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Abstract: The fractional-order differential equations (FO-
DEs) faithfully capture both physical and biological phe-
nomena making them useful for describing nature. This work
presents the stable and more effective closed-form traveling-
wave solutions for the well-known nonlinear space—time frac-
tional-order Burgers equation and Lonngren-wave equation
with additional terms using the exp(-®(¢)) expansion
method. The main advantage of this method over other
methods is that it provides more accuracy of the FO-DEs
with less computational work. The fractional-order derivative
operator is the Caputo sense. The transformation is used to
reduce the space-time fractional differential equations (FDEs)
into a standard ordinary differential equation. By putting the
suggested strategy into practice, the new closed-form tra-
veling-wave solutions for various values of parameters were
obtained. The generated 3D graphical soliton wave solutions
demonstrate the superiority and simplicity of the suggested
method for the nonlinear space-time FDEs.

Keywords: Caputo fractional derivative, fractional-order
Burger’s equation, fractional-order Lonngren-wave equa-
tion, exp(—®(¢)) method

1 Introduction

Numerous real-world applications of the constant-order
fractional differential equations may be found in a variety
of scientific and engineering disciplines, including structural

* Corresponding author: Umair Ali, Department of Applied and
Statistics, Institute of Space Technology, Islamabad 44000, Pakistan,
e-mail: umairkhanmath@gmail.com

Mashael M. AlBaidani: Department of Mathematics, College of Science
and Humanities, Prince Sattam bin Abdulaziz University, Al Kharj, 11942,
Saudi Arabia

Abdul Hamid Ganie: Basic Science Department, College of Science and
Theoretical Studies, Saudi Electronic University, Riyadh 11673,

Saudi Arabia

mechanics, fluid dynamics, chemical kinematics, signal pro-
cessing, and many more [1-4]. Numerous scholars have stu-
died closed-form solutions for constant-order nonlinear
fractional differential equations, including Ali et al. [5], who
looked into the solution for the fractional-order (2 + 1)-
dimensional breaking soliton problem. They successfully
achieved the perfect solution in all conceivable forms.
Another study [6] discovered the soliton solution for the
variable-order fractional differential equation. Using the
straightforward Hirota approach and the bilinear Banklund
transformation, Wang [7] took the high-dimensional equa-
tion and discovered the soliton solution including kink and
periodic soliton that were found by long wave-limited solu-
tions, and the obtained data proved the solution. Kumar [8]
considered the one, two, and three solitons for the modified
KdV equation by applying Hirota’s bilinear technique. They
presented a graphic representation of the multi-soliton solu-
tion and its interactions. The fractional-order Schrédinger
equation was covered by Das and Ray [9] using the extended
projective Ricatti equation approach. The fractional deriva-
tive, which is in a conformable sense, was produced from the
governing equation to construct several varieties of soliton,
including kink soliton, single soliton, and dark soliton-type
traveling-wave solutions. The Hirota bilinear technique [10],
the sub-equation method [11], the exp-function method [12],
the G'/G-expansion method [13], the extended rational sin/cos
method [14], the (G'/G,1/G)-expansion method and the F-expan-
sion method [15], and the new auxiliary method [16] are only a
few examples of the numerous ways that have been used in
the literature. Additionally, the traveling-wave solutions are a
subclass of exact solutions that are crucial in determining the
analytical solutions of NFDEs. These solutions can be trans-
mitted with specific shapes and speeds using solitary waves,
and they eventually reach zero at specific locations. Addition-
ally, the closed-form solution can be observed in a variety of
natural physical phenomena, including plasma, optical fiber,
physics (solid-state and condensed matter), fluid dynamics,
etc. Most importantly, finding traveling-wave solutions to the
NFDEs is crucial to a deeper physical understanding of these
equations.

