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Abstract: This research investigates the flow of micropolar
fluid and heat transfer through a permeable channel using
the successive linearization method (SLM). The study con-
siders parameters such as coupling, spin-gradient viscosity,
and micro-inertia density. The partial differential equa-
tions involved are transformed into a system of ordinary
differential equations using similarity variables. The resulting
nonlinear equations are solved using the SLM technique, and
their accuracy and computational efficiency are validated
through comparative analysis with previous results. The
study shows that increasing the parameters of coupling and
spin-gradient viscosity has a positive impact on fluid flow,
microrotation, heat transfer, and mass transport, as demon-
strated by the increased dimensionless profiles. Conversely,
an increase in the micro-inertia density parameter leads to a
reduction in these profiles. This decrease can be attributed to
the increase in the micro-inertia effect of fluid flow and heat
transfer, resulting in a decrease in convection and a change in
the flow pattern in the channel. Additionally, higher Reynolds
numbers are associated with decreases in velocity, microro-
tation, temperature, and concentration distribution. This
implies a reduction in fluid flow intensity, weaker heat
transfer, and decreased mass transport. However, an
increased Peclet number results in increased fluid tem-
perature and concentration profiles, indicating enhanced
thermal convection and mass transport. These findings
have significant implications for applications involving
micropolar fluids, such as lubrication systems, blood
flow, microchannels, and filtration systems.
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1 Introduction

The field of micropolar fluid mechanics, particularly in the
study of non-Newtonian fluids, has made significant pro-
gress in recent years. A prominent figure in this progress is
Eringen [1], whose pioneering contributions to the analysis
of micropolar liquids have opened up new possibilities and
approaches to understanding various phenomena. These
phenomena include the dynamics of low-concentration
suspensions, liquid crystals, blood flow, lubrication pro-
cesses, and industrial applications.

Scientists and researchers have thoroughly used the
micropolar theory to tackle several scientific and engi-
neering problems. Heat transfer in micropolar boundary
layer flow over a flat plate was investigated by Gorla et al.
[2], who found that micropolar fluid characteristics had a
major impact. Gorla [3] investigated the buoyancy effects
on the flow and heat transfer of a micropolar fluid in a
boundary layer flow along a vertical cylinder. In addition,
Gorla [4] explored mixed convection in a micropolar fluid
from a vertical surface with uniform heat flow, addressing
the combined influences of forced and natural convection.
Arafa and Gorla [5] studied the effects of buoyancy and
curvature on convection along vertical cylinders and
needles inserted in a micropolar fluid. They used a finite
difference approach to numerically solve the governing
equations for energy, momentum, and angular momentum.
Raptis [6] examined the micropolar fluid flow through a
porous medium using the generalized Darcy equation. Using
the homotopy analysis method, Ziabakhsh and Domairry [7]
could approximate micropolar flow in a porous channel with
a high rate of mass transfer. Mohamed and Abo-Dahab [8]
studied the combined effects of chemical reaction, thermal
radiation, and heat generation on heat and mass transfer in
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magnetohydrodynamic (MHD) micropolar flow over a verti-
cally moving porous plate in a porous medium.

