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Abstract: The aim of this research is to provide a new
computer-assisted approach for predicting thermophoresis
particle decomposition on three-dimensional Casson nano-
fluid flow that passed over a stretched surface (thermophor-
esis particle decomposition on three-dimensional Casson
nanofluid flow; TPD-CNF). In order to understand the flow
behavior of nanofluid flow model, an optimized
Levenberg-Marquardt learning algorithm with backpropa-
gation neural network (LMLA-BPNN) has been designed.
The mathematical model of TPD-CNF framed with appro-
priate assumptions and turned into ordinary differential
equations via suitable similarity transformations are used.
The bvp4c approach is used to collect the data for the LMLA-
BPNN, which is used for parameters related with the TPD-
CNF model controlling the velocity, temperature, and
nanofluid concentration profiles. The proposed algorithm
LMLA-BPNN is used to evaluate the obtained TDP-CNF
model performance in various instances, and a correlation
of the findings with a reference dataset is performed to
check the validity and efficacy of the proposed algorithm
for the analysis of nanofluids flow composed of sodium
alginate nanoparticles dispersed in base fluid water.
Statistical tools such as Mean square error, State transition
dynamics, regression analysis, and error dynamic histogram
investigations all successfully validate the suggested LMLA-
BPNN for solving the TPD-CNF model. LMLA-BPNN networks
have been used to numerically study the impact of different
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parameters of interest, such as Casson parameter, power-law
index, thermophoretic parameter, and Schmidt number on
flow profiles (axial and transverse), and energy and nano-
fluid concentration profiles. The range, ie., 107%-10"° of abso-
lute error of the reference and target data demonstrates the
optimal accuracy performance of LMLA-BPNN networks.

Keywords: nanofluid, sodium alginate nanoparticles, Casson
fluids, stretched surface, Levenberg, Marquardt backpropaga-
tion algorithm, neural networks

Nomenclature

a stretching sheet

Al,03 aluminum oxide

C,Cx, Cy fluid, ambient, and surface fluid concentra-
tion, respectively

CgHgNaO, sodium alginate

k, G, thermal conductivity and specific heat,
respectively

Pr, Sc Prandtl and Schmidt numbers, respectively

T, T, T., T,y fluid, reference, ambient, and surface fluid
temperature, respectively

Vi, ki, D,n  thermophoretic velocity, constant, diffu-
sivity, and power law index, respectively

X, ¥,z Cartesian coordinates

Greek symbols

B Casson parameter
v, U, p kinematics and dynamics viscosities, and den-
sity, respectively

(6, 9(n)) dimensionless temperature and concentration
(0] solid volume fraction
T thermophoretic parameter
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Abbreviations

ANNs artificial neural networks
CF curve fitting

DEH dynamic error histogram

HTF heat transfer fluid

LMLA-BPNN Levenberg—Marquardt learning algorithm
with backpropagation neural network

MLA machine learning algorithm

MSE mean square error

NNs neural networks

RA regression analysis

RLA reinforcement learning

SA sodium alginate

SLA supervised learning algorithms

TS transition stat

TPD-CNF thermophoresis particle decomposition on
three-dimensional Casson nanofluid flow

ULA unsupervised learning

1 Introduction

Conventional fluids (water, oil, and gas) are often employed
as heat transporters in heat transfer applications, including,
electric power plants [1], air conditioning (AC) systems for
transportation and vehicles [2], and cooling and heating
systems for buildings [1]. Heat transfer fluids (HTFs) are
used in the vast majority of industrial plants. Throughout
the applications, the thermal conductivity of the HTF has a
substantial effect on the general efficiency of the structure.
Therefore, researchers have been working ceaselessly to
develop improved HTFs, which have far advanced thermal
conductivities against the fluids that are in use now [3].
There have been many prominent attempts to enhance
heat transmission by geometrical modification; however,
all these efforts have been limited when the convection fluid
is used for the thermal transportation. Choi [4] is credited
for creating a new category of HTFs by incorporating nano-
scale particles into standard thermal transfer media. These
nanoparticles are of metal nature and have a normal size of
the particles of a wavelength of 100 nm making them inso-
luble in the host fluid. Hence, he came up with the word
“nanofluids” to designate this novel category of fluids. Later,
more than a century ago, James Clerk Maxwell, in his theo-
retical work developed the concept of dispersing solids
in fluids [5]. After that, in 1992, researchers at Argonne
National Laboratory employed it to scatter micro and nano-
sized particles in conventional fluids [6,7]. Because metals
have a greater temperature conductivity than fluids, their
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work relied on this advantage (i.e., higher order of magni-
tude in thermal conductivity). In comparison to engine oil
and water, copper’s thermal conductivity is 3,700 times
higher at room temperature. Therefore, advanced theore-
tical and experimental research focusing on enhancing the
thermal conductivity are getting more attention than before.
These researchers used a variety of preparation techniques,
properties, and different models to compute the thermo-
physical features of nanofluids (thermal conductivity, visc-
osity, density, and specific heat capacity). Comprehensive
study on the theoretical aspects of nanofluid is presented
Sheik et al [8]. Various well-known models with different
dynamic viscosity expressions have been discussed in this
survey. Viscoelastic nanofluid was considered by Hayat et al.
[9] to discuss the Brownian motion, dissipation, and thermo-
physical properties and investigate the buoyancy force in
this fluid flow. Heat and mass transportation was numeri-
cally analyzed by Sreedevi et al. [10], where the carbon and
silver nanoparticles are combined in the base fluid that
flows over a stretching surface. Nanofluid phenomena has
been added with bioconvection motile microorganism phe-
nomena Ali et al. [11]. Bioconvection in nanofluid seems to
be an important process in engineering and ecological sys-
tems. It is used in surgeries, hyperthermia, and the treat-
ment of certain vascular diseases, as well as copper wire
drawing and polymer ejection. The slip effect and stagnation
point flow was investigated by Ibrahim and Negera [12],
while studying the upper convected Maxwell nanofluid.
Another study by Ali et al [13] presented the investigation
of MHD of axisymmetric flow of viscous nanofluid along
convective boundary conditions (BCs). The volume fractions
of nanofluid is considered passively controlled rather than
actively controlled. Graphene is a monomolecular layer of
carbon atoms with a honeycomb-like structure. The impact
of a variety of physical parameters on the stream of gra-
phene nanofluidic Maxwell flow past an extending sheet,
including magnetic flux, heat absorption, thermal radiation,
viscoelastic and Joule dissipations, and so on, with factors
of momentum and thermal slip conditions, is studied by
Sharma et al. [14]. Similarly, the flow of graphene Maxwell
nanofluid past a linearly stretched surface is studied by
Hussain et al. [15] to examine the radiative, hydro-magnetic,
and dissipative effects. Analysis of nanofluid for different
thermo-physical properties to signify the industrial perfor-
mance of nanofluid is still the motive of researchers [16-20].

