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Abstract: In this article, the solution to the time-fractional
Fisher equation is determined using two well-known analy-
tical techniques. The suggested approaches are the new
iterative method and the optimal auxiliary function method,
with the fractional derivative handled in the Caputo sense.
The obtained results demonstrate that the suggested
approaches are efficient and simple to use for solving frac-
tional-order differential equations. The approximate and
exact solutions of the partial fractional differential equa-
tions for integer order were compared. Additionally, the
fractional-order and integer-order results are contrasted
using simple tables. It has been confirmed that the solution
produced using the provided methods converges to the
exact solution at the appropriate rate. The primary advan-
tage of the suggested method is the small number of
computations needed. Moreover, it may be used to address
fractional-order physical problems in a number of fields.

Keywords: OAFM, NIV, fractional-order Fisher equation,
Caputo operator

1 Introduction

The use of mathematical modelling as part of a well-
rounded mathematics education is essential. Through the
process of mathematical modelling, an issue that exists in
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the real world is abstracted and represented in a mathe-
matical format. Iyanda et al. [1] presented and applied the
exponential matrix algorithm, differential transformation
algorithm, and Runge—Kutta (RK5) to simulate the tempera-
ture distribution in five heating tanks in series for the
successive preheating of multicomponent oil solutions.
Shahzad et al. investigated the Darcy-Forchheimer effects
in a micropolar nanofluid flow containing gyrotactic micro-
organisms between two coaxial, parallel, and radially
stretching discs in the presence of gyrotactic motile micro-
organisms with convective thermal boundary conditions [2].
The intriguing nonlinear phenomenon known as chaos has
grown considerably during the past 30 years. In a variety of
fields, including biomedical design, secure communication,
information encryption, and stream components, it is
helpful or shows amazing potential [3]. Basit et al. [4] ana-
lysed the Darcy-Forchheimer flow of a hybrid nanofluid
within two parallel discs. They combined gold (Au), silver
(Ag), copper (Cu), and iron oxide (Fe30,) nanoparticles with
the base fluid, blood. In this way of looking at mathematics,
mathematical models are seen to play a significant role in all
subfields of the subject, whether they be algebra, arithmetic,
geometry, or calculus. Everything in our universe goes
through some kind of transformation or change throughout
the course of time and space. Calculus is the primary tool for
determining the significance of all of these changes, which
all have profound repercussions for the physical world. The
idea of a derivative is used to find the rate of change, and it
is not wrong to say that almost every physical change in
nature can be described by an equation involving deriva-
tives. Differential equations can be used to describe all of
these kinds of changes in a mathematical way. Differential
equations can be either ordinary or partial. Most classical or
fractional-order ordinary differential equations arise from
modelling basic physical processes, while partial differential
equations (PDEs) originate from modelling more intricate
physical phenomena. Fractional calculus is a distinct sort
of calculus from classical calculus. Fractional calculus helps
explain difficult concepts such as memory and transmission.
This discipline has drawn a large number of scholars since it
is worldwide and has several applications in many fields of
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science, including physics, signal processing, modelling, con-
trol theory, economics, and chemistry [5-8]. Due to the fast-
growing and extensive applications of fractional partial
differential equations (FPDEs) in numerous scientific and
technical domains, including medicine, chemistry, biology,
electrical engineering, and viscoelasticity, much attention
has been paid to the topic in recent decades. For more
details on these and other applications, we refer to previous
studies [9-12]. From this point of view, FPDE approxima-
tions and analytical solutions are essential components
that must be included in order to correctly describe the
dynamics of fundamental physical processes. In light of
the reasoning presented earlier, mathematicians have
developed and used a wide range of approximation and
analytical techniques in order to solve a number of
important mathematical models that are relevant to pro-
blems that occur in the real world. Mathematicians keep
working in this field even though it is hard to find analy-
tical or even close solutions to some nonlinear FPDEs and
systems of FPDEs [13-17]. Different approaches to solving
fractional-order PDEs have been utilized in the literature,
including the residual power series method [18], the
optimal homotopy analysis method [19], the Elzaki
transformation [20], the finite difference method [21],
Galerkin finite element methods [22], and Grinwald-Le-
tnikov approximation [23]. The optimal auxiliary function
method (OAFM) [24,25], which does not require any small
or big parameter assumptions and does not require any dis-
cretization, and the new iterative method (NIM) [26,27] are
used to solve nonlinear fractional-order Fisher equations.

