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Abstract: The test of new equipment is usually carried out
in multiple batches according to the task schedule and test
results. Constrained by the test environment, cost, and
other factors, the amount of reliability test data in each
batch is relatively limited, which brings difficulties to the
accurate equipment reliability estimation work. For the
reliability simulation tests conducted before each batch
tests, it is particularly important to make full use of each
batch tests information and simulation tests information to
estimate the reliability of the equipment for small sample
tests. This study takes the common normal-type life distri-
bution equipment as the research object, and selects the
normal-inverse gamma distribution as the equipment life
parameters prior distribution based on the Bayesian method.
Combined with the system contribution, the fusion weights of
each batch tests information are determined and all the batch
tests information is fused. Finally, the estimation of equip-
ment reliability based on multiple batch tests is completed.
The research results show that this method can integrate the
information of each batch test and simulation test, overcome
the problem of insufficient information of single batch tests,
and provide an effective analytical tool for equipment relia-
bility estimation.

Keywords: equipment reliability, normal-type life distribu-
tion, multiple batches tests, system contribution, Bayesian
estimation

* Corresponding author: Tong Chen, Department of Management
Engineering and Equipment Economics, Naval University of Engineering,
Wuhan, 430033, China, e-mail: chentong@nudt.edu.cn

Haobang Liu, Tao Hu: Department of Management Engineering and
Equipment Economics, Naval University of Engineering, Wuhan, 430033,
China, e-mail: liuwuliu_2020@tju.edu.cn

Minggui Li: Department of Management Engineering and Equipment
Economics, Naval University of Engineering, Wuhan, 430033, China;
China Xi’an Satellite Control Center, Xi’an, 710043, China

Kai Du: Shijiazhuang Division of PLAA Infantry College, Shijiazhuang,
050081, China

1 Introduction

New equipment may have reliability design defects in the
initial stage of development and design, and most of these
defects can be exposed through strict reliability test pro-
grams. The equipment in the initial batch tests is difficult
to meet the established reliability target, so it needs to
undergo reliability improvement in multiple batch tests, so
as to ultimately bring reliability improvement to the equip-
ment. The multiple batches reliability test programs are a set
of carefully designed programs and procedures for exposing
the reliability problems and failures through testing, com-
bined with corrective actions and design improvements to
improve equipment reliability throughout the design and
test phases. The existing estimation of equipment reliability
is mainly studied from the perspective of single batch tests,
only the reliability test data of the latest batch is utilized, with
less use of previous batch test information [1-3]. Multiple
batch tests consist of several different batch tests, which are
combinations of single batch tests. The same batch tests con-
tain several equipment with the same reliability, and the
equipment reliability of different batch tests is different.
Therefore, it is neither possible to divide single batch tests
into multiple batches nor to aggregate multiple batch tests
into single batch. Fusion of batch tests data is essential to
address the problem of insufficient information for reliability
estimation of single batch tests. For the small sample tests
of equipment reliability, the reliability estimation results
obtained by using only single batch tests information are
more risky. Therefore, there is an urgent need to find an
equipment reliability estimation method that can integrate
multiple batch tests information.

According to engineering practice, it is known that
different equipment will have different life distribution
forms due to different failure mechanisms. The normal
distribution is a relatively common distribution of equipment
life, e.g, most mechanical equipment subjected to cyclic
loading, such as fatigue testing, will exhibit a normal distribu-
tion of service life. In addition, the normal distribution has
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better theoretical properties and computational convenience,
and its probability density function and cumulative distribu-
tion function have relatively simple expressions. Compared
with Weibull distribution and other distributions, normal
distribution is more convenient for theoretical analysis and
calculation. Partial lognormal distribution and Weibull distri-
bution models can also be analyzed by approximating them
with the normal distribution [4,5]. Considering the mathe-
matical superiority of normal distribution model and its
convenience in reliability analytical modeling, the study
focuses on the reliability of equipment with normal-type
life distribution.

Existing research on equipment reliability estimation
has emerged with many advanced methods, including
neural networks, big data analysis, Bayesian networks,
Bayesian statistical inference, and other intelligent algo-
rithms. Guo et al [6] proposed a deep feature learning
method that combines convolutional neural network-convo-
lutional block attention module and transformer network as
a parallel channel method to predict the remaining useful
life of drilling pumps, which overcame the problem of insuf-
ficient measured data and effectively improved the predic-
tion accuracy. Chen et al. [7] proposed an equipment relia-
bility estimation method based on deep learning, which uses
time series data for equipment reliability analysis. In view
of the characteristics of small sample and high reliability
test of aerospace valves, Wang et al [8] integrated multiple
sources information for reliability estimation. Guo et al. [9]
integrated dynamic Bayesian network and XGBoost in an
evaluation framework to assess the equipment operational
reliability. Wang [10] proposed a reliability evaluation
method for accelerated degradation test of electromecha-
nical products. Jia et al. [11] evaluated the reliability of DC
power distribution system in intelligent buildings based on
big data analysis. Dai et al. [12] proposed a new reliability
evaluation model based on wavelet kernel net, bi-directional
gated recurrent unit, and wiener process model, which
effectively solves the problem caused by the lack of mea-
sured data. Alex et al [13] estimated the reliability of
degraded all-terminal network equipment based on deep
neural networks and Bayesian methods. Zahra et al [14]
estimated the reliability of Weibull distributed products
based on intuitionistic fuzzy life data. Most of the existing
studies only study the estimation of equipment reliability
based on single batch tests, fail to consider the characteris-
tics of multiple batch tests, and are unable to make full use
of the information of each batch tests and simulation tests.

