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Abstract: The traditional prediction of remaining useful life
(RUL) for bearings cannot be calculated in parallel and
requires manual feature extraction and artificial label con-
struction. Therefore, this article proposes a two-stage frame-
work for predicting the RUL of bearings. In the first stage, an
unsupervised approach using a temporal convolutional net-
work (TCN) is employed to construct a health indicator (HI).
This helps reduce human interference and the reliance on
expert knowledge. In the second stage, a prediction frame-
work based on a convolutional neural network
(CNN)–transformer is developed to address the limitations
of traditional neural networks, specifically their inability to
perform parallel calculations and their low prediction accu-
racy. The life prediction framework primarily maps the
complete life data of bearings onto the HI vector. Based
on the HI constructed through TCN, the known HI is input
into the CNN–transformer network, which sequentially pre-
dicts the remaining unknown HI. Finally, the effectiveness
and superiority of the proposed method are verified using
two bearing datasets, providing validation of its capabilities.

Keywords: temporal convolutional network, transformer,
health indicators, remaining useful life

1 Introduction

Bearings are used in various industrial fields and are an
important component of mechanical equipment. Often works

under complex and harsh environmental conditions. Often,
before the replacement time is reached, bearings have already
been malfunctioned and damaged, causing equipment down-
time and, in severe cases, personal injury or death. So pre-
dicting the remaining useful life (RUL) of bearings can help
improve the safe and reliable operation of bearings [1].

The existing RUL prediction methods are mainly divided
into three parts: data collection, construction of health indi-
cators (HIs), and life prediction [2]. A good HI can intuitively
and accurately reflect the degradation status of mechanical
equipment and contribute to subsequent life prediction [3].
The common HI construction methods mainly extract the
time-domain, frequency-domain, or time–frequency domain
features of the original signal as HI, or fuse the extracted
multi-dimensional features to construct HI. For example,
Malhi et al. [4] used the continuous wavelet transform to
extract root mean square (RMS) and peak values from the
original signal as HI to predict the remaining life of bearings.
Widodo et al. [5] constructed HI by dimensionality reduction
of multidimensional time-domain features using the principal
component analysis (PCA) technique. The above HI construc-
tion method can better reflect the degradation law of bear-
ings. However, the HI constructed using the above method
requires manual feature extraction, which can easily intro-
duce human error. In recent years, the rise of deep learning
has provided effective technical means for data mining. By
training neural network models, hidden features within the
original data can be effectively extracted, and the mapping
relationship between features and lifespan can be well
established. Wu et al. [6] proposed a multi-scale convolu-
tional neural network (CNN) method to construct HI and
compared it with other existing HI construction methods.
It was found that the method proposed in this article can
better characterize the degradation state of bearings. Zhang
et al. [7] proposed an HI construction method based on a
deepmultilayer perceptron (MLP) CNNmodel to address the
need for manual feature extraction in traditional HI con-
struction methods. The effectiveness and reliability of the
proposed method were verified on different datasets of
bearings. Although using traditional deep learning techni-
ques to construct HI for life prediction has achieved good
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results, it overcomes the drawbacks of manually extracting
features. However, the above methods require manual
labeling of training data, which is time-consuming and
laborious, and cannot effectively reflect the degradation
trend of mechanical equipment. Therefore, it is necessary
to conduct research on unsupervised HI construction
methods.