Numerous scientists and researchers have examined
the applications of micropolar fluids and nanofluids. A
simulation of MHD biorheologic transport phenomena
under blood flow control and filtration in porous medium
was performed by Rashidi et al. [9]. They studied velocity
and pressure profiles, along with their influence on mag-
netic field strength and the properties of porous media.
Turkyilmazoglu [10] studied the behavior of micropolar
fluids over a shrinking porous sheet, focusing on the flow
and heat transfer characteristics. Prakash and Muthtamil-
selvan [11] explored the influence of radiation on the tran-
sient MHD flow of micropolar fluids between two porous
vertical plates with boundary conditions of the third kind
and discovered that thermal radiation reduced the tempera-
ture of the fluid. In a study conducted by Fakour et al. [12],
they examined the behavior of flow and heat transfer, in a
channel with permeable walls. Turkyilmazogl [13] explored
the micropolar fluid flow due to a porous stretching sheet
and heat transfer. According to Sheikholeslami et al. [14],
magnetic fields play a crucial role in the unsteady flow and
heat transfer of nanofluids. In a subsequent study [15], they
investigated the free convection of magnetic nanofluids and
observed that the viscosity of the MFD led to significant
changes in flow patterns and heat transfer characteristics.
Mirzaaghaian and Ganji [16] applied the differential trans-
formation method to study the micropolar fluid flow and
heat transfer through a channel with permeable walls. Doh
et al. [17] studied the transient heat and mass transfer of a
micropolar fluid in a porous vertical channel with boundary
conditions of the third kind. They analyzed the temperature,
velocity, and concentration profiles and the effects of var-
ious parameters on heat and mass transfer. Another study
by Doh et al [18] investigated how internal heat sources
affect the flow behavior, velocity distribution, and tempera-
ture profiles of a micropolar fluid in a porous vertical
channel. The effect of heat transfer on electrically con-
ducting MHD micropolar fluid flow along a semi-infinite
horizontal plate with radiation and heat source was exam-
ined by Mishra et al. [19]. In their work, the obtained gov-
erning equations were converted into a set of dimensionless
differential equations and then numerically solved using the
well-known Runge-Kutta (R-K) method with a shooting
technique.

Pattnaik et al. [20] investigated the effects of velocity
slip on MHD flow over a stretching surface and found that
the presence of velocity slip has significant implications on
flow and thermal characteristics. Simultaneously, Mishra
et al. [21] studied nonlinear radiations and cross-diffusion
effects on the convection of micropolar nanoliquids toward
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a stretching sheet with an exponential heat source, high-
lighting the significant effect of radiation and cross-diffusion
parameters on streamline movement and heat transport.
Saraswathy et al. [22] used sensitivity analysis to study
the asymmetric flow and heat transfer in micropolar
fluids, highlighting the crucial role played by Arrhenius
energy in characterizing these flows. A theoretical study
on non-Newtonian micropolar nanofluid flow by Nadeem
et al. [23] emphasized the impact of non-Newtonian beha-
vioral characteristics and nanoparticle concentration on
fluid flow and heat transfer processes. Furthermore, Abbas
and Shatanawi [24] studied the heat and mass transfer in a
Casson micropolar nanofluid over a stretchable Riga sur-
face, where they highlighted the importance of stretching
parameters and nanoparticle volume fraction on fluid and
heat transport capabilities. The subject was advanced by
Saraswathy et al. [25] through a theory on the bioconvection
of micropolar fluid under consideration for the Cattaneo—
Christov heat flux theorem. The combined effects of non-
linear thermal radiation, viscous dissipation, and magnetic
field on MHD micropolar fluid flow in a porous channel
were explored by Saraswathy et al. [26]. In their work, the
nonlinear governed equations were solved numerically using
the R-K integration procedure with the shooting method and
analytically using the variational iteration method and Ado-
mian decomposition method. They found that viscous dissipa-
tion and non-linear thermal radiation significantly influence
the fluid flow and heat transfer within the porous channel.
Humane et al. [27] also investigated the role of thermal or
solutal convection in the behavior of a magneto-micropolar
fluid inside an inclined porous stretching device. Sham-
shuddin et al. [28] investigated how variations in the thermal
Peclet number, vortex viscosity, and Reynolds number affect
the two-dimensional flow of a micropolar fluid passing
through a channel due to combined convection. Their find-
ings revealed the impact of these parameters on fluid prop-
erties such as velocity and thermal profiles. In another
study, Shamshuddin et al. [29] applied the Chebyshev spec-
tral method to examine the flow of nanofluid across an
extended flat surface in the presence of an angled magnetic
field. They focused on the heat transfer characteristics and
how the orientation of the magnetic field influenced the
flow behavior. The influence of elastic distortion on the
conduction of heat in a motor oil was investigated by Salawu
et al. [30] using hybridized single-walled carbon nanotube-
silver and multi-walled carbon nanotube-molybdenum tet-
rasulfide magneto-nanomaterials. They found that both
hybrid nanofluids exhibited less heat transmission at
increased elastic distortion.