Fusion of each batch tests information is the key to
equipment reliability estimation of multiple batch tests.
Bayesian methods are capable of fusing multiple sources
information in product research, and the results of the
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batch tests before each batch tests can be considered as
prior information for Bayesian fusion, so as to achieve
equipment reliability estimation of multiple batch tests.
Noting that the information closer to the latest batch tests
is more dominant in the fusion process, so the fusion
weights of information from different batch tests need to
be derived. The fusion weights reflect the contribution
degree of different batch tests information to equipment
reliability estimation. The system contribution is com-
monly used to measure the contribution degree of weapon
equipment to combat capability in the combat system, and
this theory is introduced to calculate the information
fusion weights of different batch tests [15,16].

Combining the above analysis, this study takes the
normal-type life distribution equipment as the research
object, and studies the Bayesian estimation of equipment
reliability based on multiple batch tests in the equipment
design stage. First, the probability distribution function,
unreliability function, reliability function, failure rate func-
tion, and sample estimates of reliability parameters for
reliability tests of equipment with normal-type life distribu-
tion are given. Second, the process of Bayesian estimation of
equipment reliability with normal-type life distribution is
given, including three parts: prior information consistency
test, Bayesian estimation of equipment reliability based on
single batch tests, and Bayesian estimation of equipment
reliability based on multiple batch tests. This part of the
content selects the normal-inverse gamma distribution as
the prior distribution of equipment life parameters, deter-
mines the prior distribution of parameters, and adopts the
Bayesian method combined with the contribution degree of
the system to integrate the information of each batch tests,
and solves the problem. Finally, the results of Bayesian esti-
mation of equipment reliability with normal-type life distri-
bution based on multiple batch tests are derived through
example analysis, and compared with the existing single
batch test methods to highlight the superiority of the meth-
odology of this study.

2 Reliability test of equipment with
normal-type life distribution

The equipment life distribution mainly includes normal
distribution, exponential distribution, Weibull distribu-
tion, lognormal distribution, etc. [17-20]. The normal dis-
tribution is more common and the model is simple, and
partial lognormal distribution and Weibull distribution
models can also be approximated by normal distribution.
This research focuses on the reliability of equipment with
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normal life distribution, and the probability distribution of
equipment life can be expressed as follows:
(t- u)Z’

20? ®

1
f®= Toro P

where u is the mean value of equlpment life, and o is the
standard deviation. When o < 0.3u, _[ S (t)dt < 0.0005, it
can be considered that whent < 0, f(t) =

The equipment in the process of use Will experience
wear and degradation, when the use of time exceeds its
service life, the equipment will fail and loose its function.
The process of equipment degradation is shown in Figure 1.

The cumulative distribution function of equipment life
distribution function is the equipment unreliability func-
tion, which can be expressed as follows:

(- u)Z’ @

The equipment reliability function can be expressed as
follows:

t - u)?
R(t)=1-F(t) = J_ J' ¢ )’dt 3
The equipment failure rate function can be expressed as:
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The key to reliability test research of equipment with
normal life distribution is to determine the parameters u
and o2 u and o? are equipment life distribution para-
meters or reliability parameters. The estimated values of
equipment reliability parameters u and o2 can be obtained
by using the equipment reliability field test samples data
t,i=1,2-n
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Figure 1: The process of equipment degradation.
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The error degree of parameter estimates & and % are
calculated by using the sample mean square error (MSE) as
follows:
O—Z
MSE(@) = —
" ®)

4

1

2
MSE(6?) = nf

It can be seen that when the samples’ data volume n of
equipment reliability field tests are small, the error of
parameters estimation values obtained by using only sam-
ples’ data are larger. Therefore, it is necessary to find a
reliability estimation method that can integrate multiple
sources information and reduce the error degree of para-
meters estimation.

3 Bayesian estimation of
equipment reliability with
normal-type life distribution

3.1 Prior information consistency test

In order to use Bayesian method for information fusion,
consistency test should first be carried out to ensure that
all prior information and field data belong to the same
whole [21-23]. The rank sum test, Mood test, and hypoth-
esis test can all be tested by using sample data directly, but
there are higher requirements for the amount of equip-
ment reliability data [24-26]. Therefore, considering the
limited amount of test sample data, Bayesian confidence
interval method is adopted for testing, and the confidence
interval of parameters is obtained by combining single
information source with field data [27]. If the parameter
points estimated value of the field data falls within the
confidence interval under the conditional of prior informa-
tion, the information source is considered compatible with
the field data, i.e., it passes the consistency test.