The main motivation of this study is to explore inno-
vative mathematical techniques for solving complex non-
linear fractional differential equations, particularly the
Fisher equation. This equation has a wide range of applica-
tions in biology, ecology, and population dynamics, making
it an important subject of study. Fisher’s equation, some-
times known as the reaction—diffusion equation, has a
simple and classic example provided by

DFO®, 1) = A8(¢, v) + uo({, v)(1 - 8%({,v)), (D)

which essentially combines the diffusion equation with the
diffusion factor A, the logistic equation, and the birth rate u.

The objective of this study is to solve fractional-order
nonlinear Fisher equation using two analytical techniques,
i.e. OAFM and NIM, in conjunction with a fractional operator
of Caputo type. In order to facilitate a comparison of the
outcomes produced by these two approaches, graphs and
tables will be constructed for each problem.

The rest of this article is arranged as follows: Section 2
goes over the OAFM and NIM processes. Section 3 discusses
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OAFM and NIM implementation with examples. The final
portion is dedicated to the conclusion.

2 Preliminaries

In this section, we will discuss several basic definitions and
conclusions relating to the Caputo fractional derivative.

Definition 1. The formula for the Riemann fractional inte-
gral is as follows [28]:

t
JE o, t) = %J—(t - ) lw(x, r)dr. )
0

Definition 2. The fractional derivative of f according to the
Caputo formula is defined as [29]
t

1
Cno — _ -0-1 -
Diw(x,t) = Tom = G)'O[(t r) o lwx,rydr, m-1

(m

<g<m, t>0.

©)

Lemma 1. For n-1<o0<n, p>-1, t20, and A €R,
we have

o+l
D Ditr = r(p(—To+1)
2) DA =0,
3) DPIfw(x, t) = w(x,t),
) I°DPw(x, t) = w(x, t) - Yrddiw(x, 0)%

i’

tPo,

3 General procedure for the
proposed methods

3.1 General procedure of OFAM

This section will cover how to solve general fractional-
order PDEs using OAFM.

T — g4, ) + NG, @

Subject to the initial conditions:

DT, 0)=¢.), r=0,1,..,5-1,
Df(¢,0) = 0, s = [a], )
DI, 0 =), r=01.,s-1,

D/(¢,0) =0, s = [a],
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e represents the Caputo operater 0({, v) is an unknown
function, and g(¢, v) is a known analytic function

Step 1: To solve Eq. (4), we will use an approximate
solution that has two components, such as:

O, v) = 0y(,v) + 0:((,v,C), i=1,23..,p. (6

Step 2: To determine the zero- and first-order solu-
tions, we substitute Eq. (6) into Eq. (4), which results in

090(¢, 0°04(¢,
A7), O s giew)

6680((’ V)] + [aael((: v, Cl) ]l = 0.

ov° ov?

™)
+N

Step 3: For the purpose of determining the first approx-
imation 0y({, v) based on the linear equation,

0°09(¢, v)
ovo

+g(l,v) = 0. @

Using the inverse operator, we arrive to 0y({, v),
which is expressed as follows:

80((1 V) = g((: V). (9)

Step 4: The nonlinear term seen in expanding form (7) is

007({, v, )
ove

NEC SN

ove
(10)

o0

k
= N[Oy, V)] + Z—lNU‘) [8(Z, VI

Step 5: In order to quickly solve Eq. (10) and speed up the
convergence of the first-order approximation 8(¢, v), we offer
an alternative equation that may be written as follows:

0°0:({, v, G) _
ove

= =M [0y(C, V)IN[By({, V)]
- AZ [80((’ V), C]]

1n

Step 6: We obtain a first-order solution 0,(¢, v) using
the inverse operator after substituting the auxiliary func-
tion into Eq. (11) with the auxiliary function.