In this study, two types of fractional differential equa-
tions (FDEs) are discussed: the fractional-order Burger’s
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equation (FO-BE), which is used to model physical issues
like acoustic wave propagation in gas tubes, water waves,
and liquid with bubbles [17], and the fractional-order
Lonngren-wave equation (FO-LWE), which describes the
electric signals in telegraph lines based on the tunnel diode
[18]. Numerous scholars have solved these kinds of frac-
tional-order differential equations (FO-DEs) using various
analytical techniques, such as the variational iterative
method, as explained by Inc. [19]. To more effectively illus-
trate the accuracy, they presented graphical images and
numerical results. Using the G'/G-expansion method, Bekir
and Guner [20] were able to solve the FO-BE and FO popu-
lation model. They demonstrate that the proposed method
is more precise and efficient by using the fractional deri-
vative, which is in the Riemann-Liouville sense. Similarly,
Bulut et al. [21] modified the trial equation method used to
solve the FO-BE. The space and time FO-BE analytical solu-
tion based on the variational iteration method with various
initial conditions was also studied by Saad and Al-Sharif [22].
The outcome revealed greater agreement with the precise
solutions. The aforementioned equation was presented by
Esen and Tasbozan [23] using the cubic b-spline finite ele-
ment method. By comparing the numerical results to the
body of literature, they were validated. Esen et al. [24] exam-
ined the homotopy analysis method’s approximate analy-
tical solution for the FO-BE in another review. By adjusting
the auxiliary parameter, they changed the convergence
region. For the solution of FO-LWE, Wang [25] proposed a
new mathematical technique called the fractional Yang
wave transformed approach. The traveling-wave solution
is represented in the 3D figures, and the fractional deriva-
tive is in the local fractional derivative form. Igbal et al. [26]
examined the Lonngren equation using the two variables (G
'lG,1/G) expansion approach and observed that the solutions
were in terms of trigonometric, hyperbolic, and rational
functions. Graphic representations of the bell-shaped, sin-
gular soliton, singular periodic, and anti-bell-shaped are pro-
vided. Ali et al. [27] considered the space-time variable-order
model and solved it by the analytical Khater method, which is
a new concept in this field of research. The fractional-order
operators are in the Caputo sense. They constructed the new
exact soliton solution for the proposed model and demon-
strated the efficiency of such types of variable-order models.
Hussain et al [28] worked on the Schamel KdV equation to
discuss the effect of electron trapping in ion-acoustic waves.
The obtained results included bell-shaped, double-periodic,
shock-waves, and solitary waves, which are very effective in
mathematical physics. Rehman et al. [29] considered the non-
linear fractional-order dispersive equation, which is used to
describe wave propagation in an elastic, inhomogeneous
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Murnaghan’s rod. They generated various solutions such as soli-
tary, soliton as well and periodic wave solutions. Another survey
[30] discussed two different fractional-order models and found
their solution by the new auxiliary equation method. They inves-
tigated the physical meaning of the solution by the graphical
representation. The two space-time fractional-order models
are solved by the extended Kurdryashov method [31]. The
beta-derivative operator is used for the fractional-order term,
and the obtained solutions yield a variety of typical soliton
shapes. The three-dimensional, two-dimensional, and contour
graphs are plotted to confirm the capability and effectiveness
of the method. Further similar comprehensive studies related
to fractional-order models, their solutions by various techni-
ques, and its physical investigation can be found in previous
studies [32-39].

In this study, the proposed exp(-®(¢)) approach is
used to build the closed-form traveling-wave solutions
for the two nonlinear FO-DEs named FO-BE and FO-LWE.
The derived new closed-form traveling solutions are in the
form of bell-shaped, solitary, and periodic solitons that are
graphically represented in three dimensions. The frac-
tional-order derivative is in the Caputo sense. The pro-
posed approach and FO-DEs were found to be effective
and valid by the newly created closed-form solutions. To
the best of the author’s knowledge, no research that used
the closed-form exp(-®(¢)) approach to solve the FO-BE
and FO-LWE equations exists in the literature.

The remainder of this article is divided into the fol-
lowing sections: Section 2 explains the fundamental
Caputo fractional derivative formula; Section 3 discusses
the exp(-®(¢)) method; Section 4 describes how the pro-
posed method was applied to the FO-BE and FO-LWE;
Section 4 includes results and discussion; and Section 5
contains the conclusion.

2 Caputo fractional derivative

The fractional derivative and the characteristics of values
of algebraic types are covered in this section. A function
with Caputo fractional derivative F(x,y, ...,t) of order
0 < B < 1is defined as follows [40]:

f)DtﬁF(X)y: ’t)

t
1 F'(x,y,.,t) 1
- F(1+B)'!T(t—f)"’df’0<ﬁ<1’ @

F'(x,y, ...t), B=1.