The prior distribution g(u, %) of parameters u and g is
obtained from the information sources (u;, ojz), Jj=1,23,m
Combined with field data t;,i=1,2,3,-, n, the posterior
distribution g(u, 02|t) of parameters u and ¢? is obtained,
then the confidence interval under significance level a is
{(u, 01, (u, 0¥y}, and the calculation formulas are as follows:
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H g, o%t)dudo? =

(u, a)<(u, 6%,

a
2
a 7
jj' g(u, oY0dude? =
(u, a%)>(u, 6¥y

In the formula, (u, %)y and (u, 02), are the upper and
lower limits of (u, g%), respectively.

According to the field data (¢, 4, t,), the Bayesian
estimation value of parameters (u, o) under the non-infor-
mation prior are (&, 6%). If (i1, §2) are within the confidence
interval {(u, o)., (u, 0%y}, there is no significant differ-
ence between the information source and the field data
on the whole, and the information source (u;, sz) passes
the consistency test.

3.2 Bayesian estimation of equipment
reliability based on single batch tests

3.2.1 Selection of prior distribution of equipment
reliability parameters

Bayesian methods are commonly used in small sample tests
evaluation research, which can be used for small sample data
equipment reliability tests with high value and complex test
environment [28-30]. The life parameters u and o of equip-
ment with normal life distribution are estimated by Bayesian
methods. The Bayesian method regards the parameters as
random variables for estimation, and marks the joint prior
distribution of parameters u and g2 as g(u, %), then

8(u, 0%) = g(ulo*)g(a?. ®)

where g(g?) is the prior distribution of 2, and g(u|a?) is
the prior distribution of u under the condition o2.

By referring to the Bayesian conjugate prior distribu-
tion family, it is known that the conjugate prior distribu-
tion under the condition that the characteristic parameters
u and ¢? of normal distribution are unknown is normal-
inverse gamma distribution [31,32]. Then, there are
ulo® ~ Nlu il

0, kO
Vo Vo0
27 2
g(u, 0*) = g(ulo*)n(a*)

Vo Vy05
27 2

g%~ IGa[
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g
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2
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where u, ko, vy, 6¢ are the hyperparameters of the prior
distribution.

After obtaining the equipment reliability field test sam-
ples data (t;, t,,"+, t,), the likelihood function L(t|u, o%) of the
test samples can be calculated, and the posterior distribution
of parameters u and o2 can be obtained by using the Bayesian
formula to integrate the prior information and samples
information.

L(t|lu, c*)g(ula*)g(a?)
[JL(tlu, 02)g(ulo?g (0% dudo?
where HL(t|u, 0%)g(ulo)g(o?)dudo? is the edge density

function and its value is a constant. Formula (10) can be
simplified to

8w, a%t) = (10)

g(u, a?|t) « L(t|u, 0*)g(ula*)g(a?)
Vno-r% + kn(u = up)* 1

x (02)_[%+%] expi-
202

where uy, kn, Vn, 62 are posterior distribution parameters.
The posterior distribution g(u, 6?|t) of equipment life can
be represented by prior distribution and samples data, and
the posterior distribution parameters are as follows:

kn=ko+n
Va=Vot+n
= 0y Mg 12)
" k0+n° ko+tn

kon _
vna,f=v0002+(n—1)802+ko+n(u0—t)2.

where S, is the variance of field equipment life test data.

3.2.2 Determination of priori distribution
hyperparameters of equipment reliability
parameters

Determining the hyperparameters of the prior distribution
is the key to calculating the posterior distribution. Let @ be

A 2
the estimator of 2 and § be the estimator of 2. According
to the prior information parameters samples data (u;, 01-2),
Jj=1,2,---,m, the maximum likelihood estimation of the

hyperparameters @ and § are solved, and the solution steps

are shown as follows:

1) Establish the likelihood function of inverse gamma
distribution:

—(a+1)

_ " R e 5Pl as
L(a, B) T ]|:|1cr, exp ;Gf] 13)
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2) Obtain the first-order partial derivative of the likelihood
function:

olnL(a,B) _ B (F(a)) <
g SmInp-m @ Z In
. (149
olnL(a,p) _am g 1
op =t a}

3) Let the first-order partial derivatives be 0 to establish
the likelihood equations, and obtain the maximum like-
lihood estimates of the parameters.

. (I (Gwe))
In(a -
( MLE) F(aMLE)
Zmzlln(az) m 1
= =1 3| Inom) 15)
j=19j
A _ My
MLE = <m
e
j)
I'(a) is the gamma function, and
(@) 8 InI@) J, expi-tjt* In¢de
= = T . (16
I(a) oa IO exp{-t}tedt

Take the mean value of parameter samples ojz as the
estimated value of a?.
m 2
2j-10)
m

an

G2 =

According to formula (8), u|g? ~ can be obtained,

Niuo, - k
. 2
then the estimated values of parameters u, and % can be
0
obtained based on previous data.

m
ijluj
m

ao =
i . (18)

2j=ty)/m]

m

271:1[’# -

(a?[ko) =

The value of parameter ky can be obtained by com-
bining formulas (17) and (18):

~ m. 2
G 2j-10;

ko = ; =
0 (a?/ko) Z?il[uj - (Z;‘Zlui)/m]

. (19)

3.2.3 Solution of posterior distribution of equipment
reliability parameters based on single batch tests

The posterior distribution of parameters can be obtained
through Bayesian formula calculation after obtaining the
estimated value of the prior distribution hyperparameters.