The physical application of this research concerns flow
in porous channels, as discussed in detail by Harwin [31]
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and Jalili et al. [32]. Laminar flow through a channel with
porous walls is an idealized representation of the flow
behavior that occurs in relevant geometries in the real
world. This physics can be applied to model various pro-
cesses, such as transpiration cooling, in which a cooler
liquid flows over the outside of a heated, liquid-containing
pipe or channel to prevent the walls from overheating.
Another application of this flow modeling is the production
of nuclear reactor fuel through the gaseous emission of the
uranium-235 and uranium-238 isotope separation process.
In addition, it can be used to control fluid flow through or
into an aircraft wing, or as part of a model for flow past a
membrane or filter to regulate the boundary-layer flow
over the wing.

When examining and analyzing the current literature
on micropolar fluid flow and heat transfer within a perme-
able channel, it was found that the numerical simulation of
the recommended flow field has not been specifically stu-
died using the successive linearization method (SLM). The
corresponding non-dimensional ordinary differential equa-
tions are obtained by applying similarity transformations to
the governed partial differential equations, and then, SLM is
used to numerically address them. The results of the SLM
are then compared with previous solutions presented by
Mirgolbabaee et al. [33], who used the Akbari-Ganji method
(AGM).

The motivation for this study is to illustrate the present
algorithm in solving a highly nonlinear system of ordinary
differential equations that controls micropolar fluid flow and
heat transfer within a permeable channel. Additionally, it
aims to investigate the effects of Reynolds numbers, micro-
rotation or angular velocity, and Peclet number on flow
properties, heat transfer, and concentration profiles. This
study provides detailed profiles of velocity, temperature,
and concentration.

SLM has been applied to solve the governing coupled
nonlinear system of equations in a limited number of stu-
dies [34-41]. However, Awad et al. [42] and Makukula et al.
[43] have demonstrated that SLM has high accuracy and
fast convergence to numerical solutions. Furthermore, by
efficiently handling nonlinear boundary value problems,
the SLM approach outperforms conventional numerical
techniques such as R-K shooting, finite differences, and
finite elements.

The following steps were followed in writing this
manuscript: Section 2 develops the mathematical model
of the relevant work, and Section 3 describes the proposed
numerical method. The numerical results presented in the
tables and graphs are explained in Section 4. Finally, the
main conclusions of this study are presented in Section 5.

Micropolar flow and heat transfer within a permeable channel = 3

The research questions that contribute to the novelty
of this study are as follows:

+ Can SLM effectively solve the system of fourth-order non-
linear equations governing micropolar fluid flow and
heat transfer within a permeable channel?

* How does the angular or microrotation velocity para-
meter affect the determined velocity, micro-rotation,
temperature, and concentration profiles?

* How does the Reynolds number affect the dimensionless
flow function, microrotation, temperature, and concen-
tration profiles?

« What effects does the Peclet number for heat and mass
transfer have on the temperature and concentration
profiles?

2 Mathematical formulation

In this study, we studied the steady flow of a micropolar
fluid in a two-dimensional channel with parallel porous
walls. The channel has a uniform injection or removal of
fluid at a constant speed, as represented by vy. The lower
wall of the channel has a solute concentration denoted by
G, and temperature denoted by T}, whereas the upper wall
has a solute concentration C, and temperature T,. The
channel walls are aligned parallel to the x-axis and posi-
tioned at y = +h, indicating the channel width (as shown in
Figure 1). The governing equations that describe this flow
can be found in the study of Sibanda and Awad [44]:
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Figure 1: Schematic representation of the problem.
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In these equations, we have various variables and
parameters. The velocity components are denoted by u
and v along the x- and y-axes, respectively. Other variables
include fluid density (p), dynamic viscosity (u), angular or
microrotation velocity (), fluid pressure (p), fluid tem-
perature (T), specific heat at constant pressure (C,), species
concentration (C), thermal conductivity (k), molecular dif-
fusivity (D*), micro-inertia density (j), and material para-
meter (k). The microrotation viscosity is represented by
Vs = (u + k/2)j. The relevant boundary conditions for this
scenario are as follows:

0
y=-h: v=u=0, N=—sa—u,
VX i’ VoX @
y=+h2 v=0, U=T, N=F.