Researchers have been intrigued by the enormous
variety of technical usage of flow over movable or static
solid surfaces that have emerged in recent years. These
principles are used in the vaporization of fluid layers,
the drawing of threads over a stationary fluid, crystalliza-
tion procedure methods, the manufacturing of neoprene
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and malleable flicks, and the uninterrupted freezing of
fiber. Beginning with the invention of the boundary layer
model, the scientific community has been investigating
many aspects of such flows. Two-dimensional flows cannot
have toroidal motion, which is the part of motion related
with rotation around a vertical axis and strike-slip motion.
Even though the flow is motionless in time, the streamlines
(particle routes) in steady-state 2-D flows are always closed,
but in three dimension (3-D), the existence of toroidal
motion may create chaotic, space-filling particle trajec-
tories [21]. To provide an exact evaluation of flow and
thermal transportation characteristics, three-dimensional
(3D) modeling should be explored. As a consequence,
researchers are concentrating towards the 3D. Currently
three-dimensional field is considered by Zainal et al. [22]
to study the axisymmetric stagnation point flow of hybrid
nanofluid. Hemisphere type 3D solar collector is experi-
mentally investigated Moravej et al [23] where silver-
water is taken as nanofluid. 3-D bioconvection tangent
hyperbolic nanofluid flow is studied by Ramzan et al
[24] to signify the effect of Hall current and Arrhenius
activation. Heat and mass transfer study of 3-D nanofluid
flow across a linear extending surface with convective
boundary conditions is presented by Khan et al. [25]. 3-D
magneto-hydro-dynamic of AA7072-AA7075 nanoparticles
having methyl as a base fluid type hybrid nanofluid flow
with slip effect over an uneven thickness surface is studied
by Tlili et al. [26]. Water/copper nanofluid flow in a 3-D
nano-channel is presented by Yan et al. [27] with multiple
forms of surface texture shape for energy economic con-
trol using molecular dynamics modeling. Characteristics of
bioconvection in non-Newtonian 3D Carreau nanofluidic
flow using the non-Fourier model and activation energy
have been studied by Waqas et al [28]. A 3-D electro-mag-
netic radiative non-Newtonian nanofluid flow in permeable
materials with Joule heating and higher-order reactions has
been studied by Alaidrous and Eid [29]. Non-Newtonian
liquids, on the other hand, have remained popular due to
a wide range of applications in a variety of industries,
including mechanically strong heat design, nuclear waste
disposal, chemical catalytic reactors, geothermal energy
production, groundwater levels hydrogeology, transpiration
refrigeration, petroleum underground aquifers, and so on.
Because of the nonlinear relationship between stress and
strain rate, these fluids are more difficult than Newtonian
fluids. Several models for studying non-Newtonian fluids
have been suggested, but no one model has been produced
that demonstrates all of the features of non-Newtonian
fluids. The Maxwell model seems to be the most basic model
in literature. Another fluid known as Casson fluid is one of
several non-Newtonian fluids. The Casson fluid is a shear
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thinning fluid with an infinite viscosity at zero rate of shear,
a maximum stress under which no fluid passes, and a visc-
osity of zero at an infinite rate of shear. In order to examine
thermal radiation using Ohm's Law and chemical reactions
in permeable surfaces, Casson nanofluid flow was employed
[30], and for the effect of velocity slip of fluid that passes
over an inclined porous stretched cylinder [31]. In a dif-
ferent investigation [32], combined convection is aiding
and opposition through the chemical reaction for the Casson
nanofluid past a Riga plate. Influence of magnetohydrody-
namic (MHD), MHD hemodynamics of an unsteady blood
flow through an inclined overlapped stenosis artery,
EMHD non-Newtonian blood flow of nanoparticles through
a permeable walled diseased artery and mediated blood
flow through a time-variant multi-stenotic artery assuming
blood to be non-Newtonian, pulsatile blood flow through an
overlapping stenotic artery with nanoparticles to simulate
the arterial region’s hemorheological properties and hema-
tocrit-dependent viscosity to mimic the realistic behavior of
blood with a uniform magnetic field applied in the radial
direction of the blood flow and permeability on the exact
solution of Casson and hybrid Casson nanofluid are studied
in previous literature [33-37]. Frictional heating impact on
combines convective flow of Casson nanofluid along che-
mical reaction was investigated by Sulochana et al [38].
Buoyancy impact has been studied by Zuhra et al. [39] while
taking the Williamson and Casson nanofluid under the
effect of cubic auto-catalyst chemical reaction.

Stochastic based Levenberg—Marquardt (LM) backpro-
pagation neural networks (NNs) technique has been suc-
cessfully implemented, to predict SLM-NiTi transition
temperature [40], for Hammerstein nonlinear system
[41], for the synthesis of MoS, nanocatalyst [42], for load
frequency that controls power system of huge area [43], for
Tucker tensor decomposition [44], for inverse heat model
[45], to predict rainfall [46], for multi-parameter PV module
model [47], to predict forecasting discharge rate [48], for
acousto-electric tomography [49], for industrial robot [50],
for HVDC Grids [51], for nanofluidic problems [20,52-58], to
diagnose various diseases [59—61], and for efficient stochastic
and compact numerical scheme for linear, nonlinear, and
fractional order models [62—65].

The major goal of this description is for the quantita-
tive exploration of the heat and mass distributions of 3-D
nonlinear extended superficial with alumina-based Casson
nanofluid in the influence of thermophoretic particle deposi-
tion (TPD) by stochastic-based LM backpropagation algo-
rithm. TPD makes it easier to look at variances in mass
transfer performance caused by small changes in aluminum
oxide. The findings of this research may be applied to a
variety of technical problems. The flow and temperature
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properties are represented by the governing equations, which
are constructed with suitable boundary conditions. These
equations are numerically solved using an appropriate
numerical approach after being simplified with appropriate
similarity variables. We utilized the stochastic approach to fill
this gap since there are various analytical and semi-analytical
methods for solving these types of problems. The factors that
affect the flow characteristics are evaluated with corre-
sponding profiles, and both linear and nonlinear situations
are discussed in depth. The most important elements of engi-
neering are covered.

Important facets of the inventive application of the
artifcial neural network based Levenberg Marquardt back-
propagation optimization algorithm (ANN)-LMBOA inte-
grated computational intelligence numerical solution by
the authors consist of:

» Using an extensive examination of the Levenberg—
Marquardt learning algorithm with backpropagation
neural networks (LMLA-BPNN) to evaluate the useful-
ness and effectiveness of the suggested TPD-CNF model.
Applying proper similarity transformations allow the par-
tial differential equations (PDEs) of the TPD-CNF model to
be transformed into ordinary differential equations (ODEs).
The dataset for the given model is computed using the
bvp4c-solver.

Regression analysis plots, mean square error (MSE), and
error histograms are used to validate the performance of
the LMLA-BPNN.