Bayesian estimation of equipment reliability based on multiple batch tests

- 5

According to the principle of maximizing the probability of

actual sampling occurrence, the maximum posterior esti-

mation of parameters u and o? is selected as the Bayesian

estimation of parameters.

1) Establish the kernel density function of the posterior
distribution.

VnO',% + Kn(U — Up)?

s . (20)

G, 02) = (02)‘[%%] expl_

2) Calculate the first-order partial derivatives of the kernel
density function, and let the first-order partial deriva-
tives be 0.

0G(u, g>

%=0=>u—un=0

6G(u2) V02 @)
u, o _ 'nOn _

T—0=>7—vn—3—0

The maximum posterior estimates of parameters u
and ¢? can be obtained.

Ump = Un
o2 20,02 (22)
MD v, +3
Combining formulas (11) and (21)
e = kuy + nt
MD 7,(0 T
k . (23
voag + (n - 1)SZ + ko‘l"n(uo - 1)
O' =
MD Vo+n+3

The equipment reliability of the fused prior informa-
tion can be estimated by bringing the Bayesian maximum
posterior estimates uyp and o5 into formulas (1)—(4).

3.3 Bayesian estimation of equipment
reliability based on multiple batch tests

3.3.1 Calculation of fusion weights based on system
contribution

Different from single batch and overall equipment relia-
bility test research, multiple batch tests need to consider the
test information of each batch, so it needs to be analyzed
gradually from the initial batch tests. The multiple batch tests
information fusion process is as follows (Figure 2):

System contribution is commonly used to measure the
contribution degree of weapon and equipment to the com-
prehensive combat capability of the combat system, and
can also be used to calculate the contribution degree of
evaluation elements to the system [33-35]. System
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Figure 2: Multiple batch equipment reliability test information fusion
process.

contribution is introduced to measure the influence degree
of multiple sources prior information on the equipment
reliability estimation system, and the influence is mainly
determined by its reliability. The reliability of equipment
reliability data sources is evaluated by analyzing the infor-
mation from different sources, and the system contribution
is taken as the Bayesian fusion weight. The higher the
reliability, the greater the system contribution assigned,
i.e., the greater the fusion weight. The analysis process of
system contribution fusion weights is as follows:

The equipment reliability information sources of the
ith batch tests are mainly composed of three parts: the
reliability information of the batch field tests, the relia-
bility information of the i — 1th batch tests, and the infor-
mation of the ith batch simulation tests. The prior informa-
tion is composed of the equipment reliability information
of the i — 1th batch tests and the information of the ith
batch simulation tests. The information fusion weights of
these two parts are calculated using the system contribu-
tion. ¢ = {6y, 62} is used to represent the prior information
set of equipment reliability, where §; is the equipment
reliability information of the i — 1 th batch tests and &, is
the information of the ith batch simulation tests. wg,
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i=1,2 are used to represent the reliable membership
degree of information &; identified by experts y;, d =
1,2, m. vgf, i=1,2 are used to represent the unreliable
membership degree of information §; identified by experts
;- The membership degree of equipment reliability infor-
mation 6; is expressed by intuitionistic fuzzy membership
function method [36].

@é‘% = {61’ (wg) Ugl)} (24)

In the formula,0 < wf < 1,0 < v < 1, andwf + vd < 1.

In the process of determining the membership degree
of equipment reliability parameters information by using
intuitionistic fuzzy membership function method, it is noted
that experts will hesitate when they consider whether the
source of equipment reliability information is reliable. The
intuitionistic index is introduced to represent the degree of
expert hesitation, and the expression is as follows:

d=1- wf-vi (25)

In determining the weight of prior information, half of
the hesitation degree is used for correction, and the mem-
bership expression of information §; can be obtained [37].

1lem d lem 4
1- 2241008 ~ 7 2a=1V§,

. (26)
2

1, 4 d
&5 = m Z(wsi = Us) +
d=1

The fusion weight of information §; can be obtained by
normalization processing.
Es:

g = —. 27
57 eaten, 27

Based on the fusion weight &, the prior distribution of
equipment reliability parameters of the ith batch tests can
be obtained.

g, a®) = gig(u, 0?) + g5g,(u, a?. (28)

where g,(u, 6?) is the probability distribution of equipment
reliability parameters of the i - 1 th batch tests; g,(u, 2) is
the probability distribution of equipment reliability para-
meters of the i th batch simulation tests.