In the context of the problem we are addressing, the
boundary parameter s is used to indicate the rotational
freedom of microelements near the walls of the channel.
The value of s determines different scenarios. When s = 0,
it represents concentrated particle flows where the
microelements close to the wall cannot rotate. Other cases
found in the literature include s = 0.5, which indicates the
weak concentrations with the disappearance of the anti-
symmetric part of the stress tensor, and s =1, which
represents the turbulent flow. To simplify the equations
governing this system, we introduce dimensionless vari-
ables as follows:

V
=3, w=-wf), N= e,
®)
T-T -G
o=y, and o) = s,

where T, = T} - Ax and C, = C; - Bx, with A and B being
constants. The stream function is defined in the usual
manner as follows:

u=—, and v=-—7. 9)

DE GRUYTER

Applying these transformations, the governing system of
Eqs (1)-(7) is converted to a nonlinear system [44]:

1+ N)f¥ - Nig - Re(ff” - f'f”) = 0, (10)
Nog” + No(f” - 2g) - NsRe(fg’ - f'g) = 0, (1)
0” + Pey(f'0 - fo) = 0, (12)
¢” + Pen(f'¢ - f¢") =0, (13)
subject to the boundary conditions:
n=-1:f=f'=g=0, 0=0=1, "

n=+1:f=0=¢=0, f=-lg=1

Several primary parameters of interest in this problem are
the buoyancy ratio N and the Peclet numbers Pe;, and Pep,,
Reynolds number Re, and Grashof number Gr. These para-
meters are defined as follows:

k Vg

Ni=—, Ny=—3,
1 uh?
j Vo vpGy

N = — R = — P = —

3= Re=Jh Pr=— (15)

v gBTAh4

Sc = E’ r = Vz s

Pey, = PrRe, and Pe, = ScRe,

where Pr represents the Prandtl number, Sc is the general-
ized Schmidt number, N; corresponds to the coupling para-
meter, N, is the spin-gradient viscosity parameter, and N3
represents the micro-inertia density parameter. Furthermore,
the local Nusselt and Sherwood numbers, denoted as Nu, and
Shy, respectively, can be defined as:

N By=r® 0(-1)

uX = == - )
(h - Bk (16)
oMy

ShX - (Cl _ CZ)D* - ¢( 1),

where ¢” and m” represent the local heat and mass fluxes,
respectively. It is worth noting that these equations and
parameters are specifically tailored to the problem at
hand, and their applicability may vary in different mathe-
matical or scientific contexts.

3 Method of the solution

In this section, we apply the SLM to solve the nonlinear
system of Eqs (10)-(13) with boundary conditions (14).
According to this method, the functions f(n), g(n), 6(n),
and ¢(n) are expanded as follows:
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i-1

F) = £+ Y Eal),
m=0
i-1

g =g + Y Gu(),
m=0
i-1

o) = 6:(m) + Y On(n),
m=0
i-1

ORKIORX:NO)
m=0

a7

where the symbols f, g, 6;, and ¢; are used to represent
the unknown functions, whereas F,, Gpn, ©,, and ®,
(m =0,1,2,..) are the successive approximations obtained
through iterative solutions of the linear part of the
equation system derived by substituting Eq. (17) into Eqs
(10)-(13). The fundamental assumption that underlies the
SLM is that as the iteration index i increases, the functions
fi» & 0i, and ¢; tend to approach zero. As a result, the
nonlinear terms and their derivatives in f, g, 6;, and ¢,
are considered negligible and are disregarded. To start the
iterative procedure, initial guesses for Fy(n), Go(n), ©o(n),
and ®@(n) were selected to fulfill the specified boundary
conditions:

n=-1:F=F=G=0,
n=+1:F=0=9=0,

O@=®d=1 and
FF=-1,G=1.

The suitable initial guesses are as follows:

FEm=0+n-n*-nd)4,  Gon) =1+ n)2,
Bo(n) = Do(n) = (A - /2.