The statistical findings determine the numerical values
of the proposed LMLA-BPNN for solving the TPD-CNF.

2 Mathematical structure of the
problem

We consider a 3-D incompressible and laminar flow of
Casson nanofluid induced by a nonlinear extending sheet

v, =(x+y)'a

Figure 1: Geometry of the problem.
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embedded into TPD. Let uy, = (x + y)" = vy be the uniform
velocity in which the sheet is moving in x_, y_ directions,
respectively, with a and n > 0 which are constants. The
symbols T = T, and T = T,, represent the free stream tem-
perature and wall temperature of the fluid at the nonli-
nearly stretching sheet, respectively. C = C. and C = Cy, are
the ambient concentration and nanoparticle fraction con-
centration at the nonlinearly stretching sheet as the value
of z — . The constitutive state of equation for an isotropic
and incompressible laminar flow of the Casson fluid is
given as follows:

B
+—
Ug N
B

Uy + o

where 7 is the Cauchy stress tensor, e; is the (i, j)th com-
ponent of the strain rate or deformation rate, = eje;
represents the coefficients of strain in product form, 7,
and y; are used in non-Newtonian model and is the
critical value of m and the plastic dynamic viscosity,
respectively. B, indicates the yield stress of the fluid.
The physical description of the problem can be visualized
in Figure 1.

The mathematical model using the above assumptions
[66-68] are as follows:

2 ejj, 1T 2 T,

(@

T =

2 e, 7T < Tl

U + vy + wy, =0, @
1
uty + vuy + wug = |1 + B Untlzz, @
1
Uvy + vy + wy; = [1 + E]Unfvzz: Q)
_ knf
uly + vl + wh = ——T,, 4)
(PCpInt
uC, + VCy + WG, = DytCypp = (V1(C = Cwo))y (5)

where u, v, w (m s™) are the components of velocity along
X, Y, z(m) directions, respectively. f(-) is the Casson para-

meter, v =

%] (m? s71) is kinematic viscosity, (u = kg m™s™)
is the dynamic viscosity, (p = kgm™) is the density,
(k = kg ms K?) is the thermal conductivity, (¢, = m? s2 K™
is the specific heat, (D =m?s™) is the diffusivity, and
(Vr = m s™) is the thermophoretic velocity.
The boundary conditions are as follows [68,69],
U=Uy, V=Vy, T=Ty, C=Cy,w=0atz=0, (6)

u—-0,v—-0,T->T, C— Csasz — oo, @)
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Here the term V; is defined as U, = ou o0 (@(x + yyFm), 10)
Ko ox 0x
Vp=- 1Tnf L, @) ou n-1 4
r We= 5 = A5 i+ ) )
where T; is the reference temperature and K; is the thermo- + an(x + yY" ()
phoretic coefficient [66]. ’
. : ) ov 0
. In (.)rder t.o sjolv.e the governmg model, .the suitable non: vy = o = —(a(x + y)'g'(n), (12)
dimensional similarity transformations are introduced as fol- gy oy
lows [68,69]: ov n-1
VW=—-=a X + y)rlg”
w = alx + ), 5= 3y 5 e+ yyig ) 13)
v =alx+y)ygm, +an(x +y)"'g(n),
n-1
w=-{r + g5
1 w ow 0
n+ n-1 = = T o
v+ g™ oS V@ © o
n-1 [a (14)
r)=(x+y)z\gz, n-1
: ORI R ;
T = To+ 0(N)(Ty ~ To), - (x+y)2 Jav|,
€= Gt x(Cy = Ca). +(f) + g(n))["T+1
By finding all the components of Eqs. (1)—(5), we get the
results in the form of Eqs. (10)-(33), which are
_a_W _n_1 n-1 7 _n_l n-1
W= o T 5 |+ )y anf () [ 5 |+ )y ap)
n-1 n-1
- [ o yrtanga - [ o s yyag 19
n+1 n+1
o SRR A O [ 5|+ ) lag (),
n-1 n-1f# n-1f7,
e+ vy + Wy = qal—— 00+ y)"f () + an(x + y)*f ()
n-1 n-1 n-1q7
18— jnx+ ) g ) + andx + y)*g (n)
n-1 n-1,nf” n-1 n-1 (16)
S| | T anf () - | () af ()
n-1 n-1
+ -[ 5O+ Y ang () - [ 5|0 lag ()
n+1 n+1
—[ 5|0 e - [ 5|+ ) lag ()
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U + vy + W, = [a n-l n(x + y)"f () + an(x +y)”‘1f'(n)]
n-1 n-1q7, n-147
+a n0x +y)tg () + an(x + y)"g ()
1
[n (O + Yy tanf"(n) - (x + y)"laf () a7
- -1
| o s yrangan - [” o+ yrtagan),
+1 +1
oy - [P o yrtagan
-1
wor e = | Mo oyt + oo yyta
-1 -1
[ e s yyigra + anoxs yrtg - [ M5 o yretanean
n-1 (18)
- yray @ - [ o yrang @
= (x+y)lang'(p),
U + vy +w, =0,
n-1 ) 3 d¢
= "oyt + necs yyy), 09 - (- Tl foc g 0
n- n-1 d
w=atcey'Lrm, 0 6= (- m[ o RN Y
2 n-1 [@ do
Uy, = (‘1}—f(x + y)-1em(p), 21 =y~ T )[ (x+y)2 \/td_n (32)
- - 2
ve=al| = ! n(x +y)g () + n(x +y)"‘1g’(n)], 22) G = (T - Tm)[nTl][%]( +y)t n¢' (33)
~ ;1 [@ By substituting the values of u,vy, and w;, we get
Vi = A+ ) 2 \/ijg @), @3) uy + vy + w, =0, ie, Egs. (1) and (18) are identically satis-
_a Tyl fied. By adjusting Eqs. (10)-(33) in Eqgs. (2)-(7), we get the
o (e )™g ), following non-dimensional system of ODEs:
= agey)'s g N ld3f . [ arfdf ]
"Bl T aglan " ay
© x+ yig () (25) d&f o
= —(Xx + n ", s
yo Y E - (f) + g(n))[ . ]d =0,
n*
_ _ n-1 -1 %
L= (Tw -~ To)| =[x+ ) Tan (26) L1 &g dg o,
n-1 0 Bla® ~ Y ay(ag dn
Iy=(Ty- L) (x+y)'n—, @27 (35
2 dn d*g
-+ g5 ] 0
n-1 n-1 [@ do 2 Jap?
=Ty~ Tw)[ 5 (x+y)z2 o dn (28)
e & ke %0 n+1 a6
. # PRt |l GORFO)= RIOCR
T, = (T - To) ][ ]( + y)n 1 (29)




DE GRUYTER

d* d

orgrr + ST + srgh
do dp  d% 7
firar + 3]0

with

df

a0 Pl e | [

£(0) =10 & d_n(oo) = 1ol (39)

£(0) 1 0() 0

6(0) ()

$(0)

The proposed problem is considered for two cases due
to the following assumptions:
(1) n> 1: Nonlinear stretching,
(2) n =1: Linear stretching,

Where ¢ =(1-9¢0 =1-¢+¢7  and
_ (pcp)s _ v .
¢Gs=1-¢p+o¢ oo Sc= D—f]—» Schmidt number,

[P = ”f—fpf] Prandtl number, and |7 — ther-

k(T ~ Too)
I

mophoretic parameter.
The thermophysical properties of nanofluids in Table 1
are given as follows [70,71]:

ks + 2k — 20(k; - k)
Kot = e 2k + gl — Ky O
(pcpdnt = (1 = @)(pcp)e + (pCp)s,

_ U (39)
Ung - )25’

o = (1= 0)p; + 0p;,
Dy = Di(1 - 9)%5.