3.3.2 Estimation of equipment reliability parameters
based on multiple batch tests

1) Equipment reliability estimation of the initial batch
tests

The initial batch tests only contain the initial batch

field tests reliability information L(t®|u®, g%®) and the

initial batch simulation tests information g(u®, "), The

equipment reliability parameters distribution of the initial
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Table 1: Equipment reliability tests information

Bayesian estimation of equipment reliability based on multiple batch tests

—_— 7

Field reliability tests information

Simulation tests information

(&, by, B3, L4, ts)

The initial batch tests
The second batch tests
The third batch tests

(34, 36, 26, 30, 26)
(33, 40, 35, 32, 30)
(40, 44, 36, 37, 38)

02 vy Voo
Uo 302 20 "2

(29,7,2.3,18)
(32,45,25,16.2)
(40, 3,2.8,15)

batch tests can be obtained by fusing the above informa-
tion with Bayesian method as follows:

g®, a*(D)|t®)
_ LtO®, g2W)g, (u®, g%0)
HL(t(l)Iu(l), o2D)g, (u®, a2W)duWdg2®"

(29)

The Bayesian maximum estimates ul% and 01\2,[%) of

the initial batch test parameters are obtained from the
parameters distribution functions. The equipment relia-
bility of the initial batch tests can be estimated by
bringing the estimated value into formulas (1)—(4).

2) Equipment reliability estimation of the second batch
tests.

After the initial batch tests, the physical properties
of the equipment were improved and the second batch
tests were conducted. The second batch tests need to
take the initial batch tests information into account
when estimating equipment reliability. Therefore, the
second batch tests contain the information of the second
batch field tests’ reliability information L(t®|u®, g%®), the
second batch simulation tests’ information g,(u®, 62®), and
the initial batch tests’ equipment reliability information
g™, g?®|tM), Compared with the initial batch tests, the
second batch tests information is added to the initial batch
tests information. The information fusion weights are
determined according to the system contribution method
proposed in Section 3.3.1, and the equipment reliability

Table 2: Prior information experts membership score

parameters distribution of the second batch tests is
obtained by Bayesian method.

gu®, a*(2)|t®)
L(t(2)|u(2), 0'2(2))g(u(2), 0'2(2))
B HL(t(Z)w(Z)’ o2@)g(u®, 0X2)du@dg2®"

(30

where g(u®, g%(1)) is the prior information of the
equipment reliability of the second batch tests, and

gu®, o¥?) = efg(u®, a%(1)|tV)

+ £5.8,u®, g?@).

3D

3) Equipment reliability estimation of the ith batch tests

The ith batch tests contain the information of the ith
batch field tests reliability information L(t®@|u®, a%(i)),
the ith batch simulation tests information g,(u®, g2®),
and the i — 1 th batch tests equipment reliability informa-
tion gD, g2-D|¢t@D) The equipment reliability para-
meters distribution of the i th batch tests can be obtained
by Bayesian method as follows:

g, aX(D)[t?)
L(t(l)l u(i)’ O-Z(i))g(u(i)’ O-Z(i)
J I L(tOu®, g20)g(u®, a20)du®dg®

(32)

The prior distribution g(u®, a2®) of the equipment relia-
bility parameters of the i th batch tests is expressed as follows:

Expert serial The i-1th batch tests information &,

The ith batch simulation tests information &,

number
Reliable membership

degree wg degree vg

Unreliable membership

Reliable membership Unreliable membership

degree g degree vg,

1 0.7 0.3
2 0.7 0.3
3 0.8 0.2
4 0.6 0.4
5 0.7 0.3

0.6 0.2
0.9 0.1
0.7 0.3
0.8 0.17
0.7 0.1
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Table 3: Bayesian estimation results of equipment reliability based on methods 1 and 2

Uvp o2y

2
n

Vi,

Vn

Un

SZ

10.52
8.6
7.14

7.5 9.6 19 29.9
9.32

29.9
32.7
38

16.6

304
34

The Bayesian estimation method of equipment reliability based on multiple batch tests (method 1) in this study  The initial batch tests

327
38

125

12.4

1.6

The second batch tests
The third batch tests
The third batch tests

108

116

13.32
9.3

10.17
7.8

39
39

10.82

393

393

The Bayesian estimation method of equipment reliability based on single batch tests (method 2)
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posterior

- distribution
priori
0.025 distribution

o 40 24

Figure 3: Distribution of equipment reliability parameters u, a? of the
initial batch tests.

g(u(i)’ o'z(i)) = gglg(u(i—l)’ O-Z(i—l)lt(i—l))
o 33)
+ ggzgz(u(l)’ o®),

Constraint relationship can be constructed as follows:

E(®) > E(ut-D)

E(a¥) 2 E(g¥-D)’ ey

The constraint relationship indicates that the equip-
ment reliability of the ith batch tests is better than the
i — 1th batch tests, indicating that the equipment reliability
has been improved. According to the sampling results, if
it is found that the constraint relationship is not satisfied,
the equipment reliability of the ith batch tests is less than
that of the i — 1th batch tests, indicating that the improve-
ment of the equipment reliability of tests before this batch

posterior
distribution
0.04

priori

o 30 26

Figure 4: Distribution of equipment reliability parameters u, a2 of the
second batch tests.
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posterior
distribution
priori
istribution

36

Figure 5: Distribution of equipment reliability parameters u, g of the
third batch tests.

tests is not ideal, and it is necessary to further study the
equipment reliability.

4 Experimental analysis

In the test activity of the normal life distribution equip-
ment, three batch tests were carried out successively, with
five pieces of equipment tested in each batch tests. The field
equipment reliability tests information and simulation tests
information of these three batches were obtained. The field
tests information ¢;, i = 1, 2,---, 5 is the time that the equip-
ment reaches failure. The information obtained from simu-
lation tests is the distribution information of equipment
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Figure 6: Equipment reliability parameter u distribution of each batch
tests.
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Figure 7: Equipment reliability parameter a? distribution of each batch
tests.

reliability parameters u” and 9. The information results
are shown in Table 1.

