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Abstract: The main goal of this study is to analyze the
nanofluid boundary layer as it flows over a bidirectional,
exponentially extending sheet in both convective and
magnetic field environments. The mathematical model
considers the results of Brownian motion and particle
movement caused by a temperature gradient. Using appro-
priate similarity transformations, governing partial differ-
ential equations are converted into ordinary differential
systems, and the design of equations is then solved using
the Haar wavelet collocation approach. The findings iden-
tify unique trends in the distribution of temperature and
show relationships with particular sets of parametric
values. These results emphasize how important it is to
note temperature fluctuations associated with specific
parametric settings. The findings are validated by con-
trasting the results with similar cases from earlier studies
in the literature. The findings indicate that temperature
distribution is reduced by increasing the Prandtl number.
Additionally, the local Biot number has qualitatively
similar effects on temperature and concentration profiles.
For higher local Biot numbers, the profiles of concentration
and temperature are better.
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Nomenclature

Cs specific heat at constant pressure (J/kg K)
F non-dimensional stream function

X velocity in x-axis (m/s)

X velocity in y-axis (m/s)

X3 velocity in z-axis (m/s)

T fluid temprature (°C)

T, temperature at the stretching surface

T. ambient fluid temperature

ux extensional velocity in x-axis

Vy, extensional velocity in y-axis

By magnetic field strength

I time index during navigation

L scale

t time

Pr Prandtl number

14 velocity vector

Rex local Reynolds number

Cra skin friction coefficient along x-direction
Cho skin friction coefficient along y-direction
Nu, local Nusselt number

Gy3 surface heat flux

Greek symbols

K

u

P

Tx1

Tx2

v =ulp

thermal conductivity (W/mK)
thermal viscosity (Ns/m)

fluid density (kg/m3)

shear force parallel x-axis at the wall
shear force parallel y-axis at the wall
kinematic viscosity of the fluid
dimensionless parameter

3


https://doi.org/10.1515/phys-2023-0170
mailto:snoor@kfu.edu.sa
mailto:asalshihry@pnu.edu.sa

2 —— Saima Noor and Azzh Saad Alshehry

1 Introduction

Multiple technical methods rely heavily on the stretch sur-
face’s ability to facilitate flow and heat transmission. Many
scientists have invested time and energy in studying how
stretchy thermal covers affect the boundary-layer flow.
The authors of the current publication have a particular
interest in this domain of study [1,2]. These nanoparticles
in suspension can alter the thermal and transport charac-
teristics of the fluid. Recent articles [3,4] examine the chal-
lenges of heat transport in nanofluids in light of these
applications. Nanoparticles have been the subject of recent
research [5,6] in several domains, such as health, materials
science, and environmental engineering. Nanoparticles are
currently being extensively investigated for their potential
in targeted medicine delivery, enhancing material charac-
teristics, and tackling environmental issues such as pollu-
tion elimination. Due to their distinctive characteristics,
they possess great adaptability and can completely trans-
form technology and provide inventive solutions across
several scientific fields. Researchers have found that nano-
fluids can potentially enhance solar collectors’ capacity to
absorb solar energy [7-9]. Jena et al. [10] proposed a novel
mathematical framework that was carefully developed
and examined to represent the temporary movement of
nanofluid over a vertical surface accurately, which allows
the flow to pass through. This study examines the influence
of a tilted magnetic field on the movement characteristics
of the flow. Numerical solutions for the solar-relevant non-
linear radiation heat transfer problem in nanofluids were
derived by Mushtaq et al [11]. In experiments [12], a
deformable surface in a boundary layer that was stretched
and had temperature fluctuations along the wall was inves-
tigated. The goal of this study was to determine how these
variables affected the temperature distribution and near-
surface dynamics. The PST and PHF are the required
minimum and maximum temperatures and heat flows,
respectively. It has been noted that for the Sisko fluid mate-
rial parameter wave movement, the effect is most pro-
nounced at low Prandtl numbers.

Uddin et al. [13] examined the effect of thermal varia-
bility on the mass transfer of nanofluid under a Newtonian
heating condition via a stretchy surface implanted into a
porous medium. They found that the Newtonian heating
parameter significantly affects the temperature. Shen et al
[14] studied the vertically stretchable nonlinear surface sub-
ject to a constant heat flux. The researchers used a mixed
convective boundary fluid to examine the magnetohydrody-
namic (MHD) stagnation point flow. Upreti et al. [15] investi-
gated the heat transfer characteristics of stagnation point
flow, including Casson nanofluid across a stretching sheet.
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They consider the influence of an induced magnetic field and
utilize the Cattaneo—Christov model. This work enhances our
comprehension of thermal events in intricate fluid systems.