Table 1: Thermophysical properties of base fluid and nanoparticles [65]

Physical properties C¢HyNaO;(SA) AlLO3
Pr 6.55 -

p 988 3,975
G 4,175 765

k 0.612 40
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3 Modeling ANNs with sigmoid
function

Researchers have suggested using the sigmoid activation func-
tion as a paradigm for ANNSs to solve a variety of issues across
numerous fields. To solve the Casson nanofluid model, for
example, stochastic techniques and a NN model of the sigmoid
function were applied. However, no research has been done on
the sigmoid function’s use or study in the Casson nanofluid in
the presence of TPD effect. Thus, our goal is to examine the
application of sigmoid NNs in the TPD-CNF fluid model. A back-
propagation ANNs are designed with mathematical systems for
TPD-CNF fluid model, and their strength has a continuous map-
ping form across the single input, hidden, and outer layers based
on LMLA-BPNN. Mathematically, it is structured as follows:

k
f) = Y pX(Min + Q),
i=1

If <& d
ay = LPig XM+ Q).
& L@ (40)
ar lle,dth(Mn Q)
&< B
dr] lzlpl dtBX(M’] + Ql)’
k
g = Y pX(Min + Q),
i=1
d d
e Zpl “X(Min + ),
d? " d? “h
a’g
ar lzlpldtZX(Mln Q)
&g a3
ar lzlpldth<Mn Q)
k
6(n) = ) pX(Mn + Q),
i1
Zpl 3 X + Q). (42)
d29 " @
ap ~ ZPigaX M+ @),
k
o) = Y pX(My + Q),
i=1
d Ko q
e = 2 Drg X(Min + Q). (43
i=1

dn

d2¢ k d2
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Referring to the same mathematical concept, a sigmoid
function is a limited, differentiable real function with
a single inflection point and a non-negative derivative.
The formula provides an illustration of a sigmoid function

f =

The sigmoid function f(Min + Q;) = m is employed
in Egs. (40)-(43). Egs. (44)-(47) take on a new mathematical
shape following the application of this function.

k 1
fln) = ZR‘[W],

k o~ (Min+Q)
de % 2[ 2e~2Min+Q) e~ (Min+Q) 2]’ )
= 1+ e~ Mn+Q)° 1 + e~ Min+Qy
de k Ge-3MinQ) Ge~2Min+Q)
£ [1 £ e M) 4 e Mn+Q)’
o~ (Mn+Q)

+—
1+ e‘(Mi’)*'Qi)

k
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P, M, and Q represent the derivative order and the number
of neurons. Egs. (44)—(47) introduce the sigmoid function
fMin + Q) = m as the objective function and its
higher derivatives, ie., third order. Furthermore, these
equations include the sigmoid function. Eq. (40) denotes
the function f(n) and its first, second, and third order
derivatives. Eq. (44) denotes the same function f() and
its derivatives after applying the sigmoid function. In the
same way, Eqs. (41)-(43) represent the functions g(n), 6(n),
and ¢(n) along with their first, second, and third order
derivatives. On the other hand, Eqs. (45)-(47) represent
the functions g(n), 8(n), ¢(n), and their derivatives up to
3rd order, after merging the sigmoid function.

4 Formulation of fitness function

The MSE is used as the objective function in our modeling
given in Eq. (48).

1
g = Zp[m]

Z e_(M']+Qi)

5 P + e+ |
ng 2 20~ 2Min+Q;) e~ (Min+Q) (45)

PMATL e M) 1 4 e~ M0’ [
d3 g k ) 6e-3MinQ) Ge~2Min+Q)
F = ZPIM -(Min+Q)* B -(Min+Q)°
n = 1+ e~ WM+ 1+ Wi+
e_(Mr]+Qi)
+

1+ e‘(M'7+Qi)Z ’

< 1
o = 3257 o)

k e~ (Min+Q) 46)
Z1 1+e (Mn+Ql)Z ’
2 % Z ZQ‘Z(M"]"'Qi) _ e‘(Mi"l+Qi)
5 14+ e Mn+Q) 1 4+ o~ Mn+Q) |
k 1
o) = Zp[m]
o~ (Min+Q)
Z (221 RPN P (47)
i 1+ e~ Min+Q)
d2¢ Z 2 Ze‘z(]Wi’?*Qi) e‘(}‘/[i’l"'oi)
T 5 0@ 1 4 o) |

The equations define the components of vectors P, M,
and Q represented by P;, M;, Q;, respectively. The variables

E=g+tet et gy, (48)
2
df[df ]
1 ¥ d3 Taglan T 4
1 e O T
-+ s 5 g
2
dg[df dg]
1X 1)d3g dnpldp  dp
Ez——izzl [1+E]d_rl3_€'1C2 n+1)del|’ (50)
-+ s 55
1Y (ka2 n+1 a0’
&=y T:F"me[ 5 ](f('"l)’m_%’(’?))d—’7 , 6D
i=1
s d2—¢+8c[””]( ) + g2
& N Cldnz 7 fm +gn an’ -
2
9 dg 0 o)
anay ap?

Eq. (48) represents this objective function, where ¢ cor-
responds to the MSE, which is the summation of &, &,, &, and
&;. Egs. (49)-(52) present the expressions for g, &, &5, and &,
respectively.

The MSE is displayed by the above four equations.
With the availability of ANN-LMLA-BPNN weights, one
must optimize €, the objective function, so that € - 0 in
order to solve the TPD-CNF fluid model, based on the previous
necessity of the dataset for training, testing, and validation as
required in classically supervised NNs, trained via an appro-
priate optimization method (LMLA-BPNN method).
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5 Design methodology/NN
modeling

Machine learning algorithms (MLA) have been developed
to solve practical issues in many branches of STEM. These
MLA may be broken down into one of three groups,
depending on the kind of instruction used.