The property for algebraic type function is as follows:
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3 Methodology of exp(-®(&))
method

Consider the following nonlinear FO-DE of the order a:
G(u, sDfu, u,u, u, ...) = 0, 3

where G is a polynomial in u, and the fractional order is
denoted by a, which is in the Caputo sense. Additionally,
the fractional transformation is utilized as follows:

ulx,y, ...,t) = U(),
¢= S Y + .- _t ) @
Il+a) TA+a) I'd+a)

Reduce Eq. (3) into the nonlinear ODE as follows:
GU,cU’,U", cU”,U"...) = 0. (5)

When [ is constant, let the answer to the aforemen-
tioned equation have the following form:

U(¢) = ag + a; exp(-®(£)) + ...+ ay exp(-N®(£)), (6)

where N can be calculated by balancing the highest-order
linear term with the highest-order nonlinear term and
®(¢) is a function that satisfies the first-order equation as:

(§) = exp(-D(¢)) + Aexp(®($)) + B. ™

Many cases can be taken to obtain the solution, as
follows:

Case 1. If B2 - 4A >0 and A # 0, then

~JB? — 44 tanh| Mg 4 ©) - B]
o .

®(§) =1In

Case 2. If B2 - 44 > 0, A = 0, then

®,(¢) = -In

B
cosh(B(¢ + C)) + sinh(B cosh(B(¢ + C))) - 1]'

Case 3. If BZ - 4A < 0, then

Jaa - B tanh| Y g 4 0) - B]

®3(¢) = In . )

Nonlinear fractional-order differential equations == 3

Case4.IfB2- 44 =0,A # 0, and B # 0, then

@(¢) =In

2B+ C)+4
BX¢+0)
Case 5.IfBZ- 4A4=0,A =0, and B = 0, then
®5(¢) = In(¢ + O).

Here, the polynomial expressed in terms of exp(-®(¢))
was produced by substituting Eq. (5) for Eq. (4). Find the
system of equations that simultaneously solves by equating
the exp(-®(¢))-based equation. The set of equations that
follow exactly solve Eq. (3).

4 Applications

In this section, the exp(-®(¢)) method is used to solve the
fractional Burger’s equations and the Lonngren-wave equa-
tion, which are nonlinear space—time FO-DEs. As following

4.1 The FO-BE

Consider the nonlinear space-time FO-BE, as follows:
Dlu+au Dlu- v pPu=0, ®)

where 0 < y <1, and using the fractional transformation

xV w ct?

&= taey Y Tasy - taepy © reduce Eq. (3) into the ODE,
as follows:
a d
-cU+ U~ v—U=0. 9
U+ vdf 9

To obtain the value of M =1, balance the high-order

linear term with the nonlinear term:
U= ap + exp(“p(f)) 10)

Substituting Eq. (10) into (9), obtaining the algebraic equa-
tion in terms of exp(-¢(¢)), and separating the same
power of (exp(-¢(£)))", we obtain

(exp(=p(&))° : aaf + 2vay = 0,
(exp(-(&))! : 2Bvay + 2aapm — 2ca; = 0,
(exp(-¢(&)))? : 24vay + aa? - 2cay = 0.

Simultaneous solution of the aforementioned system
of equations yielded the following results:

_(-B++B>- 4A )y . 2v

1= 7"
a

a
=Bv + (-B + VB% - 4A)v.

ap
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Case 1. If B2- 4A>0and A # 0,

then

vB% - 4A tanh

B

Y+ y - ctY
E/BZ_ML +1/BZ_4AC_B
2 I(1+y) 2

Xy - ctr) 1
y—]+ VB aac- B]B2

T +y)

k¥»| - tanh

LN

+ 4tanh

4 y — ctY
X+y7c+1/32—4AC—B - 4A
ra+y 2

%\/32 - 44

ul(xa t) ="

I(1+y)

l\/BZ - 4Aatanh|;B? - 4A[X”yy’“v] + VB - aac- B]]

Case 2. If B2 - 44 > 0,A =0, then

x¥ + vy - ctV x¥ + vy - ctV
vcoshBy7+C +sinhBy—+C - 1|WB%- 44
Ia+y) Ia+y
xV +yV - ctY . xY +yV - ctY
- B|cosh|B|l—————— + C|| + sinh|B|———— + C|| + 1
I +y) Il +y)
(X, t) =