The linearized equations that need to be solved are then
given by:
a1 + @y aF " + Qg iaF + Qg iFf + 054K,

(18)
+ ag,i-1G; = T,i-1,

byiF + byi1F + b3i-1F + byi-1G{" + b5 ;1G/

19
+ bgi-1Gi = 1yi-1,

Ci-1F + @i + G310 + €4;-10] + C5;-10; = 13;-1,(20)

AyiaF, + dyjaF; + d3 i1 @7 + dgj1Pf + ds;1®; = 13-4, (21)

where
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i-1
ai-1 =1+ N;, ayi-1=-Re z Ey,
m=0
i-1 i-1
asi-1=Re ) Fj, asi1=Re ) Fp,

- 5

m=0 m=0
i1
asi-1=-Re ) F"”p, @gi-1=—-Ni, by = Ny,
m=0
i-1
by i1 = NsRe Z Gm,
m=0

i-1
b3i-1 = —NsRe z Gp, byji-1= Ny,
m=0

i-1 i-1

bsi-1 = -NsRe ) En, bgi1 = NsRe ) Fj — 2Ny,

m=0 m=0

i-1 i-1
Gi-1=Pey ) Om, Gi-1=-Pey ) O,
m=0 m=0
i-1

i-1

Gi-1=1, €4i-1=—Pep Z En, G5i-1 = Pey Z E,,

m=0

i-1 i-1
dij-1=Pep ) Bp, dyig = —Pey ) Oy,
m=0 m=0
i-1

m=0

i-1

dsi-1=1, dyi1=-Pey ) Fn, dsi-1=Pey ) Fp,
m=0 m=0

i-1 i-1 -1 -1
ri1=Re ) Fm ) F”",-Re ) F, » Fp
m=0 m=0 m=0 m=0
i-1 ] i-1 i-1 )
-N ) F¥+N1) Gn- Y EY,
m=0 m=0 m=0

i-1 i-1 i-1 i-1
1= NsRe ) Fy > Gj - NsRe ) Fp ) Gn
m=0 m=0 m=0 m=0
i-1 i-1 i-1
-Ny ) Ep+2Ny ) G- Ny ) G,

m=0 m=0 m=0
i-1 i-1 i-1
ri-1=Pep ) Fn ) O, - Pey ) Fp
m=0 m=0 m=0

i-1 i-1
x ) On= Yo,
m=0 m=0
i-1 i-1
Iyi-1 = Pey Z Fn Z @7,

m=0 m=0

i-1 i-1 i-1
- Pen 2 Ep 2 @ -
m=0 m=0

> @

m=0
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The boundary conditions are reduced to:
FE(-D=FK(-D=FE®1) =FQ@) = G(-1) = G(1)
= 6i(-1) = 6;(1) = &(-1) = (1) = 0.
By applying an iterative approach, we can solve the linear-
ized Eqs (18)—(21) and then obtain the corresponding
solutions F, G;, ©;, and ®; for i > 1. Through a series of
iterations, the solutions can be refined and improved. After
performing a sufficient number of iterations, denoted by
M, we arrive at the final solutions for f(n), g(n), 6(n), and
o(n), which can be expressed as follows:

M M
f)= Y En), &)= Y Gu(),
m=0 m=0

M M
0= Y Gu(n), and ¢ = D Gun).
m=0 m=0

The Chebyshev spectral collocation method [45] was used
to solve Egs (18)-(21). The unknown functions were repre-
sented by Chebyshev interpolating polynomials, which
were collocated at Gauss-Lobatto points defined by:

o,
Xi = COS—, =0,1,2,..,N, (22)
J N J
where N is the number of collocation points used. We approx-
imate the functions F;, G;, ©;, and @; at the points as follows:

N

E() = ) Ex)T(x),
k=0

N
Gi(X) = Y Gx)T(),
k=0

N
8:i(x) = Y 8,0 Ti(x)),
k=0
N
D) = Y GOT(G), j=0,1, .., N,
k=0
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Table 2: Impact of Pej, on -6'(-1) and Pe,, on —¢'(-1), while keeping
Ny = N, = N3 = Re =1, and Pe,, = 0.5 constant