Various algorithms cater to different learning para-
digms, including unsupervised learning (ULA), reinforce-
ment learning (RLA), and supervised learning (SLA). There
are many similarities between the supervised learning algo-
rithm (SLA) and the way humans learn. Considering that people
learn new things through exercising and solving difficulties
or by analyzing datasets, this analysis uses SLA to adjust
weights based on comparisons and correlations with prede-
termined output goals. The training sample or training
dataset instructs NNs on appropriately modifying their
weights. The proper result in SLA is the one that the model
is expected to produce, given the input. The approach uses
backpropagation of errors to fine-tune the supervision
weights of the NNs.

In this section, we quickly examine how the suggested
LMLA-BPNN affects the 3-D flow of sodium alginate (SA)-
based Casson nanofluid across a stretching sheet (TPD-
CNF). A collection of the PDEs) that are converted into
ODEs specify TPD-CNF. The numerical scheme and the
fluidic issue are used in the differential Eqgs. (34)—(38),
offering a thorough mathematical technique for repeating
findings. Matlab’s “bvp4c” built-in function solves TPD-CNF
in five distinct variations by transforming higher-order
nonlinear ODEs into first-order ODEs.

(Xl =f)) (XZ =f,)r (XS =f”)1 (X4 = g)) (XS = g/)’ (XG
=g,
0 =0), 0t = 00, 0o =), O =X O = o) iy, 63
= XS))
(Xz; = Xs)()(s/ = Xe)(X; = Xe)» (Xgl = Yio)
d? 1 n+1)d?
T m m[(f(n) ) e
Y, de (54)
dn dn dn

1 1
X; = [ 1][9’1C2[[n ; ](X1 + XX ~ (G + XS)]]’
B
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dg ‘ l dg]
= (§19100 -
ap 141 dgldp * dp
- (f(p) + g(n))[ ]—g (55)
2 Jdn?
1 1
Xel = —1 GG sy *+ X5) — [%]Oﬁ + X )Xo ],
i3]
@2 K
= e 3[[ ](f(n) g(n»—] ,
(56)
sl
Xg = ke I¢s 2 04+ XaXs s
dp _1f [dode oo
dp? [Tscldn an *ap?” )]
- s o + g 7
> M+ g, |
1 1
Xo = a[(XIS)@ + YioXg)TSC = SC[L 1004 +X4)]:
(((0) = 0), ((,(0) = 1), (x5(0) = A),
(,(0) = 0), (x5(0) = 1), (x5(0) = Ay), (58)

(@) = 1), (Yg() = A3), (() = 1),
(X10(°°) = Ag).

In the “bvp4c” built-in function of Matlab, datasets
are produced via the process of the numerical solution
by adjusting various non-dimensional parameters. The
suggested LMLA-BPNN solver makes use of the “nftool”
built-in function included in Matlab’s NN toolbox to solve
the modified set of Eqs. (54)-(58) that define the fluidic
model that represents TPD-CNF. These equations are used
to solve the problem. The LMLA-BPNN takes in new infor-

Table 2: Variant of TPD-CNF

Physical quantities of our interest-based scenarios

Cases S-| S-1l S-ll S-Iv S-V

CI B =01 B =01 B =01 7=0.1 Sc=0.8
C-II B =02 B =02 B=03 7=03 Sc=12
Gl Bg=03 =03 B =05 7=05 Sc =15

S represent the scenario and C is for case.
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The Problem development

Nanofluid flow model

System of PDEs representing Casson

<Suitable Transformatio

System of non-

Linear ODEs

Reference-set
formulation via
bvpéc

Decision weight,
Hidden neurons and
testing/validation in
terms of percentage

Bvp4c Built-in
Function:

Bvp4c: a numerical
scheme is used to
formulate the data-
set for designed
LMLA-BPNN for
various parameters
of

Back-propagated Neural
Network:
Levenberg-Marquardt
Learning Algorithm with
Backpropagated Neural
Network
(LMLA-BPNN) are used for
TPD-CNF-Model

The performance of LMLA-
BPNN is tested
by M-S-E based on regression
analysis, Histogram Error and
fitness.

TPD-CNF-Model

Figure 2: NNs for TPD-3DF-SABCNFSS.

mation and stores it as the “strengths” of connections
between interneurons. These “strengths” are numerical
values that are referred to as “weights” in a three-layers
design. When calculating the importance of the yield signal,
these weights are used after the test input signal values have
been determined.

The “input layer” supplies the network with a pattern,
which it then employs to make weighted “connections” to
one or more “hidden layers” that are responsible for the
actual computation. The result is shown on what is referred
to as an “output layer,” which is linked to the hidden layers.
The ten different types of highly computational units

(neurons) that make up the ANN architecture are connected
simultaneously. This was done in order to use the sigmoid
activation function to solve the fluidic issue. Figure 2 depicts
the sigmoid activation function, which is a nonlinearly
smooth S-shaped curve. The input values might be any
number between +1 and 0. The block architecture of the
procedure may be seen in Figure 3. The hypothesized solu-
tion is trained, validated, and tested with the use of the
reference dataset by using the LMLA-BPNN that was sug-
gested. For the TPD-CNF fluidic approach, Tables 3-7 pro-
vide adequate visual and numerical proof to validate the
efficacy, dependability, and converge of the LMLA-BPNN
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Figure 3: The flow architecture of TPD-CNF.
Table 3: Outcomes of LMLA-BPNN for scenario | of TPD-CNF
Cases Training Validation Testing Performance Gradient Mu Epoch  Time (s)
Nonlinear stretching
I 2.35 x 106 8.41 x 1077 2.97 x 10-6 1.92 x 1076 5.62 x 106 1.00 x 108 174 09
Linear stretching
I 5.65 x 1010 5.39 x 10-10 5.68 x 10710 5.57 x 10710 9.92 x 10-8 1.00 x 10~° 131 01

via regression analysis, correctness evaluations, and super-
vised histogram analysis.

With the help of the built-in f function procedures in
bvp4c, a reference dataset is offered for the axial accelera-
tion, transversal velocity, energy, and concentration pat-
terns of the proposed LMLA-BPNN for values between 0

Table 4: Outcomes of LMLA-BPNN for scenario Il of TPD-CNF

and 10, with an equal distance of 0.01 for each of the three
instances of the five different circumstances of LMLA-
BPNN of TPD-CNF. The gathered datasets are used as
benchmarks against which to evaluate (f’, g’, 0, ¢(n)).
Backpropagated networks, time needed, and total itera-
tions/epochs are shown in Tables 2-7 along with the

Cases Training Validation Testing Performance Gradient Mu Epoch Time (s)
Nonlinear stretching

I 8.31 x 108 7.21 x 1078 8.08 x 1078 823 x 1078 138 x 1075 1.00 x 1079 225 14
Linear stretching

I 2.98 x 1078 149 x 1078 2.48 x 1078 2.98 x 1078 3.77 x 10°6 1.00 x 107° 1,000 64
Table 5: Outcomes of LMLA-BPNN for scenario Ill of BCF-NFM

Cases Training Validation Testing Performance Gradient Mu Epoch Time (s)
Nonlinear stretching

I 2.01 x 107° 1.97 x 107° 154 x 107° 2.02 x 10° 9.94 x 10-8 1.00 x 1070 473 16
Linear stretching

I 1.86 x 107° 214 x 107° 1.96 x 1079 1.87 x 107° 9.97 x 108 1.00 x 1079 849 28
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Table 6: Outcomes of LMLA-BPNN for scenario IV of BCF-NFM

Cases Training Validation Testing Performance Gradient Mu Epoch Time (s)
Nonlinear stretching

I 210 x 107° 3.19 x 10-° 1.65 x 10-° 2.10 x 107° 9.96 x 10~8 1.00 x 10-° 649 21

Linear stretching

I 176 x 10-° 2.56 x 1079 2.30 x 10° 1.77 x 107° 9.96 x 1078 1.00 x 10-° 565 14

numerical results of LMLA-BPNN for variants of TPD-CNF
in terms of MSE for training data, validation results, test
results, and production data (predict output).