Step 7: The numerical values of the convergence control
parameters C; are determined using several approaches,
such as least-squares, Galerkin’s, Ritz, and collocation. We
use the least-squares technique to reduce errors

J(6 6) = [ [Ra¢,v; ¢ Gaga, 12)

0Q

where R denotes the residual:
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30(¢, v, G, C)

ov
+g({,v) + N[6((, v, G, G,
i=12..,8 j=8S+1,8+2, ..,p.

R(,v, G, G) =
(13)

3.2 Analysis of NIM [30]

For the basic idea of NIM, we consider the general func-
tional equation:

6(0) = f(O) + x@(), (14)

where X is the nonlinear operator from a Banach space B
to B and f is the known function. We have been looking for
a solution of (14) having the series form

0(0) = 2 6({). (15)
i=0
The nonlinear term can be decomposed as
[ 0o i
N 2 00| = R(Bp) + X [¥] 2 6(0)
i=0 i=0[ |j=0
16)
i-1
- N Y 60|
j=0
From (15) and (16), (14) is equivalent to
2.0i(0)=f+N®) + )
i=0 =0
i i-1 (17)
N 2 6|~ N 26|
Jj=0 j=0
We define the following recurrence relations:
6= f,
01 = N(By),
0, = X(6 + 01) — X(By), (18)
On+1=N(Bg + O1 +-:- Bp) — X(Bg + O1 +++- Op-1),
n=123, ...
Then,
(90 + 91 o Gn) = N(GO + 91 +- en); n= ]-’ 2:3 )
(19)

0=26)=f+N
i=0

26(¢ )]-
i=0
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3.2.1 Basic road map of NIM

In this section, we discuss basic idea for solving fractional-
order nonlinear PDE using the NIM. Consider the following
fractional-order PDE:

DfO((, t) = A(B,80) + B({,t), m-1<a<m,meN, (20)

ak

3K 21

8((’ 0) = hk(()) k = 0) 1! 2) 3 o m - 1)
where A is nonlinear function of ® and 00 and B is the
source function. In view of the NIM, the initial value pro-
blem (20), (21) is equivalent to the integral equation

m-1 k
0, )= ) h(( )% +I7(A) + I7(B) = f+ N({), (22)
k=0 :
where
m-1 tk
f= 2 i)+ + I7(B), 23)
k=0 k!
N(0) = I (A). (24)

4 Numerical problem

4.1 Problem 1

Consider the fractional-order Fisher equation, which is
represented by

DJO((,v) - 0x(¢,v) - 6(, v)(1 - 8%((, v)) = 0, (25)
subject to the initial condition

e((,0) = 6. 26)

4.1.1 Implementation of OAFM

From Eq. (25), linear and nonlinear terms

TORKE S

N(©)=-6(¢,v)(1 - 6(,v)),
&, v)=0.

The initial approximate 0¢({, v) is obtained from Eq. (9)

6080((: V) =0 (28)
v '

(27

By making use of the inverse operator, we obtain the fol-
lowing solution:

Bo(¢,v) = 6. (29)
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Substituting Eq. (29) into Eq. (27), the nonlinear term
becomes

N[Bo(¢, v)] = =61 - 8). (30)
The first approximation ©,({, v) is given by Eq. (11):
0701(¢,v) _
o 41[09(¢, V)IN[0o(, V)] @1
+ AZ [80((: V), C]]
We choose the auxiliary functions 4; and 4, as
= 2 4
A= c1(8)* + c2(86)4, 32)
Ay =c3(8)* + c4(8)8.
4 _ 3 5 -
0., V) = (€18* = c18° + 8°(c3 + c2(-1 + 6) + c46)) v (33)

I1+ o]
Adding Eq. (33) and (30), we obtain the OAFM solution:
e, v)
=85+

(€164 - c18% + 65(c3 + c2(-1 + &) + c46)) - (34)

Il + o]

4.1.2 Implementation of NIM

Applying Riemman-Levelli integral to Eq. (25) and making
use of Eq. (26), we obtain

0V = g PR IOCE D v OCY)
- 0. p)l
By the NIM algorithm, the zeroth-order problem of ©({, v)
0o(¢,v) = 6. (36)
The first-order component of solution is as follows:
0u¢v) = S @

The second-order component of solution is as follows:

S§2(v9 - 6v9 + Il + g])?