Pey, -0'(-1) Pe;, -¢'(-1)
0.00 0.500000 0.00 0.500000
0.25 0.449865 0.25 0.449865
0.50 0.397547 0.50 0.397547
0.75 0.342897 0.75 0.342897
1.00 0.285753 1.00 0.285752
2.00 0.028455 2.00 0.028055
3.00 —0.286335 3.00 —0.286211
4.00 -0.680103 4.00 -0.676835
5.00 -1.185915 5.00 -1.180452

where T, is the kth Chebyshev polynomial and is defined by:
T(x) = cos[k cos™(x)]. (23)

Moreover, we express the derivatives of the variables at
the collocation points as follows:

dE %

= ) DiiF(x),
" 5 a
ac XY
d#=ZDWQﬂ

k=0 (24)
de; %z)f(a(x)

- r .00,
1/ L a
do, Y

= ) Di®ix),
" S a

where, j = 0,1,..., N,r is the order of differentiation, and D is
the Chebyshev spectral differentiation matrix [46]. By inserting
Eqs (22)-(24) into Eqs (18)—(21), we obtain the matrix equation:

Ai1X; = Ry, 25

Table 1: Comparative analysis of the AGM [33], numerical results [33], and SLM for the concentration profile ¢(n) at various Reynolds numbers (Re)
and Peclet numbers Pe,,, under the conditions of Pe, = 0.2 and N; = N, = N3 = 0.1

n Re =1, Pe,, = 0.5 Re = 0.5, Pe,, = 0.25
AGM [33] NUM [33] SLM AGM [33] NUM [33] SLM

-1 1 1 1 1 1 1

-0.8  0.9193811169 0.9192939269 0.9192939277 0.9077206890 0.9077116680 0.9077116679
-0.6  0.8358088531 0.8356460368 0.8356460383 0.8142270240 0.8142102267 0.8142102266
-0.4 0.7473962040 0.7471790040 0.7471790058 0.7187645630 0.7187421955 0.7187421955
-0.2  0.6532642196 0.6530205940 0.6530205958 0.6210051590 0.6209800569 0.6209800570
0 0.5533690723 0.5531286373 0.5531286389 0.5209633680 0.5209385166 0.5209385167
0.2 0.4483206457 0.4481088763 0.4481088776 0.4189111730 0.4188891701 0.4188891702
0.4 0.3391859739 0.3390200357 0.3390200367 0.3152899270 0.3152725867 0.3152725868
0.6 0.2272708614 0.2271589176 0.2271589183 0.2106184420 0.2106066932 0.2106066932
0.8 0.1138730124 0.1138170680 0.1138170683 0.1053961140 0.1053902317 0.1053902317
1 0 0 0 0 0 0
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where Ai - 1 is a (4N + 4) x (4N + 4) square matrix, and Xi F = [fi(X0), ;0a), ... o))",
andRi - 1 are (4N + 4) x 1 column vectors and are defined by: Gi = [g(x0), &), g0,

Ay Ap 0 0 8; = [6:(x0), 6:(%), ...,6:0a)]",
A‘ 1= AZl AZZ 0 0 cDi = [¢i(XU)) ¢i(xl)’ --':¢i(XN)]T)
i
A 0 A 0 _
A31 0 033 M It = [Ri-1(X0), 1,i-106), -, Fis1 O],
a 4
(26) Tyic1 = [1,i-1(X0), Ta,i-106), -, 1,i-10a0) T,
E I -
' rl’l ! r3i1 = [13-1(X0), 13,i-106), .., 13,1001,
: 2,i-1
Xi=|g |l and Rei=|p b 11 = [13-10%0), Ta,i-106), +oe Ta,i-aOaw)[7
1 )y
@; Iy Ay = 4D + ay 1 D3 + a3 1D + a;D + as ],
n Ay = ag -l
where
Ay = by 1D? + by 1D + by,
Ay = by 1D? + bs ;1D + bg 4],
Ay = €1 D + €],
Az = €31D% + €44D + €541,
Ay = dyi1D + dy4l,
Ay = d3i 1 D? + dgi1D + ds il
o= . . . . . . — o= . . . . . . —
_-—N‘=0.6 ———N2=0.6
N, =1 N, =1
025t ___\'og g 025N -6 b
02t E 02t 7 7 1
. ey
= — 7
= - e
=045t E Zo1sf A E
o1r ., E o1f J 2 1
0.05 | ‘j,; e 0.05 e
01 0‘8 UIB 0‘4 0‘2 (IJ 0‘2 UI4 0‘6 0‘8 1 01 -0‘,8 0‘6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
n n
(@) (b)