6 Results interpretation

Figures 4-8 show the intended LMLA-BPNN results for the
TPD-CNF fluid model in different orientations (scenarios)
of I-V. For an explanation of the § and Sc cases for f'(n),
the B and 7 for g’(n), and the B for ¢(n) instances, see
Figures 4a—8a, which illustrates, using the epochs index,
how the learning, verification, and evaluation data con-
verge. The magnificent validation performance attained
at epochs 222, 284, 380, 243, and 412 with MSE is almost
9.0217 x 1071°, 4.2643 x 10710, 1.7189 x 1072, 1.3366 x 1078,
and 3.7105 x 107 in times 9, 14, 16, 21, and 20 s for nonlinear
stretching portion and 1, 64, 28, 14, and 20s for linear
stretching portion, respectively. All derived lines are judged
to have a smooth impact and lead to the stability point,
signifying excellent and optimal performance. The perfor-
mance method will improve with lower MSE values, as seen
in the corresponding Tables 3-7 and figures. If the MSE
values are low, then the suggested method is likely to per-
form well and accurately. Figures 4b—8b demonstrate con-
vincingly that LMLA-BPNN is reliable, trustworthy, and
effectively convergent when used for problems involving
B for f'(n); the cases of § for g’(n); and finally, the cases
of B, Sc, and 7 for @(n). Figures 4b—8b show the gradient

Table 7: Outcomes of LMLA-BPNN for scenario V of BCF-NFM

values for each scenario with the numerical values of the
Mu parameters throughout the course of training in another
vector recognition. Throughout the training, the procedure is
continually upgraded. Depending on the number of inspec-
tions and the size of the gradient, the learning is concluded.
Gradient will become extremely modest when training gets
closer to a minimal level of performance. If the gradient’s
magnitude drops below 1.0 x 1075, the training will end. Mu
is the LMLA-BPNN’s adaptive parameter, and it has a direct
impact on the convergence of the error. The related results
of gradient are 9.8921 x 1078, 9.8934 x 1078, 9.8204 x 1078,
5.2876 x 1077, and 9.8933 x 1078, whereas Mu of 1 x 1078,
1x107° 1x10°, 1 x 1079, and 1 x 10~° with epoch of 222,
284, 380, 243, and 412, respectively.

The recommended fluidic flow with emphasized mod-
ifications and mathematical equations are shown in Figures
4c-8c, with the error standing for the discrepancy between
the intended and reference solutions. The visual representa-
tion demonstrates that the benchmark predicted output of
the recommended LMLA-BPNN solver coincides with the
target values for each of the three instances of each of the
five situations, proving that the structure for NN building
authenticates the exactness of the result. In this scholarly
pursuit, Raja et al [20] adeptly tackled the intricacies of
3-D hybrid nanofluid flow. Employing the Bayesian regular-
ization ANN method, a nuanced numerical solution was
achieved. Within this framework, a comprehensive suite
of statistical analyses was conducted, grounded in the foun-
dational pillars of training, testing, validation, and perfor-
mance assessment. The resulting numerical and statistical

Cases Training Validation Testing Performance Gradient Mu Epoch Time (s)
Nonlinear stretching

| 2.02 x 1077 1.25 x 10-° 1.88 x 1077 2.02 x 1079 9.99 x 10-8 1.00 x 10° 729 20
Linear stretching

| 2.94 x 10° 2.23 x 1070 2.90 x 10~° 2.95 x 1079 9.96 x 10-8 1.00 x 10° 828 20
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Figure 4: Visual description of LMLA-BPNN based on variations in f vs f’(n) for TPD-CNF. (a) MSE representation, (b) TS’s outputs, (c) CF, (d) DEH, and
(e) RA. Note: Transition stat (TS), curve fitting (CF), dynamic error histogram (DEH), regression analysis (RA), mean square error (MSE).

insights, painstakingly gleaned through methodical progres-
sion across the training, testing, and validation phases, cast
an illuminating spotlight on the performance of the LM
method. These findings unveiled a panorama of promise,

indicating that both the Bayesian regularization and LM
methods stand as robust contenders for addressing the com-
plexities inherent in the modeling of intricate fluid flow
phenomena.
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Figure 5: Visual description of LMLA-BPNN based on variations in 8 vs g'(n) for TPD-CNF. (a) MSE representation, (b) TS’s outputs, (c) CF, (d) DEH, and

(e) RA.

After retraining a NN, an outline of error is shown in
Figures 4d-8d, which is an error histogram analysis. Ana-
lysis of errors and error values highlight the deviation
from expected and desired results. For six unique LMLA-

BPNN model circumstances, the average value of the error
bin almost compares to zero-line error connecting. For all
five scenarios, the comparison error dynamic zero line has
nearest errors occurring in the range of -8.5 x 107,
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Figure 6: Visual description of LMLA-BPNN based on variations in 8 vs y(n) for TPD-CNF. (a) MSE representation, (b) TS’s outputs, (c) CF, (d) DEH, and

(e) RA.

438 x 1076, -1.3 x 106, -1.7 x 1075, and -3.5 x 10°%. The
error histogram study demonstrates the LMLA-BPNN algo-
rithm’s validity by showing that the bulk of error values
compress over the zero-line. To verify the network’s

accuracy, a regression diagram is drawn to show how
the inputs, outputs, and desired outcomes are all intercon-
nected. If the training process was flawless, the network’s
outputs would be consistent with the desired values.
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Figure 7: Visual description of LMLA-BPNN based on variations in 7 vs y(n) for TPD-CNF. (a) MSE representation, (b) TS’s outputs, (c) CF, (d) DEH, and
(e) RA.

Figures 5e-8e show the outcomes. The data testing, verifi- R reflect the connection among the output and the desired
cation, and training processes are shown along the three value, and the solid line depicts the best-fitting linear
axes. Each dashed line represents the perfect connection regression line. The excellent resolution of the TPD-CNF
among outcomes, production, and goals. The coefficients of fluidic model using LMLA-BPNN may be explained by a
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Figure 8: Visual description of LMLA-BPNN based on variations in Sc vs (1) for TPD-CNF. (a) MSE representation, (b) TS’s outputs, (c) CF, (d) DEH, and
(e) RA.

flawless linear connection between the calculated output
and the desired values, demonstrated by regression ana-
lysisR = 1.