The current RUL methods are mainly divided into phy-
sical model-based and data-driven model-based prediction
methods. The prediction method based on physical models
requires expert experience and is difficult to establish accu-
rate models for complex devices [8,9]. Therefore, existing
prediction methods mainly adopt data-driven methods.
The data-driven prediction method does not require the
establishment of a bearing failure model, so its applicability
is wider. Wang et al. [10] combined deep convolutional auto-
encoder (DCAE) and self-organizing map methods to con-
struct HI and then used a CNN to predict the degradation
trend of bearings. Zhou et al. [11] proposed a set of Gaussian
mixturemodels and Kullback Leibler divergencemethods to
construct HI for the difficulty in obtaining life prediction
labels. An improved gated recurrent unit (GRU) network is
used to predict the lifespan of bearings. The existing deep
learning-based bearing prediction methods mainly utilize
recurrent neural network (RNN) and improved RNN (long
short term memory [LSTM] and GRU) methods for RUL pre-
diction [12]. However, RNN and improved methods are
unable to perform parallel calculations and have drawbacks
such as long-term dependence, resulting in low prediction
accuracy. Therefore, existing scholars have proposed trans-
former models for lifespan prediction in response to the pro-
blems existing in RNN and its variants. The transformer model
has achieved good prediction accuracy in natural language
processing, financial time series prediction, and traffic flow
prediction. Zhang et al. [13] used the transformer model to
predict RUL for hydraulic systems, bearings, and gearboxes.
Jiang et al. [14] proposed a dual-channel transformer prediction
model to address the shortcomings of small receptive fields
and long-term dependence in current mainstream deep
learning frameworks. Compared with existing bearing predic-
tion methods, it was found that the proposed method has
superiority in bearing RUL prediction.

Although the above deep learning models have achieved
good prediction results in HI construction and RUL predic-
tion, there are still the following problems:
1) In HI construction and RUL prediction, there is still a

need for manual feature extraction. It is necessary to
manually label the training data, which may have
human errors and be time-consuming and laborious;

2) The traditional RNN and its variants have defects such
as the inability to perform parallel computation and

long-term dependence, resulting in low prediction accu-
racy. Moreover, a single deep learning model may find it
difficult to extract deep temporal features effectively
when dealing with large datasets.

To address the aforementioned issues, this article pre-
sents an integrated network model designed to enhance the
accuracy of RUL prediction for bearings. The model primarily
utilizes a temporal convolutional network (TCN) for unsuper-
vised HI construction, coupled with a CNN–transformer archi-
tecture for bearing life prediction.

The contributions and innovations of this article are
summarized as follows:
1) It proposes an integrated networkmodel for predicting RUL,

which overcomes the limitations of traditional manual fea-
ture extraction and subjective labeling processes.

2) It combines CNN with the transformer architecture for
life prediction, enhancing the accuracy of bearing RUL
prediction. While existing transformer models are
mainly applied in image classification, studies on life
prediction are scarce.

3) The proposed method has been verified on multiple
datasets. Initially, the approach was validated on the
PHM2012 dataset and compared with other existing
methods, establishing its superior performance. To
further explore the degradation pattern of bearings, a
complete lifecycle dataset of 957 h was collected in the
laboratory to study the degradation trend of bearings.

The CNN–transformer prediction model proposed in
this article primarily utilizes CNN to extract local features
from the input sequences, which are then fed into the
transformer model for global modeling and long-term rela-
tionship patterning. In the convolutional layers, the adjust-
ment of kernel size and stride within the convolutional filters
enables the capture of local sequence features. In the trans-
former model, the self-attention mechanism allows for cap-
turing global dependencies between sequences. Therefore,
the prediction method proposed in this article can effectively
improve the accuracy of RUL predictions.

2 Theoretical analysis

2.1 Unsupervised HI construction method
based on TCN

TCN was first proposed by Lea et al. in 2016 [15] and has
been widely used in time series [16]. Due to its dilated
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causal convolution, TCN has a large receptive field and can
effectively ensure that information is not “leaked.” So TCN
is more suitable for processing long sequence data than
regular CNN. Compared with traditional deep temporal
networks such as RNN and LSTM, TCN is more effective
due to its dilated causal convolution and the use of residual
connections between various network layers. Therefore, it
can effectively extract sequence features and avoid the
occurrence of gradient vanishing or explosion phenomena.
The dilated causal convolution structure is shown in Figure
1(a), and the residual block is shown in Figure 1(b).

TCN is mainly composed of dilation causal convolution,
residual module, and a one-dimensional full convolutional
network. Expansive causal convolution is a one-dimensional
sequence with input ∈x R

n and a convolution kernel
− →f k R: 0,…, 1{ } . The expansion convolution operation

is applied to the element s in the sequence, which is defined
as follows:
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where d is the expansion factor. d will increase exponen-
tially with the depth of the network layer i, ensuring that
the receptive field expands while covering all valid inputs
of the input time series. k is the size of the convolutional
kernel.