[+ o] VO, (38)

0,(¢,v) =

Therefore, three-term approximate solution of ©(¢, v)
6(-1+ 6)]}(7
I'[1+ o]
N §%(v9 - §v9 + T[1 + G])Zva
I3[1 + o]

O, v)=6 +
(39)




DE GRUYTER

Analysis of nonlinear fractional-order Fisher equation === 5

Table 1: Convergence-control parameter values obtained by the least-squares method for ci

c1 c2 c3 c4
0.7904609992608322 —0.651906484683587 1.0364255516293996 -0.3044300441851726
4.2 Problem 2 1
: Oo((, V) = —=. (44)
0(( ) (1 + e()z

Consider the fractional-order Fisher equation, which is
represented by

DJO((,v) = 6,(,v) +60(L,v) - 6(6({,v))?, (40)

subject to the initial condition

0((,0) = —=. 41
€0 = G5 ary (a1)
4.2.1 Implementation of OAFM
From Eq. (40), we assume linear and nonlinear terms

a
Loy = 70V
ov° 42)
N(©)=60({, v)(1 - 0((, v)).
g, v)=0.
The initial approximate 0¢({, v) is obtained from Eq. (9)
0°09(¢, v)
—= =0. (43)
ove

By making use of the inverse operator, we obtain the fol-
lowing solution:

Substituting Eq. (44) into Eq. (42), the nonlinear term
becomes

N[6((, V)] = (45)

_ 6
1+ et
The first approximation ©,((, v) is given by Eq. (11):
97901(¢, V) _
oy = MG VINEG T
+ AZ[GO(() V), C]]

We choose the auxiliary functions 4; and 4, as
A =cl ! +C2 !
Pl ey 1+ed))

4= 3 10e¢ ‘e 50e¢
Claxeyr) T A ey )

47

0:(¢, v)
_2(3c2+ (1+e)(3cl + 5ef(5cd + c3(1 + ) . (48)
) (1 + eI + o] v

By adding Eq. (48) and (44), we obtain the OAFM
solution:

Table 2: Convergence-control parameter values obtained by the least-squares method for ci

cl c2

c3 c4

800.541870620842 -926.8892128741605

19.985728918740982 -56.30059353901681

Table 3: Numerical compression of the OAFM and NIM solutions with exact solution as well as absolute error (AE) at § = 0.005

4 OAFM solution NIM solution Exact solution AE (OAFM) AE (NIM)

0.1 0.00499999 0.00509846 0.00052296 5.2296 x 104 4.24495 x 104
0.2 0.00499998 0.00539362 0.00110028 1.10028 x 103 7.06637 x 104
0.3 0.00499997 0.00588521 0.00173754 1.73754 x 103 8.523 x 104
0.4 0.00499996 0.00657291 0.00244086 244086 x 103 8.67914 x 10-4
0.5 0.00499995 0.00745644 0.003217 3.217 x 1073 7.60516 x 104
0.6 0.00499994 0.00853549 0.00407336 4.07336 x 10-3 53781 x 10~4
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Table 4: Numerical compression of the OAFM and NIM solutions with
exact solution as well as absolute error (AE) at v = 0.001
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Table 5: Comparison of NIM and OAFM solutions at different values of
fractional-order