The following are some benefits of the computational
technique and LMLA-BPNN method for fluid flow in TPD-
CNF fluid model.
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Figure 9: Assessment of LMLA-BPNN for f'(7) with reference dataset of TPD-CNF. (a) Variation in 8 for f'(17), (b) variation in 8 for f'() (n > 1), (c) AE
for TPD-CNF, (d) variation in 8 for f'(n) (n = 1), and (e) AE for TPD-CNF.

* The LMLA-BPNN method, a potent optimization tool,
can be used to find an approximation to the solution
of a system of nonlinear equations. It can therefore be

applied successfully to solve the challenging equations
describing TPD-CNF fluid model over a nonlinearly
extending sheet.
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» The computational procedure is based on the Lobatto ¢ By using the LMLA-BPNN method and computational
IITA (bvp4c Solver), an efficient technique for solving system, several scenarios with Casson parameters, ther-
differential equations. This ensures that the equations mophoretic effects, and Schmidt number have been
will have a reliable and accurate solution. simulated. Because of this feature, it is a useful tool for
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studying the fluid dynamics of TPD-CNF model over a
nonlinearly extending sheet.

6.1 Effect of Casson parameter

The fundamental aspect of this part is to investigate the
impact of numerous non-dimensional constraints on their
presented outlines. The transformed ODEs (54)-(57) with
BCs (58) are solved with “bvp4c” scheme for the formation
of dataset and setting the constraints values as 7 = 0.1,
Pr = 6.55, ¢ = 0.01, Sc = 0.8, and, § = 0.5. Thermophysical
properties for base liquid and nanoparticles are described
in Table 7. The acquired outcomes visualize the impact
of non-dimensional constraints, i.e., Schmidt number (Sc),
thermophoretic parameter (7), Casson parameter (f), and
power-law index (n) on flow profiles (axial and trans-
verse), and energy and nanofluid concentration profiles.
Throughout the simulation process, the power-law index
parameter is considered fixed for computation, i.e., n =1
and n = 3. The axial velocity f’(n) with reference solution is
illustrated in Figure 9b and d for Casson parameter (5)
depicting the behavior of nonlinear (n > 1) and linear
stretching (n = 1), respectively. One essential feature of
Casson fluids is the Casson parameter (f). It measures
the extent to which the fluid exhibits shear-thinning beha-
vior. A more prominent shear-thinning character is indi-
cated by a higher (B) value. Shear-thinning behaviour is
the propensity of a fluid to exhibit lower viscosity as the
shear rate (or velocity gradient) increases. Within the fra-
mework of this investigation, a greater Casson value (f)
suggests a more noticeable decrease in viscosity as shear
rates increase. A steeper velocity gradient is produced
close to solid boundaries (such as the stretched surface)
by a larger Casson value. This occurs as a result of the
shear stress’s superior ability to lower viscosity and pro-
mote fluid flow. A fluid that is less shear-thinning and more
viscous has a lower Casson value (). In this instance, there
will be more flow resistance shown by the less steep velo-
city gradient close to the solid surface.

Furthermore, inclination rate is slightly higher for the
case n = 3 when compared to n = 1 for transverse velocity
g'(n). The absolute error (AE) analysis for Casson parameter
(B) when (n > 1) and (n = 1) are presented in Figure 9c and e,
respectively. The AE of () between 1078-1073 and 1077-10*
indicate the accuracy of LMLA-BPNN.

The relative analysis of transverse component of velo-
city g’(n) with reference solution is illustrated in Figure 10b
and d for Casson parameter (), which depicts the behavior
of nonlinear stretching (n > 1) and linear stretching, (n = 1)
respectively. A similar behavior is observed as depicted in
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the axial velocity profile f'(n). The AE analysis for Casson
parameter () when (n > 1) and (n = 1) are presented in
Figure 10c and d, respectively, to check the accuracy criteria.
The AE of (8) between 1078-1073 and 10°-1073 indicate the
accuracy of LMLA-BPNN.

The relative analysis of mass transfer profile y(n) with
reference solution is illustrated in Figure 11b and d for
Casson parameter () which depicts the behavior of non-
linear stretching (n > 1) and linear stretching (n = 1), respec-
tively. It is observed that the increase in the numerical
domain of Casson parameter () elevates particle growth,
intensifying the improvement of boundary layer thickness.
That is why, mass transfer increases. Additionally, the Casson
parameter () affects the Casson nanofluid’s concentration
profile. The solute or nanoparticle concentration in the fluid
can change depending on the B value. Because of the
increased fluid velocity close to the boundary, a larger
Casson parameter generally tends to facilitate better mixing
and dispersion of nanoparticles in the fluid. Concentration
profiles may become more consistent as a result. On the
other hand, because the fluid’s shear-thinning property is
less noticeable, a lower Casson parameter () may lead to
less effective mixing and concentration gradients close to
the solid surface. In conclusion, the velocity and concentra-
tion profiles of SA-based Casson nanofluid are significantly
shaped by the Casson parameter. Its shear-thinning beha-
vior directly affects the distribution of solutes or nanopar-
ticles and the behavior of the fluid near solid boundaries.
Applications that use Casson nanofluids can be designed and
optimized with an understanding of these effects. The rate
of inclination in nanofluid absorption is slightly faster for
(n =1) when compared to (n = 3). The AE analysis for
Casson parameter () when (n>1) and (n =1) are pre-
sented in Figure 11c and d, respectively. The AE of (B)
between 1077 - 107 and 10™° - 1073 indicate the accuracy
of LMLA-BPNN.

6.2 Effect of thermophoretic parameter

The relative analysis of mass transfer profile y(n) with
reference solution is illustrated in Figure 12b and d for ther-
mophoretic parameter (7) which depicts the behavior of
nonlinear stretching (n > 1) and linear stretching (n = 1),
respectively. A process known as thermophoresis occurs
when molecules or particles in a fluid move in response to
temperature changes. The concentration profile in the fluid
can be significantly impacted by this motion, particularly in
areas with temperature gradients or close to solid objects.
This explains how the concentration profile is affected by
the thermophoretic effect (7). Particles or molecules in a
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fluid will undergo thermophoretic mobility when a tem-
perature gradient — that is, areas with varying temperatures
— is present. Particles have a natural tendency to migrate
from cooler to warmer locations, which propels this motion.
Thermophoretic processes can cause concentration gradi-
ents at solid surfaces, where temperature differences are
frequently observed. Particles tend to concentrate or dis-
perse near the surface in response to the direction of the
temperature gradient. Particles may migrate towards the
surface, for instance, if the surface is hotter than the sur-
rounding fluid, increasing concentrations close to the solid
border. In contrast, particles may migrate away from the
surface if the surface is colder, which would lower the con-
centrations close to the border. The concentration boundary
layer is the area close to a solid surface where the concen-
tration of particles changes dramatically. The thickness of
this layer can be affected by thermophoretic phenomena.
Strong thermophoretic effects may cause the concentration
boundary layer to thicken, which would suggest a more
noticeable concentration gradient. The mobility of the par-
ticles also enhances, which results in a declination in fluid
concentration. The AE analysis for thermophoretic para-
meter () when (n>1) and (n=1) are presented in
Figure 12c and d, respectively, to analyze the convergence
region. The AE of () between 10~7-107% and 108-1072 indi-
cate the accuracy of LMLA-BPNN.