The residual block replaces the simple links between
layers in traditional network structures, making the net-
work stable even at deep depths and improving the gen-
eralization ability of the network model. The expression
for the residual block is

= +o x F xActivation .( ( )) (2)

The one-dimensional fully convolutional network module
ensures that the input and output time of each layer are the
same, so that each time step’s input has a corresponding
output.

TCN has good temporal processing ability, which can
effectively extract degraded features and largely avoid gra-
dient vanishing and exploding behaviors. Therefore, TCN is
selected to extract the deep temporal features of each
degraded sequence as HI.

The original vibration signal of the bearing is input
into the TCN network through a fast Fourier trans-
form (FFT).

Figure 2 is the network structure diagram of the TCN
autoencoder (TCNAE), which uses three residual blocks
and one fully connected layer during the encoding process.
The decoding process uses one residual block and an MLP
network structure. The error backpropagation process was
optimized using the Adam optimizer.

Therefore, the steps for constructing HI are as follows:
Step 1: Collect the original vibration signal and extract

frequency domain features using the FFT transform. The
frequency domain feature of the signal at the i moment
represented by Xi is =X x x x, ,…,i i i i

n1 2( ), where n is the
number of features of each sample at each time. The com-
piled dataset is X X X, ,…, m

T

1 2( ) , where m represents the
number of samples.

Step 2: Using the TCNAE network structure, perform
deep feature extraction on the obtained frequency domain
signal data and extract deep features with good represen-
tation ability and robustness as HI.

Figure 1: TCN network structure: (a) structures of causal and dilated convolutions; (b) residual block.
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2.2 Prediction model

2.2.1 CNN model

The CNNmodel was proposed by Le and Bottou in 1998 [17].
CNN is composed of multiple convolutional, pooling, and
fully connected layers [18]. Each convolutional layer con-
tains multiple convolutional kernels, which are calculated
as shown in Eq. (3). CNN mainly uses convolutional and
pooling layers to extract features and reduce feature dimen-
sions. The convolutional layer formula is as follows:

= × +l x k btanh ,t t t t( ) (3)

where lt and xt are the output and input vectors, kt and bt

are the weights and biases of the convolutional kernel, and
tanh is the activation function.

2.2.2 Transformer model

Transformer is a deep learning architecture that relies on
attention mechanism [19], which solves the problem of
traditional RNN not being able to perform parallel compu-
tation and accelerates the training speed of the network.
Compared to CNN and other networks, they can handle longer
sequence data and adopt a self-attention mechanismmodel to
capture relationships at different positions in the sequence.
The network structure of the transformer is shown in Figure 3.
The transformer mainly adopts an encoder–decoder architec-
ture, which is composed of a stack of M-layer networks with
the same structure. Each layer includes two sub-layers: multi-
head attention layer and full link layer. Use residual linking
and normalization in each sub-layer to improve performance.
A decoder is similar to an encoder, except that it contains two
multi-head self-attention layers.

2.2.3 HI evaluation indicators

This article selects monotonicity, correlation, and robust-
ness as the evaluation indicators for HI, which are used to
quantitatively evaluate the performance of an HI. To this
end, the polynomial fitting method is first used to decom-
pose HI into smooth trends and random errors [20]:

= +H t H t H t ,n T n R n( ) ( ) ( ) (4)

where H tn( ) represents the value of HI at time tn, H tT n( )

represents its smoothing trend, and H tR n( ) represents
random error.

2.2.3.1 Monotonicity (Mon)
The monotonicity index is used to evaluate the trend of
changes in an HI, including monotonic upward and down-
ward trends. The formula is as follows [20]:
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where Mon HI( ) is the monotonicity of HI; H td T n( ) is the
derivative of H tT n( ), and m is the vector length of HI.