According to the scoring rules of system contribution,
five experts in the same field were invited to score the
membership degree of the equipment reliability informa-
tion &; of the i — 1th batch tests and the simulation tests
information &, of the ith batch tests. The scoring results are
shown in Table 2.

According to the expert membership scoring data,
the fusion weights are calculated to obtain &5 = 0.40 and
g5, = 0.60.

The tested prior data are within the confidence
interval, and through the consistency test, there is no
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Figure 8: Equipment life distributions of each batch tests.
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Figure 9: Equipment unreliability functions of each batch tests.

significant difference between the prior information and
the field data.

In order to highlight the superiority of the method
proposed in this study, the Bayesian estimation method
of equipment reliability based on multiple batch tests
(method 1) in this study is compared with the Bayesian
estimation method of equipment reliability based on single
batch tests (method 2). Field test information and prior
information are used to calculate the distribution of equip-
ment reliability parameters, and the calculation results of
the two methods are obtained, as shown in Table 3.

The distribution diagrams of equipment reliability
parameters u and o2 of each batch tests are plotted, as
shown in Figures 3-5.

Figures 3-5 intuitively present the joint distribution
of equipment reliability parameters u, 2. It can be found
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Figure 10: Equipment reliability functions of each batch tests.
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Figure 11: Equipment failure rate functions of each batch tests.

that the posterior distribution is slightly different from
the prior distribution. The reason is that the posterior
distribution integrates the prior information and the field
reliability tests information, which is the result of the
field reliability tests information modifying the prior
distribution.

In order to more intuitively reflect the changes in
reliability parameters u, 62 of each batch tests, the changes
in parameters u, o with each batch tests are drawn respec-
tively, as shown in Figures 6 and 7.

It can be seen from Figures 6 and 7 that the equipment
reliability parameter u of each batch tests presents an
increasing trend, while the parameter ¢ presents a

decreasing trend, which satisfies the constraint
0.15 T T T T T T
Method 1 estimated the result
Method 2 estimated the result
Standard value
0.1r o
§
Q
0.05 1
0 — -
25 30 35 40 45 50 55 60

Figure 12: Distribution of equipment life corresponding to estimated and
standard values.
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relationship constructed by formula (34), indicating that
the equipment reliability of each batch tests has been
improved.

The maximum estimates typ and o2y, of the posterior
distribution of parameters of each batch tests were taken
as Bayesian estimates into the equipment reliability test
function formulas (1)—(4). The changes in equipment relia-
bility life distribution, unreliability function, reliability
function, and failure rate function of each batch tests can
be obtained. The results are shown in Figures 8-11.

The variation in equipment reliability functions obtained
from field test samples information are also shown in Figures
8-11. Comparing the results in Figures 3-7, it can be found
that compared with the gap between the Bayesian estimation
results and the prior distribution, the Bayesian estimation
results are closer to the field test samples information results,
indicating that the field test samples information are more
important, which is consistent with the actual situation.

These equipment tests give the change in the prior
information, sample information, and Bayesian estimation
results of each batch tests. The Bayesian results of the third
batch tests contain the initial batch tests results, the second
batch tests results, the third batch simulation tests informa-
tion, and the field samples tests information. The Bayesian
estimation results of the third batch tests contain more com-
prehensive information, so the Bayesian estimation results
of the third batch tests are selected to estimate the reliability
of equipment with normal life distribution.

Continue to increase the reliability test of the equip-
ment to determine the standard values of the reliability
parameters of the equipment: u = 38.4, %= 7.62. The
distribution curves of equipment life corresponding to
the estimated values calculated by the two parameter

MSE of U
>

3F 1\ 1
\
. \\I\Iethocl 1 mean square error
<

Method 2 mean square error

0 L 1 L L 1 1 1 L
1 3 5 7 9 1" 13 15 17 19

The number of experimental samples

Figure 13: The mean square error function of parameter u.

Bayesian estimation of equipment reliability based on multiple batch tests

-—_ 1"

estimation methods and the standard value are shown
in Figure 12.

From Figure 12, it can be found that the result value
estimated by the Bayesian estimation method of equip-
ment reliability based on multiple batch tests in this study
is closer to the standard value, which indicates that this
research method has better applicability at this time.

According to formula (6), the mean square error of the
equipment reliability parameters estimation can be obtained,
and the mean square error function image of parameter u
can be plotted, as shown in Figure 13.

It can be seen that the mean square error of the equip-
ment reliability Bayesian estimation method based on
multi-batch tests in this study is small, while the mean
square error of the equipment reliability Bayesian estima-
tion method based on single batch tests is larger, indicating
that the results obtained by this method are closer to the
real value. The reason is that this research method uses the
test information of three batches and more sample infor-
mation, while the Bayesian estimation method based on
single batch test only uses the test data of one batch, so
there is a large risk of error in parameter estimation.

