
g5
« 05
0

Relative error

(b)

Figure 17: Relative errors vs x vs y, using LW at timesT=1and T =5
using Ax = Ay = 0.05 and k = 0.01: (a) T =1 and (b) T = 5.
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et | - 9k ¢(K) D1 Dy,
G —[1 0.01¢(k) — uy; B(Ax) Vij wy) 2 > yCiJ-
Di ., D2 k) D
e R gl e
(k) D,
' [V"’fw(Ay) "

where D; = D, = 0.0004. We fix Ax = Ay = 0.05, and this
gives k = In(1 + 0.25 x 0.05%) = 6.25 x 1074,

Using these values, the coefficient of Cif} is 0.9992, coef-
ficient of Ci'; is

3.2190 x 107 + 6.0951 x 1073x; - 6.0951 x 10‘5y]-,

and the coefficient of (/j_; is 7.8099 x 107 - 6.0951 x
107x; + 6.0951 x 107y, We obtain the plots of coefficients
of C'y; and (fj_; versus x € [0,1] versus y € [0,1] in
Figure 8, and we observe that these coefficients are all

0.02

LTS
el |-
(a) y oo ; .
(b) ;o0 .

Figure 18: Relative errors vs x vs y, using Du-Fort-Frankel at times T =1
and T =5 using Ax = Ay = 0.05 and k = 0.01: (@) T=1and (b) T = 5.
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positive. This confirms that the scheme replicates the posi-

tivity of the continuous model when
o(k) o) _ 1

DAOF ~ WP &

5 Numerical results for Problem 1

We choose to display results at times, say T =1 and T = 5.
We fix Ax = Ay = 0.05 and run experiment with k = 0.01
and k = 0.001 for both LW and Du-Fort-Frankel methods,
whereas the time step for the NSFD is fixed at k=
In(1 + 0.5(0.05%)) = 1.249 x 103, We obtain reasonable
results as shown in Figures 9-19. From those results
obtained, it is observed that the LW method gives best
approximation followed by NSFD and Du-Fort-Frankel,
respectively.

Plots of numerical profiles vs x € [0,1] vs y € [0, 1] at
T=1 and T =5 are displayed in Figures 9-13. Plots of

%103

25

A L
RN il

A |
(a) y 0 o . y
w o, 2 o

Figure 19: Relative errors vs X vs y, using NSFD at timesT=1and T = 5
using Ax = Ay = 0.05 with k = 1.249 x 10%: (@) T =1 and (b) T = 5.
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10

Exact solution
Initial Value

(a)
4
x10*
5 3
2
c
S
= 1
5 5
8 0 E
= o
g 2
1 (o]
3 g
€
2
-5 2
! 3
1
05 4
05
(b) y 0 o X x10*
,
Figure 20: Plots of exact and numerical solutions vs X vs y using LW (b) y 0 o X

scheme with k = 0.15625, Ax = Ay = 0.05 at time T = 40: (a) Exact solu-
tion and (b) numerical solution.

Table 2: Rate of convergence in space when the three methods are used

to solve Problem 1 at time 0.1 6
5

Schemes h L, error Rate (I;) CPU §
time § “
LW 0.0500 51747 x 106 — 0.053 g °
0.0250 13084 x 106 1.9837  0.071 £’
0.0125 32793 x 10-7  1.9963 0.175 Z1
0.00625 8.2028 x 108  1.9992 1.534 0

Du-Fort-Frankel  0.0500 23526 x 10-3 — 0.073 1
0.0250 1.4019 x 10-3  0.7468 0.076
0.0125 53364 x 10~% 1.3934 0.086

0.00625 1.5811 x 10~4  1.7549 0.122 () y 0 o ¥ !
NSFD 0.0500 40131 x 104 — 0.070

0.0250 2.0688 x 104  0.9559 0.368 Figure 21: Surface plots of numerical solution using LW vs x vs y using

0.0125 10469 x 104 0.9827 12371 Ax = Ay = 0.05 and some values of k at time T = 1: (a) initial, (b) LW