2.2.3.2 Correlation (Corr)
The linear correlation between HI and the corresponding
time is measured through correlation, and the calculation
formula is [20]
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where TCorr HI,( ) represents the correlation between HI
and time, = ( ∑ )=H N H t1/

n

N

n1
( ) , and = ( ∑ )=T N t1/

n

N

n1
.

Figure 2: Construction of HIs in the TCN network.
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2.2.3.3 Robustness (Rob)
Robustness is the evaluation of HI’s tolerance for outliers,
calculated using the following formula [20]:

∑ ⎟⎜=
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⎝
−

⎞
⎠=N

H t

H t
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exp ,

n
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R n

n1

( )
( )

( )
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where Rob HI( ) represents the robustness of HI.
In order to evaluate the overall performance of HI, a

comprehensive indicator (CI) containing all three indica-
tors is defined as follows [20,21]:

= × + × + ×CI 0.3 Corr 0.4 Mon 0.3 Rob. (8)

2.2.4 Life prediction evaluation indicators

This article uses mean absolute error (MAE) and root mean
square error (RMSE) as evaluation indicators for predic-
tion performance, with the following formula [21]:

∑= −
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where m is the length of the experimental data, y
i
repre-

sents a vector composed of m actual labels, and y
i

⌢ repre-
sents a vector composed of m predicted labels.

2.2.5 Prediction model structure

The traditional RUL prediction model requires manual fea-
ture extraction, manual labeling of training data, and low
prediction accuracy. This article proposes a new HI con-
struction and RUL prediction framework. This framework
mainly consists of two parts: first, the original vibration
signal of the bearing is input into the TCNAE model
through FFT transformation for deep feature extraction
to obtain HI. Then, the HI is divided into training and
testing sets and input into the CNN–transformer network
for life prediction. This method not only overcomes the
drawbacks of traditional manual feature extraction but
also does not require manual labeling of training data.
Combining the advantages of CNN and transformer, it
can effectively improve the prediction accuracy of bearing
remaining life. The overall flowchart of the method pro-
posed in this article is shown in Figure 4, and the specific
steps are as follows:

Step 1: Data acquisition and processing. Perform FFT
transformation and data normalization on the original data.

Step 2: HI Build. Input the FFT-transformed data into
the TCNAE model for deep feature extraction to obtain HI.

Step 3: Life prediction. Divide the constructed HI into a
training set and a testing set. Input the training set data
into the CNN–transformer network for training. Then,
input the test set data into the trained prediction model
and output the prediction results.

3 Instance verification

3.1 Case 1

In order to verify the effectiveness of the method proposed
in this article, the research team conducted accelerated
degradation experiments on the bearing model LYC6220E
in the PHM Key Laboratory. This experiment collected a
total of 957 h of full-life data. The acquisition equipment
selected is the DH5981 acquisition system manufactured by
Donghua Company, and the sensor model is CT1005LC. The

Figure 3: The structure of transformer memory cell.
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sampling frequency is 20 kHz, collected every 15 min for
12 s each time. The specific sensor layout and data acquisi-
tion system are shown in Figure 5.

The original vibration signals are acquired, and the
original vibration signals are first transformed by FFT to
transform the time-domain signals into frequency-domain
signals. Then, input the frequency-domain signal into the
TCNAE network. TCNAE mainly consists of two parts:
encoding and decoding. The encoding part mainly consists
of three residual blocks with 128, 64, and 32 neurons and a
fully connected layer with 16 neurons, where the dilation
factors of the residual module are 1, 2, and 4, respectively.
The decoder part is composed of a residual module with a

number of neurons of 128 and an MLP network structure,
where the dilation factor of the residual block is 1. The
network is trained using Adam optimizer with an initial
learning rate of 0.001, batch size of 128, training epoch of
200, activation function of ReLu, loss function of mean
squared error (MSE), and dropout of 0.25. The convolu-
tional kernel size of residual blocks in TCN is all 5. In order
to further eliminate the fluctuation caused by noise and
obtain more intuitive health information about the device,
locally weighted scatterplot smoothing (LOESS) [22] is used
to smooth the HIs. LOESS can not only eliminate noise but
also obtain smoother degradation characteristics of bear-
ings in order to better grasp the current and future

Figure 4: Prediction flowchart.