0.3

0.25

0.2

Zo.15
=

0.1

0.05

Figure 2: Analysis of the influence of Ny, Ny, and N3 on the stream function under different conditions: (a) N, = N3 = 1, Re = 3, Pey, = 0.2, and
Pe,, = 0.5; (b) N, = N3 = Re = 1, Pey, = 0.2, and Pe,, = 0.5; and (c) N; = N, = Re = 1, Pe, = 0.2, and Pe,, = 0.5.
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Figure 3: Analysis of the influence of the microrotation profile under different conditions: (a) N, = N3 = Re = 1, Pe; = 0.2, and Pe,, = 0.5;
(b) N, = N; = Re =1, Pep, = 0.2, and Pe,, = 0.5, and (c) N; = N; = Re = 1, Pey, = 0.2, and Pe,,, = 0.5.

where the symbol T indicates the transposition operation. The
matrices A i-1, bk,i—l: (k =1, ...,6), cj,i—l) dj,i—l (_] =1, ...,5),
and I;4, (n=1,..,4) are (N+1)x(N+1) diagonal
matrices. Matrix I denotes the identity matrix of size
(N +1) x (N + 1), and 0 represents the zero matrix of size
(N +1) x (N + 1). Finally, the solution of matrix Eq. (25) is
obtained using the inverse of A;_; as follows:

X;= AR 27

4 Results and discussion

In this section, the solution of the system of nonlinear
differential Eqs (10)-(13) with boundary conditions (14) is
examined. To obtain the results presented in this study, we
applied SLM. On the basis of numerical experiments, we

found that N = 60 collocation points provide sufficient
accuracy for implementing SLM. Through comparative
analysis, we established the accuracy and efficiency of our
numerical and graphical solutions by comparing them with
the results presented by Mirgolbabaee et al. [33].

Table 1 provides a comprehensive comparison between
the results of applying the SLM technique and those of
applying AGM and the Mirgolbabaee numerical method
[33]. This table shows excellent agreement between the
SLM and numerical results, further confirming the accuracy
of the SLM approach.

Table 2 illustrates the influence of the Peclet number
on the Nusselt and Sherwood numbers. It is observed that
an increase in the Peclet number decreases the Nusselt and
Sherwood numbers. This behavior can be attributed to the
reduction of momentum transport within the boundary
layer with increasing Peclet number.
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Figure 4: Analysis of the influence of N;, N;, and N5 on the temperature profile under different conditions: (a) N> = N3 = 1 and Pej, = Pe;,; = Re = 5;
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The influence of different coupling parameters Nj,
spin-gradient parameters N,, and micro-inertia density
parameters N; on the dimensionless stream function
f(n), microrotation g(n), temperature 6(n), and concentra-
tion ¢(n) was analyzed in Figures 2-5. Figure 2 shows that
the stream function f(n) increases with increasing value of
N; and N,, while it decreases with increasing value of Ns.
Comparable patterns in the temperature and concentra-
tion profiles are shown in Figures 4 and 5, respectively.
In contrast, as shown in Figure 3, the microrotation profiles
g(n) generally decrease as N; and N3 grow, but increase
as N, increases. However, Figure 3(a) shows that the
angular velocity at the lower channel wall exhibits oscilla-
tory and irregular behavior when 5 < -0.5. Furthermore,
Figure 3(b) shows that the angular velocity at the lower
channel wall exhibits oscillatory and irregular behavior
when n < -0.3.