XV +yY -tV . XV +yY —ctV _

a cosh[B[ N C]] +sinh|B| =~ + C]] 1]

Case 3. If B2 - 4A < 0, then

J=B?+ 4A(-B + =B + 4A) tanh| /- B + M[[XV;({;;”] + C] - B] - 4A]v]

u(x, t) =

-B?% + 4A a tanh

) XV +yY -ty B
7V B +4A[[ Ta+y) ]+C] B]

Case 4. If B2 - 4A > 0,A # 0, then

Ia+y)

XV +y - ct?
2ol ) o

) e

us(x, t) =

a

Case5.IfB - 4A4=0,A =0, and B # 0, then

I +y)

us(x, t) = -
(=

v[—C - ["”yy'“y]]\/B2 ~ 44 + BC + B["Vr*(fi'yj‘v + c] +2

I+y)
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4.2 The FO-LWE

The traveling-wave solution based on the nonlinear FO-
LWE is being studied in this case:

SDPP(ED¥u - au+B)+ §DPPu=0,0<p<1, (A1)

where a and S are the constants and using the fractional
. X!

transformation & = v~ - m +p) and integrating two times

to reduce Eq. (11) into the ODE, as follows:

U” + (1 - ac®)U + Bc*U?=0 (12)

To obtain the value of M = 2, balance the high-order

linear term with the nonlinear term:
U=ag+q exp(“p(f)) +a exp(_2¢(f))_ 13)

Substituting Eq. (13) into (12), obtaining algebraic equation
in terms of exp(-@(¢)), and separating the same power of
(exp(-9(¢))), we obtain

(exp(-=9(£)))° = 6ca, + c*Baf = 0,
(exp(—=@(EN) = 2c?a; + 10c%a,B + 2¢*Baya; = 0

1 12¢% - 12+ B%af

Nonlinear fractional-order differential equations =—— 5
(exp(-9(&)))? = 3c2mB + 8c2au + 4c2a,B? + ay - c’aa,
+ 2c%Bayay + c*Ba? = 0,
(exp(—(&)))? = 2c’mA + c*aB? + 6c’aAB + a4y — caay
+ 2¢%Bagay = 0,
(eXp(_¢(E)))4 = CzalBA + 2C202A2 +ap - czaao + Czﬁaoz
=0.

Solving the above system of equations simultaneously
and the obtained values are as follows:

Set 1.
_ 1 36c%a-36- c2B%f
0~ 24 CZB 3
6 1 1 36c2a - 36 - c2p%al
a = _EsB = _gﬁabA = 44 c2 b
Set 2:
_112c¢%a-12+pla}
Ay = _ﬂ Czﬁ s
_ 6 1 _ 1 36c%a-36+c*paf
@=-gB=-gfa, A==
Case 1. If B2- 4A > 0, and A # 0, then

2a1A

ul(x t) = _ﬂ Czﬁ

2447

VB? - 4A tanh

Ji[ xp ap

ER

B(B* - 4A)tanh

\/7[ xp Ctp

Ia+p)
5
I(1+p) C] B A]

Case 2. If B2 - 4A > 0,A =0, then
1 12c%a - 12 + c*p*a? @A
Uy(x, t) = % 5 P + !
cosh[B[[’r‘fl'f;’;] ' CJ + sinh|B [?fff;;] * c]] -1
6B2
B 2
xP - ctP ctP
B coshlB[[r(“p)] + C] + sinh|B [r(1+p)] + C]] - l]
Case 3. If B2 - 44 < 0, then
e = 1 12c*a - 12+ c*pra? 2a,A
5 24 Zﬁ xP - ctP
V4A - B? tanh \/ B2 r<1+p> +C|- A

2442

B(4A - B*tanh

]

-
r(1+p>] C] - ’1]
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of| XP - ctP
112c% - 12+ e} A [ F<1+P>] ¥ C]

24 2/3 xP ctP
ZA[ r(1+p> +4
xP - ctP
r(1+p)] * C]

p o
)

Uy = —

a1/14

Case 5. If B2- 4A4=0,B=0,and A = 0, then

Figure 1: Dynamical shape of the u; shows the singular soliton solution
at the values: atc=-10,B=5,A=6,a=1,v=1,C=1,a¢ =2,
am=4,y=025andy = 2.