6.3 Effect of Schmidt number

The relative analysis of mass transfer profile ¢(n) with
reference solution is illustrated in Figures 13b and d for
Schmidt number (Sc) which depicts the enhancing beha-
vior of nonlinear stretching (n > 1) and linear stretching
(n = 1), respectively. It is depicted from the plotted figures
that concentration profile declines as the Schmidt number
(Sc) enhances. The ratio of the kinematic viscosity to the
coefficient of molecular diffusion is known as Schmidt
number (Sc). Higher Schmidt number suggests that viscous
effects predominate and that the fluid’s resistance to flow
is greater than its mass transporting capacity. In this
instance, the fluid’s reduced diffusive ability causes the
concentration gradient near solid boundaries to tend to
be more apparent. The Schmidt number has an impact
on the concentration boundary layer, which is the area
close to a solid surface where the concentration of solute
or nanoparticles varies dramatically. A thicker concentra-
tion boundary layer is the outcome of a higher Schmidt
number. This indicates that the solute or nanoparticles
must travel a greater distance to diffuse from the surface
into the bulk fluid. A high Schmidt number indicates that
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diffusion is slower than the flow of the fluid. This may
result in a concentration profile where the source/sink
terms close to the surface or the beginning conditions
have a greater influence. Conversely, a low Schmidt number
suggests that diffusion happens more quickly than fluid
motion, resulting in a concentration profile that closely
resembles the fluid velocity profile. The rate of decline is
slightly faster in the case of (n = 3) than in the case of
(n = 1) for (7) and (Sc). The AE analysis for Schmidt number
(Sc) when (n > 1) and (n = 1) are presented in Figure 13c
and d, respectively. The AE values for (Sc) lies between
1077-1073 and 10781073 satisfying the accuracy criteria.

7 Conclusion

Utilizing the LM technique in conjunction with a computa-
tional framework, i.e., Lobatto IIIA, specifically a type of
numerical integration or quadrature method for solving
3-D Casson nanofluid flow in the occurrence of thermo-
phoretic particle deposition over a sheet with a nonlinear
extended surface represents a pioneering and innovative
approach for addressing this challenging problem. The LM
method, recognized as a potent optimization tool, enables
the approximation of solutions to a set of nonlinear equa-
tions. Meanwhile, at the core of our computational archi-
tecture lies the numerical method, a robust technique for
tackling higher order differential equations. We apply the
LM method to resolve the governing equations governing
fluid flow within a 3-D Casson nanofluid flow regime, sub-
sequently utilizing it to determine optimal values for cri-
tical parameters. These parameters encompass variables
such as fluid velocity, temperature, and concentration pro-
files. Our computational scheme is employed to solve the
governing equations related to fluid flow, temperature,
and concentration distribution, thus achieving a compre-
hensive and robust solution. Our results have implications
beyond theoretical advancement. Real-world fluid system
optimization can benefit from the insights produced by
our NN technique and computational framework. Casson
nanofluids based on SA provide an adaptable foundation
for a variety of industrial uses. By means of regulated par-
ticle deposition, these nanofluids facilitate the creation of
personalized, mechanically improved 3D printed components
for additive manufacturing. They are perfect for creating
precision biomedical devices like medication delivery sys-
tems and tissue scaffolds because of their biocompatibility.
Moreover, Casson nanofluids improve compactness and heat
transfer in heat exchangers and microelectronic cooling.
They are useful for better drilling fluids in the oil and gas
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sector, for product innovation in food processing, for pollu-

tant removal in wastewater treatment, and for functional

improvements in textiles and coatings. When nanoparticles
are precisely deposited, these nanofluids also help to increase
the energy storage performance of devices like lithium-ion
batteries and supercapacitors. Expanding the range of our
computational approach in subsequent research can take
into account more complex fluid processes and the inclusion
of other physical components. Our surrogate models can be
more precise and effective by utilizing novel NN topologies
and training methods. Our study provides a strong founda-
tion for future research and development of computational
techniques for thermophoresis particle Casson nanofluid
flow, paving the way for future innovation and advance-
ment in fluid dynamics research and applications.

The following are the main points of this article:

» The governing relations of the system model are pre-
sented in differential system to illustrate the dynamics
of the underlying mathematical form of the model.

* The bvp4c numerical solver generated reference datasets

for the proposed model in a variety of conditions, which

were successfully used as inputs and targets of LMLA-BPNN
to anticipate approximate solutions for each scenario.

By using the LMLA-BPNN method and computational

system, several scenarios with Casson parameters, ther-

mophoretic effects, and Schmidt number have simulated.

Because of this feature, it is a useful tool for studying the

fluid dynamics of TPD-CNF model over a nonlinearly

extending sheet.

» The LMLA-BPNN method, a potent optimization tool, can
be used to find an approximation to the solution of a
system of nonlinear equations. It can therefore be applied
successfully to solve the challenging equations describing
TPD-CNF fluid model over a nonlinearly extending sheet.

* In comparative experiments, the validity of LMLA-BPNN
for solving nanofluid models with an accuracy in the
range of 10 x 1073-10 x 107 is frequently established,
which is based on the MSE of the convergence curves
and the absolute difference from the reference results.

* Performance evaluation, such as error histogram ana-

lyses and the regression index, is used to collaborate

the findings for each TPD-CNF scenario.

Apart from the advantages of consistent accuracy, stabi-

lity, and resilience, the main disadvantage of LMLA-BPNN

is the absence of a high-quality dataset for nonlinear sys-
tems, which is often confined to certain activities and
originations.

Furthermore, several metrics such as flow profile, energy
distribution, and nanofluid concentration have been observed
across the fluid flow in axial and transverse directions.
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The effects of parameters observed for fluidic fields in
the presence of nonlinear (n > 1) and linear stretching
(n = 1) may be described as follows:

+ Axial and transverse flow fields slow down when the
Casson parameter’s domain go high. Whereas this para-
meter increases the nanofluid concentration rate.

¢ The thermophoresis effect diminishes the concentration
distribution when its values become high. Similarly,
Schmidt parameter has opposite behavior on nanofluid
concentration distribution.
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