The effects of Reynolds number Re on the dimension-
less stream function f(n), microrotation g(n), temperature
0(n), and concentration ¢(n) are visually shown in Figure 6.
It can be predicted that as the Reynolds number increases,
the velocity profile decreases. The Reynolds number can
be used to calculate the viscosity of the fluid system,
which plays a crucial role in determining the flow pat-
tern. Consistent with physical principles, as the fluid flow
rate decreases, the velocity also decreases, and a similar
trend is observed in the microrotation, temperature, and
concentration profiles.

In Figure 7(a), we can see that as the Peclet number Pey,
increases, the temperature of the liquid (1) also increases.
This is because momentum diffusivity and inertial forces
have a greater influence on the temperature profile. Simi-
larly, in Figure 7(b), we observe the effect of the Peclet
number Pe,, on the concentration profile ¢(n). An increase
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Figure 5: Analysis of the influence of Ny, N,, and N3 on the concentration profile under different conditions: (a) N, = N3 = Re = 1, Pe, = 2, and
Pe,, = 5; (b) N; = N3 = Re =1, Pey, = 2, and Pe,, = 5; and (¢) Ny = N, = 1, Pey, = 2.5, Pe,, = 7.5, and Re = 5.

in Pe,, leads to a higher concentration profile ¢(n). At
Pe, > 1, we can see a concentration peak due to the
increased inertial force. In terms of physical properties,
Pe is a dimensionless number that indicates the impor-
tance of diffusion and advection for a fluid. At Pe <1,
diffusive transport dominates, leading to gradual tempera-
ture and concentration gradients, slower heat and mass
transport, and more uniform distributions. Conversely,
for Pe > 1, convective transport causes more heteroge-
neous distributions, faster heat and mass transfer, and
steeper temperature and concentration gradients. How-
ever, Pe does not play a crucial role in the velocity and
microrotation profiles and is not reported in this work.

5 Conclusion

This article presents a numerical study of micropolar fluid
flow and heat transfer within a permeable channel. The
problem is simplified using similarity variables and solved
using the SLM. The results are compared with published
results in the study of Mirgolbabaee et al. [33] and show
excellent agreement. The SLM is a simple but effective
method for solving nonlinear boundary value problems.
It has high solution convergence, good accuracy, and com-
puting efficiency. This method outperforms classical methods
such as R-K, finite difference, finite element, and Keller box
methods. It can be extended and applied to other related
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Figure 7: (a) Investigation of the impact of Pey, on the distribution of temperature under the conditions N; = N = N3 = Pe,, = Re =1 and
(b) investigation of the influence of Pey, on concentration under the conditions N; = N, = N; = Pe;, = Re = 1.
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nonlinear boundary value problems of fluid flow models. Key
findings from this research include the following:
Increasing the coupling parameter leads to an improve-
ment in fluid flow, heat transfer, and mass transfer, as
indicated by the increased dimensionless stream func-
tions, temperature, and concentration profiles.

Increase the spin-gradient viscosity parameter and
enhance fluid flow, microrotation, heat transfer, and
mass transport, as evidenced by the increased dimen-
sionless stream function, microrotation, temperature,
and concentration profiles.

An increase in the micro-inertia density parameter
decreases fluid flow, microrotation, heat transfer, and
mass transport, which is reflected in the reduction in
the dimensionless flow function, microrotation, tem-
perature, and concentration profiles.

An increase in the Reynolds number decreases the velo-
city, microrotation, temperature, and concentration
profiles. The observed trends in the stream function,
temperature, and concentration profiles indicate reduced
fluid flow intensity, weaker heat transfer, and reduced
mass transport within the system.

Higher Peclet numbers (Pe) correspond to increased
fluid temperature, indicating enhanced thermal convec-
tion and heat transfer. Likewise, higher Peclet numbers
(Pe) lead to higher concentration profiles, indicating
more efficient mass transport and diffusion processes.
An increase in the Peclet number decreases the Nusselt and
Sherwood numbers, which is due to reduced momentum
transport within the boundary layer.
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