Figure 5: Bearing status monitoring experimental platform.
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degradation situation of bearings. The HIs constructed
using TCNAE and the results of the smoothing process
are shown in Figure 6.

This paper conducted a comparative analysis with
other methods to further verify the effectiveness of the
method proposed herein. This article compares stacked
sparse autoencoder (SSAE), convolutional autoencoder
(CAE), and direct extraction of multi-domain features using
PCA dimensionality reduction to construct HI methods. In
order to better see the comparison results, the evaluation
indicators are limited to the range of [0, 1]. The comparison
results are shown in Table 1.

It can be concluded from the comparison results in
Table 1 that the PCA-HI method is the least effective. This
is because the direct fusion of multi-domain features is
likely to fuse some inapplicable features together, which
rather reduces the performance of HI. While the SSAE-HI
and CAE-HI methods outperform the proposed method on
individual indicators, their overall indicator (CI) is lower
than the proposed method. Therefore, the HI construction
method proposed in this article can better characterize the
degradation trend of bearings and improve the accuracy of
life prediction.

Using the HI constructionmethod proposed in this article
for life prediction, the HI is divided into a training set and a
testing set at 7:3. First, input the training set into the
CNN–transformer network for training. The basic parameters
of the CNN–transformer network are as follows: batch size of
46, basic learning rate of 0.001, weight attenuation coefficient
of 0.0001, loss function selection of MSE function, forward
propagation dimension of encoder and decoder of 512, head
count of multi-head attention mechanism of encoder and
decoder of 4, and training batch of 200. The training results
are shown in Figure 7, and the prediction results are localized
and enlarged in order to better see the prediction curves of
the proposed method in this article.

To verify the effectiveness of the method proposed in this
article, RMSE and MAE were selected for quantitative ana-
lysis. We compared bidirectional long short term memory
(BiLSTM), support vector regression (SVR), and transformer
methods, and the predicted results are shown in Table 2.

From Table 2, it can be concluded that the method
proposed in this article has better predictive performance
and is superior to other methods. The prediction perfor-
mance of a single transformer network is poor, possibly
due to the inability to extract local features well and only
the ability to extract global features. Therefore, utilizing

Figure 6: Health indicators constructed by TCNAE.

Table 1: Evaluation indicators for different HIs

Method Mon Corr Rob CI

TCNAE-HI 0.646 0.931 0.927 0.816
SSAE-HI 0.499 0.910 0.715 0.687
CAE-HI 0.668 0.906 0.764 0.768
PCA-HI 0.359 0.752 0.841 0.622

Figure 7: Prediction results of the proposed method in this article.

Table 2: Comparison results of different life-prediction methods

Method MAE RMSE

CNN–Transformer 0.021 0.129
BiLSTM 0.037 0.134
SVR 0.102 0.337
Transformer 0.059 0.298

A two-stage framework for predicting the RUL of bearings  7



the respective advantages of CNN and transformer can
effectively extract local and global features and improve
the accuracy of life prediction.

3.2 Case 2

The experimental data used in this article come from the
IEEE 2012 PHMData Challenge. As shown in Figure 8, select an
acceleration sensor with a sampling frequency of 25.6 kHz for
data collection. Each sample contains 2,560 points, recorded
every 10 s. This article selects bear1-3 bearings under oper-
ating conditions of 1,800 rpm and 4,000N load as examples
for experimental analysis. Since bearings 1–3 have collected
abundant experimental data with a longer full lifecycle, it is
thus chosen to take bearings 1–3 as examples for experimental
analysis, which is conducive to examining the predictive per-
formance of the method proposed in this paper [23].

The network parameter method used in this experi-
ment is the same as in case 1. First, collect the original
vibration signal, perform FFT transformation on the ori-
ginal vibration signal, and transform the time-domain
signal into a frequency-domain signal. Figure 9 shows the
time-domain signal and the frequency-domain signal after
FFT transformation at the beginning of the experiment at
0.1 s. Then, input the frequency domain signal into the
TCNAE network. The HIs and smoothing results constructed
using TCNAE are shown in Figure 10.