Bayesian estimation method of equipment reliability
with normal-type life distribution based on multiple batch
tests proposed in this study is applicable to the reliability
research in the initial stage of equipment development and
design, which consists of multiple batches reliability tests
programs. When the number of reliability samples of each
batch tests is small, it is more applicable to use the method
of this study. Conversely, when the number of reliability
samples of the final batch tests is large, it is sufficient to
directly use the reliability sample data for estimation.

5 Conclusion

The Bayesian estimation method of equipment reliability
with normal life distribution based on multiple batch tests
are proposed in this research, and takes the common equip-
ment with normal-type life distribution as the research
object, and uses Bayesian method and system contribution
theory to make full use of the equipment reliability field
tests information and simulation tests information of each
batch. Compared with the existing reliability evaluation
research, this research method uses more sufficient infor-
mation, which can reduce the problem of large error of
equipment reliability estimation caused by insufficient size
of field tests samples.

In addition to the above advantages, there are some
limitations in this study, for example, this study requires
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high reliability of the prior information of each batch tests.
If the prior information is unreliable, it will affect the esti-
mation accuracy of equipment reliability. Moreover, this
study only investigates the reliability of equipment with
normal-type life distribution and the reliability of equip-
ment with Weibull distribution, lognormal distribution,
and other distributions based on multiple batch tests will
be further investigated in future research. The results of
this study can provide reference for estimation of equip-
ment reliability based on multiple batch tests.

Funding information: This research was funded by the
National Natural Science Foundation of China (71501183).

Author contributions: conceptualization: H.L., T.H., and
T.C.; methodology: H.L. and T.H.; software: H.L.; validation:
H.L.; formal analysis: H.L.; investigation: T.H.; resources:
T.H. and M.L.; data curation: K.D.; writing — original draft
preparation: T.C.; writing — review and editing: T.C. and
M.L.; visualization: H.L. and T.H.; supervision: M.L. and
K.D,; project administration: M.L.; and funding acquisition:
K.D. All authors have accepted responsibility for the entire
content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of
interest.

References

[11 Compare M, Baraldi P, Bani I, Zio E, McDonnell D. Industrial
equipment reliability estimation: A Bayesian Weibull regression
model with covariate selection. Reliab Eng Syst Safe.
2020;200(2):65-80.

[21 Zhao Q, Jia X, Cheng ZJ, Guo B. Bayesian estimation of residual life
for weibull-distributed components of on-orbit satellites based on
multi-source information fusion. Appl Sci-Basel. 2019;9(15):111-25.

[3]1 Jia XP, Jia BZ. Normalized projection-based group decision making
method and application to marine equipment reliability assess-
ment. Ocean Eng. 2022;251(6):155-71.

[4] Jia X, Guo B. Product reliability evaluation based on expert
experience and life test data. Contr Deci. 2022;37(10):2600-8.

[5]1 Nwezza EE, Ugwuowo FI. An extended normal distribution for
reliability data analysis. ] Stat Manag Syst. 2022;25(2):369-92.

[6] Guo Y, Wan JL, Yang Y, Dai L, Tang AM, Huang BK, et al. A deep
feature learning method for remaining useful life prediction of
drilling pumps. Energy. 2023;282(8):107-22.

[71 ChenBT, LiuY, Zhang CH, Wang ZR. Time series data for equipment
reliability analysis with deep learning. IEEE Access.
2020;8(5):484-93.

[8] Wang B, Jiang P, Guo B. Reliability evaluation of aerospace valve
based on multi-source information fusion. Act Arma.
2022;43(1):199-206.

[9

[10]

1

2]

N3l

4]

[5]

(1]

07

[18]

9]

[20]

[21]

[22]

[23]

[24]

[23]

[26]

[27]

[28]

DE GRUYTER

Guo YJ, Wang HD, Guo Y, Zhong M|, Li Q, Gao C. System operational
reliability evaluation based on dynamic Bayesian network and
XGBoost. Reliab Eng Syst Safe. 2022;225(6):178-93.

Wang Y. Research on accelerated degradation test and reliability
evaluation method of electromechanical products. Pro 33rd China
Contr Deci Mak Conf. Vol. 13, Issue 2; 2021. p. 260-5.

Jia CX, Ding HY, Zhang X. Reliability evaluation of direct current
distribution system for intelligent buildings based on big data
analysis. Teh Vjesn. 2021;28(5):121-35.

Dai L, Guo JY, Wan JL, Wang J, Zan XP. A reliability evaluation model
of rolling bearings based on WKN-BiGRU and Wiener process.
Reliab Eng Syst Safe. 2022;225(9):55-68.

Alex DF, Nita Y, Trung L, Prakash YO. A deep neural network and
Bayesian method based framework for all-terminal network relia-
bility estimation considering degradation. Reliab Eng Syst Safe.
2023;229(5):102-15.

Zahra R, Ezzatallah JB, Einolah D. Parameters and reliability esti-
mation for the Weibull distribution based on intuitionistic fuzzy
lifetime data. Complex Intell Syst. 2022;8(6):481-96.

Zhang XY, Yang LH, Han XF, Zhang Q, Shi CP, Li Z. A review of the
mathematical evaluation model of contribution rate of weapon
equipment system. Acad ] Comput Inf Sci. 2022;5(6):97-111.