using k = 0.01, and (c) LW using k = 0.1.
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Figure 22: Contour plots of numerical solution using LW vs x vs y using
Ax = Ay = 0.05 and some values of k at time T = 1: (a) initial, (b) LW
using k = 0.01, and (c) LW using k = 0.1.
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Figure 23: Surface plots of numerical solution using LW vs X vs y using
Ax = Ay = 0.05 and some values of k at time T = 5: (a) LW using k = 0.01,
(b) LW using k = 0.1, and (c) LW using k = 1.
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Figure 24: Contour plots of numerical solution using LW vs x vs y using
Ax = Ay = 0.05 and some values of k at time T = 5: (a) LW using k = 0.01, Figure 25: Surface plots of numerical solution using Du-Fort-Frankel vs x
(b) LW using k = 0.1, and (c) LW using k = 1. vs y using Ax = Ay = 0.05 and some values of k at time T = 1: (a) initial,
(b) k = 0.01, and (c) k = 0.1.
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Figure 26: Surface and contour plots of numerical solution using Du-
Fort-Frankel vs X vs y using Ax = Ay = 0.05 and some values of k at time
T = 1: (a) initial, (b) k = 0.01, and (c) k = 0.1.
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Figure 27: Surface plots of numerical solution using Du-Fort-Frankel vs x
vs y using Ax = Ay = 0.05 and some values of k at time T = 5: (a)
k=10.01, (b) k=0.1,and (c) k = 1.
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Figure 28: Contour plots of numerical solution using Du-Fort-Frankel vs
X vs y using Ax = Ay = 0.05 and some values of k at time T = 5: (a)
k=10.01, (b) k=01, and (c) k = 1.

Figure 29: Surface plots of numerical solution using NSFD vs x vs y using
Ax = Ay = 0.05 and k = 1.249 x 10-3 at time T = 1 and T = 5: (a) initial,
(b) NSFD at T =1, and (c) NSFD at T = 5.
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absolute errors and relative errors vs x vs y are depicted in
Figures 14 and 19. We also show numerically based on
Figure 20 that LW is unstable at T = 40 when k = 0.15625,
and Ax = Ay = 0.05, and this provides some validation to the
stability region obtained on page 5, subsection 3.1 (k < 0.14).

Information about the relative errors is obtained from
Figures 17-19. At T = 1, all the three schemes are efficient.
Maximum relative errors using LW, NSFD, and Du-Fort-Frankel
are 0.025, 0.3, and 2.5%, respectively. At T = 5, only LW and
NSFD have maximum relative error less than 5%. Maximum
relative errors using LW, NSFD and Du-Fort-Frankel are
0.008, 1.5, and 10, respectively, at T = 5.

To compute numerically the rate of convergence,
we choose time T = 0.1. For the LW scheme, we chose to

work with % as constant. Thus, starting with k = 0.05 and

Ax = Ay = 0.05, k is divided by 22 whenever the spatial step
size is divided by 2. From Table 2, we deduce that the numer-
ical rate of convergence in space for the LW and Du-For-
t—Frankel methods is two, while that for NSFD is one.

6 Numerical results for Problem 2

We present results of Problem 2 at timesT =1and T =5 in
Figures 21-31.

We display results at time T = 1 using the three methods
in Figures 21-30 The range of the initial concentration is 1-10.
AtT = 1, the range of concentration is 1-5.5 from all the three
schemes used based on Figures 21, 25, and 29. Some dispersive
oscillations are seen when Du-Fort-Frankel is used.

Results at time T = 5 are displayed in Figures 23-30.
The range of concentration using LW and NSFD is 1 to 1.8,
while the range using Du-Fort-Frankel is 1 to 1.9. We
observe some unbounded values in the numerical solution
of LW depicted by Figure 31(c). This validates the result
from stability analysis where we deduced that range of k
when Ax = Ay = 0.05 for LW is 0 < k < 1.16.

7 Conclusion

In this article, three finite difference schemes, LW, Du-
Fort-Frankel, and NSFD, were constructed and used to
solve a 2D advection—diffusion equation with nonconstant
coefficients. Two problems were considered whereby one
has an exact solution. First, for the problem with exact
solution, we deduce that the LW is the most efficient
scheme followed by NSFD and least performing scheme
is Du-Fort-Frankel. Secondly, it is known that the stability
analysis of standard finite difference schemes discretising

DE GRUYTER

1D advection—diffusion equation is not straightforward and
here, complication arises as we are considering 2D noncon-
stant coefficient advection—diffusion equation. However, we
have managed to obtain the range of values of k for stability
of LW and Du-Fort-Frankel schemes using von Neumann
stability analysis coupled with other techniques. Third, in
the case of NSFD, since we are dealing with non-negative
variables, we obtain the condition for which the scheme repli-
cates positivity of the solution of the continuous model and
this is not too time-consuming to achieve. Fourth, the numer-
ical rate of convergence of the three methods is obtained. We
compare the CPU times of the three algorithms when used to
solve Problem 1. Moreover, we display the results of Problem
2 using the three methods and observe that some dispersive
oscillations are present in the solutions from the Du-
Fort-Frankel scheme.

Future work will involve the use of LW and NSFD
schemes to solve some real-life problems dealing with irre-
gular grids and other coefficients of dissipation.
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