In order to better validate the effectiveness of the
method proposed in this article, we compared the DCAE
method in reference [24] with the regularized sparse auto-
encoder (SAEwR) method in reference [25]. The compar-
ison results are shown in Table 3.

From the comparison results in Table 3, it can be con-
cluded that the correlation between the HI method con-
structed in references [14,19] is higher than that of the
method proposed in this article. However, its performance
indicators of monotonicity and robustness are both lower
than the method proposed in this article, and its compre-
hensive indicator (CI) is lower than the method proposed in
this article. Therefore, the HI construction method proposed
in this article can better characterize the degradation trend
of bearings and improve the accuracy of life prediction.

Based on the construction of HI in this article, life
prediction is carried out, and HI is divided into a training
set and a testing set in a 7:3 ratio. The training results are
shown in Figure 11. From Figure 8, it can be seen that using
the CNN–transformer network can achieve good predic-
tion results. However, the prediction results were poor
after 2,300 samples because the degradation trend in the
early stage of HI construction was relatively gentle, and
bearing failure occurred suddenly after 2,300 samples.
The divided training set does not contain sudden failure
data, so the predicted HI curve still slowly rises.

In order to verify the effectiveness of the method pro-
posed in this article, existing predictive methods were

Figure 8: The PRONOSTIA platform.
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compared, such as the BiLSTM method proposed in refer-
ence [26] and the gated dual attention unit (GDAU) method
proposed in reference [27]. The comparison results are
shown in Table 4.

From Table 4, it can be concluded that although refer-
ences [26,27] can achieve good predictive performance
indicators, the predictive evaluation indicators are both
greater than the prediction methods proposed in this
article. The possible reason is that the unsupervised TCNAE
construction HI method used in this article has good results
in monotonicity, correlation, and robustness, which is ben-
eficial for improving the prediction accuracy of subsequent
lifespans. Li et al. [26] used the kernel principal component
analysis dimensionality reduction method to construct HI,
while Qin et al. [27] directly used RMS as HI. Although the
HI construction method mentioned in the above literature

Table 3: Evaluation indicators for different HIs

Method Mon Corr Rob CI

TCNAE-HI 0.546 0.931 0.971 0.789
DCAE-HI [24] 0.350 0.970 # #
SAEwR-HI [25] 0.283 0.994 0.927 0.690

Figure 11: Prediction results of the proposed method in this article.

Table 4: Comparison results of different prediction methods

Method MAE RMSE

CNN–Transformer 0.0174 0.1091
BiLSTM [26] 0.0447 0.1207
GDAU [27] # 0.1870

Figure 10: Health indicators constructed by TCNAE.

Figure 9: Time- (a) and frequency-domain (b) signals of the bearing at
the beginning of the 1 s.

A two-stage framework for predicting the RUL of bearings  9



is simple, it cannot comprehensively reflect the degrada-
tion status of bearings. This article uses the first 70% of HI
(1,663 sets of data) as the training set to predict the
remaining 30% of HI values. Its training set is smaller
than the 1,900 sets of data in the study by Li et al. [26],
and on the contrary, it achieved good prediction results,
verifying the superiority of the CNN–transformer
network.

4 Conclusion

This article proposes a two-stage RUL prediction frame-
work. The first stage is to use TCNAE for unsupervised HI
construction. The second stage is to use the constructed HI
to train the CNN–transformer model for life prediction.
The proposed methods have been validated on both public
and experimental datasets. The experimental results show
that the unsupervised HI method proposed in this article
breaks away from the prior knowledge of traditional HI,
and its performance evaluation indicators such as mono-
tonicity, correlation, and robustness are better than
existing methods. The proposed CNN–transformer predic-
tion method effectively improves the problems of low accu-
racy in traditional life prediction methods, and through
comparison with existing methods, it is concluded that the
method proposed in this article has superior performance in
prediction. Therefore, the method proposed in this article
has important engineering value and promotional value in
RUL prediction.
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