Hou J, Wang RH, Wang JJ, Yang Z. Research on evaluation index
system of information system equipment system contribution rate.
Matec Web Conferences. 2021;336(11):28-43.

Salman B, Mohammad S, Gholamhossein G. Statistical inference of
reliability parameter for the skew-normal distribution under pro-
gressive type-II censored samples. ] Math-Uk. 2022;22(13):77-89.
Singh S, Tripathi MY. Reliability sampling plans for a lognormal
distribution under progressive first-failure censoring with cost
constraint. Stat Pap. 2015;56(3):773-817.

Djeddi ZA, Hafaifa A, Kouzou A, Abudura S. Exploration of reliability
algorithms using modified Weibull distribution: application on gas
turbine. Int J Syst Assur Eng. 2017;8(2s):1885-94.

Loganathan A, Gunasekaran M. Construction of reliability single
sampling plans based on exponentiated exponential distribution.
) Test Eval. 2018;47(2):594-607.

Liu HB, Shi XM. Damage effectiveness calculation of hitting targets
with ammunition based on Bayesian multinomial distribution.
Symmetry. 2022;14(5):71-84.

Zhao RD, Shi XM, Wang Q, Su XB, Song X. Bayesian inference for
ammunition demand based on Gompertz distribution. | Syst Eng
Electron. 2020;31(3):567-77.

Wu LL, Pan G. Expert information fusion method for reliability test
evaluation of small sample complex products. Mach Electron.
2014;13(11):3-6.

Dao PB. On Wilcoxon rank sum test for condition monitoring and
fault detection of wind turbines. Appl Energ. 2022;318(2):77-92.
Murakami H, Ha H. The modified Mood test for the scale alternative
and its numerical comparisons. J Korean Stat Soc.
2015;44(4):592-605.

Kalpande SD, Toke LK. Reliability analysis and hypothesis testing of
critical success factors of total productive maintenance. Int ] Qual
Reliab Ma. 2023;40(1):238-66.

Abhishek B, Malay G. Bias corrected empirical Bayes confidence
intervals for the selected mean. Commun Stat-Theory Methods.
2019;48(3):583-95.

Rastogi KM, Oguntunde EP. Classical and Bayes estimation of
reliability characteristics of the Kumaraswamy-Inverse Exponential
distribution. Int ] Syst Assur Eng. 2019;10(2):190-200.



DE GRUYTER

[29]

[30]

31

[32]

[33]

Tanzer JR, Harlow LL. Bayesian modeling of Test reliability. Multivar
Behav Res. 2020;56(1):159-9.

Madhumitha J, Vijayalakshmi G. Bayesian estimation of linear/cir-
cular consecutive k-out-of-n: F system reliability. Inter ] Perform
Eng. 2020;16(10):1509-16.

Wu'Y, Liu DS, Sun SG, Qin ZX, Wu TQ. Maximum posterior estima-
tion of normal-inverse gamma distribution of rock and soil
strength parameters. China ] Rock Mech Eng. 2019;38(6):1188-96.
Li K, Shi XM, Li GN, Liu HB. Estimation method of anti-cruise missile
hit probability based on normal-inverse gamma distribution. Syst
Eng Electron. 2022;44(8):2621-7.

Wang Z, Liu SF, Fang ZG. Research on SoS-GERT Network Model for
Equipment System of Systems Contribution Evaluation Based on
Joint Operation. IEEE Syst J. 2020;14(4):4188-96.

Bayesian estimation of equipment reliability based on multiple batch tests

341

[33]

[36]

371

- 13

Song JH, Li L, Guo QS, Liu ZL. System contribution rate assessment
methods. Advan Sci and Indus Research Center. Proc of 2017 2nd
Inter Confer on Comp, Mechatron and Electron Eng (CMEE 2017).
Depart Equip Com and Admin, Aca Army. Vol. 6, Issue. 2; 2017.

p. 86-91.

Wu BY, Lu HC. Research progress and prospect of contribution
evaluation of weapon equipment system. ] Harbin Eng Univ.
2022;43(8):1221-8.

Na RS, Kong E, Gao H. Intuitionistic fuzzy set membership deter-
mination method based on deep learning. Opera Res Manage.
2022;31(2):92-8.

Zhao RD, Shi XM, Su XB, Wang Q, Jiang GS. New munitions con-
sumption prediction method based on Bayesian system fusion.

J Ord Equ Eng. 2020;41(2):75-80.



	1 Introduction
	2 Reliability test of equipment with normal-type life distribution
	3 Bayesian estimation of equipment reliability with normal-type life distribution
	3.1 Prior information consistency test
	3.2 Bayesian estimation of equipment reliability based on single batch tests
	3.2.1 Selection of prior distribution of equipment reliability parameters
	3.2.2 Determination of priori distribution hyperparameters of equipment reliability parameters
	3.2.3 Solution of posterior distribution of equipment reliability parameters based on single batch tests

	3.3 Bayesian estimation of equipment reliability based on multiple batch tests
	3.3.1 Calculation of fusion weights based on system contribution
	3.3.2 Estimation of equipment reliability parameters based on multiple batch tests


	4 Experimental analysis
	5 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