{ OAFM NIM Exact AE (OAFM)  AE (NIM) ¢ NIM OAFM NIM OAFM
solution  solution solution at o = 0.65 at o = 0.65 at o = 0.85 ato = 0.85
0.5 0.142946 0.141959 0.143426 480 x 10-% 14675 x 103 0 0.304325 0.250746 0.267645 0.250746
0.6 0.125983 0.125053 0.126372 389 x 104  1.3185 x 103 0.1 0.277865 0.227829 0.242451 0.227829
0.7 0.110518 0.10966  0.110837 319 x 104  1.1768 x 103 0.2 0.252461 0.20603 0.218536 0.20603
os o wiwry ovm s wn 03 YRS D owe g
0.9 0.083914 0.083226 0.084146 -4 -4 . ' : :
0072652 0.072054  0.07286 232 x 1074 92001 1074 0.5 0.18382 0.148128 0.155371 0.148128
: : : 208 x 107 8.0634 x 10 0.6 0.163755 0.131347 0.13734 0.131347
0, V)= —— 10e¢
T+ )2 0, V)= ————. (52)
49 ’ )3
, 232+ (1+ e)(3el + 5ef(5ed + 31+ €)) 49) A+e)To+1
(1 +e)’r[1 + a] The second-order component of solution is as follows:
' 0. )= 50eCv29((1 + €9)2(~1 + 2¢%))
4.2.2 Implementation of NIM 20, 1+ e)T(20 + 1)
50ev29(12(4)7e¢vT[~ + a]) =
Applying Riemman-Levelli integral to Eq. (40) and making + 2
use of Eq. (41), we obtain V(1 + eT(o + DI'(30 + 1)
_ 1 Therefore, three-term approximate solution of ©(¢, v)
o, v)=——7r;
d+e) 0 1 10e¢
+ J9[0(Z, V) + 60((, v) — 60((, v)2]. o, v)= +
IS 166, V) + 66(¢, v) - 66(¢, V)] V= Grer * TreprorD
By the NIM algorithm, the zeroth-order problem of 8({, v) N 50e5v29((1 + e5)2(-1 + 2e%))
. (1+ e5)T(20 + 1) (54)
0, V)= —=. 51
og,v) 1 + e%)? 2 50e5v2012(4)°efvor[% + o]
The first-order component of solution is as follows: V(L + e)fT(o + DIBo + 1)
H 0=0.40 H 0=0.40
H 0=0.50 H 0=0.50
B 0=0.80 m 0=0.80
B 0=1.00 E 0=1.00

(b)

Figure 1: 3D plots of NIM and OAFM solution of ©({, v) at various values of fractional order for Problem (1): (a) 3D plots of ©({, v) using NIM and (b)

3D plots of ©(¢, v) using OAFM.
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Figure 2: 2D-plots and 3D-plots of ©({, v) at various values of fractional order for problem (2). (a) 2D-plots of ©({, v) using NIM, (b) 2D-plots of ©({, v)
using NIM, (c) 3D-plots of ®({, v) using NIM, and (d) 3D-plots of ©({, v) using NIM.

5 Numerical results and discussion

Tables 1 and 2 represent the numerical values of auxiliary
constant for Examples 1 and 2, respectively. Tables 3 and 4
provide the comparison of the OAFM and NIM solutions
with the exact solution as well as absolute error at g = 14
and v = 0.001 for Problems 1 and 2, respectively. Table 5
shows the comparison of NIM and OAFM solutions at frac-
tional-order ¢ = 0.65 and o = 0.85.

Figure 1 shows the closed contact of NIM and OAFM
solutions for different values of fractional order. Figure 2
represents the 2D and 3D plots of 8({, v) using NIM.

6 Conclusion

In this study, we provide OAFM and NIM for solving non-
linear fractional-order Fisher equation. The derivative is
regarded in the sense of Caputo. The solution obtained
using the given approaches reveals that our results agree
closely with the exact solution. Finally, we can conclude that
the provided approaches are sufficiently consistent and can
be used to analyse a broad variety of fractional-order non-
linear mathematical models that help explain the behaviour
of highly nonlinear, complicated phenomena in important
scientific and engineering fields.
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