Case 4. If BZ- 4A4=0,B#0,and A # 0, Then

(b)
12
167
8] -2.114646 147
6] -2.114646 13
47 -2.11464612
5] i
< -2.11464611-
0] -2.1146461077
-2 |
= -2.11464606
e ] L
i -2.11464608" 02
-6 i ’
| -2.11464607-
-8 -2.114646061
0
<02

t : 2

Figure 3: The dynamical shape of the u; show the soliton waves solution
at the mentioned values of pararmeters. (a) at c =4, ag =2, a1= 4, a, = 2,
p=025a=2,8=2C=2, B-1O,A=2.atc=—1,ao=20,a1=4,az=10,

p=095a=38=2C=~ B=-15and A = ~.

2

Figure 2: Dynamical shape of the u, shows the periodic kink waves at he
values:c=2,B=-5A=6,a=10,v=-11,C=1,a9=2,a; = 4,

y =095 andy = 1.

zo’
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1 12c%a - 12 + c?B%a? . @
Us = ——
T u ] v, .
I(1+p)
6
B P — ctP ;
xP—-ct
]+
(@)

-83.35833332

-83.35833333~

-83.35833334

-83.35833335

-83.35833336~

(b)

O

-1.x 10%

-2.x 103

-3.% 10%-

04

0.10

Figure 4: The dynamical shape of the u, show the singular soliton and
the soliton waves soliton solution at the mentioned parameters values.
(@atc=-1,00=13,0,=10,a,=10,p=0.5,a=2,=20,C=2,B=30,A=
-1.339.(b)atc=-4,a0=2,0,=40,0,=20,p=0.001,a=12,8=2,C=2,
B=-10,and A= 0.

Nonlinear fractional-order differential equations

Figure 5: Dynamical shape of the uy show the single-wave soliton

solution at ¢ = %, ap=20,a4=4,a,=10,p=095a=3,=2,
€=, B=-1andA = -10.

5 Discussion

In this section, discuss about the graphical representation
of the proposed FO-DEs solved through the exp(-®(¢))
method. The graphical representation of FO-BE is
presented in Figures 1 and 2 in the form of a 3D plot,
and the FO-LWE is represented from Figures 3-5. In
Figure 1, obtain the 3D plot in the form of singular shaped-
soliton solution at ¢=-10,B=5,A=6,a=1,v=1,C=
1,a0=2,a41 =4,y =025 and y = 2. Figure 2 confirms the
periodic kink shape soliton solution in the form of
the 3D plot at ¢c=2,B=-5A=6,a=10,v=-11,C=
l,ap=2,a4=4,y=095andy =1 The dynamical shape
in Figure 3 obtained the soliton solution for the para-
metric values at c=4,ap=2,q=4,a,=2,p=0.25,a =
2,=2,=2,B=10,A=2, and c=-1, ap =20, a = 4,
a;=10,p=095a=3,=2,C= zl—O,B =-15,A =%, respec-
tively, in 3D plot. Figure 4(a) and (b) represents the singular
soliton and soliton wave solution ¢ = -1, ap = 13, q; = 10,
a; =10, p=05,a=2, =20, C=2,B=30, A=-1, and
the soliton solution waves solution at ¢ = -4, ag= 2,
a; =40, a, =20,p=0.001, a=12, B=2, C=2, B=-10,
A = 0. Figure 5 represents the singular soliton wave solu-
tion in 3D plot at ¢ = % ap =20, a; = 4, a; = 10, p = 0.95,

@=3,=2C=,B=-14=-10.
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6 Conclusion

This article successfully implemented the proposed approach
to the nonlinear space-time FO-BE and FO-LWE. The approach
delivered a variety of new exact solutions of different physical
structures for different values of some free parameters and of
fractional order. We get various types of closed-form solutions
in the form of singular soliton, periodic kink soliton, and other
new types of solitons waves for various values of parameters,
which are new and valid. Finally, the proposed approach pro-
vides a powerful mathematical tool to obtain more exact solu-
tions to the FO-DEs that arise in mathematical physics.
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