There are several uses for the heat and mass transfer of
MHD thermophoretic flow in different situations, including
air purification, aerosol particle monitoring, nuclear reactor
safety, and microelectronics production. Particles of micron
or less in size suspended in a non-isothermal gas undergo a
process known as thermophoresis. They move in the direc-
tion of a diminishing thermal gradient. Hsiao [16] studied
the problem of boundary-layer flow under mixed convec-
tion across a stretching sheet. These are connected to the
ongoing study of nanofluid flow. Naramgari and Sulochana
[17] have researched a similar boundary-layer problem.
They claimed that increasing the magnetic field parameter
causes the friction factor to rise and the velocity profiles to
slow down. Pandey et al [18] analyzed the MHD properties
of a hybrid nanofluid that contains both molybdenum dis-
ulfide (MoS,) and graphene oxide nanoparticles. It specifi-
cally investigates the effects of various slip mechanisms,
natural convection, and a chemical reaction of “m” order.
Hayat et al [19] investigated the behavior of melt polymer in
response to a non-uniformly expanding surface of different
thicknesses. This study illuminated the complex dynamics
between the material and the changing surface structure by
examining the interactions between the polymer and the
nonlinear stretching sheet. Ghosh and Mukhopadhyay [20]
examined how MHD, viscous dissipation, and chemical reac-
tions affected heat transmission and flow of nanofluids
embedded in porous media. Upreti and Pandey [21] have
used quadratic convection and the Cattaneo—Christov heat
flux model to do a statistical analysis of tangent hyperbolic
fluid flow across a porous stretching sheet. This study
advances our knowledge of the properties of heat transmis-
sion in the context of fluid dynamics across porous surfaces
and sheds light on the intricate interactions between these
variables. Some recent investigations [22-24] have addition-
ally integrated sophisticated nanomaterials, such as mag-
netic nanoparticles, to control the characteristics of fluids.
Applications span from the study of fluid dynamics in bio-
medicine to the development of sustainable energy systems,
demonstrating the wide range of prospective research areas
in modern MHD. The effects of chemical processes on heat
and mass transfer rates, as well as fluctuations in the
thermal boundary layer, are shown by the results of pre-
vious studies [25-29].

The impact of a boundary condition when the surface
is convective has not been considered in any of these stu-
dies. In addition, the radiant heat is typically a fixed value
of some other factors in most boundary-layer flow investi-
gations. It is imperative to consider the convective heat



DE GRUYTER

exchange that occurs between the surrounding fluid and
the surface in many real-world applications requiring sur-
face cooling or heating. This is also very important when
working with thermal materials. Rashidi et al. [30] solved a
vertically moving flat plate in the traditional problem of
radiant heat transfer, taking into account a convective lim-
iting condition (Figure 1).

In this research, we consider a convective surface boundary
condition and a transverse magnetic field to investigate the
problem of a steady flow of nanofluids over a bidirectional
exponentially extending sheet. The mathematical framework
offered integrates the results arising from Brownian motion
and particle displacement caused by a temperature gradient.
These results clarify the appearance of interesting spatial pat-
terns similar to Sparrow—Gregg-type Hills in the temperature
distribution. The presence of these characteristics corresponds
to specific combinations of parametric values. The validation of
these discoveries is accomplished by conducting a comparative
analysis with similar scenarios reported in previous literature,
confirming the strength and significance of the identified phe-
nomena. The Haar wavelet collocation method (HWCM) [31-33]
has been used to compute the nonlinear governing systems. The
fluid flow characteristics are examined due to the effects of
several intriguing variables. A schematic flowchart of the pro-
posed approach is given in Figure 2.

2 Mathematical formulation

In both the vertical and horizontal planes, investigate the
condition of an exponentially stretched sheet and the MHD
nanofluid’s continuous, incompressible boundary layer

 (xp,%,) = U_e(%]

Figure 1: Representation of the spatial configuration and establishment
of the coordinate system.
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Figure 2: Flowchart illustrating the “HWCM approach.”

flow. The sheet’s location is defined as (x; = 0), and the
flow of fluid is limited to the area, where (x5 = 0). Assume

X1+X2

the velocities of the sheet (X, %) = er[ L ] in the x-direc-

X1+Xg

tion and u,(xq, %) = Voe[ L ] the y-direction. When a mag-
netic field (By) is introduced perpendicular to the flow of the
fluid, the fluid becomes electrically conductive. It is hypothe-
sized that the induced magnetic field can be regarded as
insignificant in comparison with the applied magnetic field
because most fluids used in industrial applications have low
magnetic Reynolds numbers. As a result, the Hall effect is

X1+X2

ignored. T, = T + uleA[ €

], which is the temperature at

X1+XQ

which the sheet is kept, and C,, = Co + COeA[T], which is
the volume ratio of nanoparticles. T, and C. are the corre-
sponding values at room temperature. The equations regu-
lating the system with boundary conditions are as fol-
lows [34-361:

0 0 0
oy Ot  Ouz 0, @
6X1 aXZ 8x3
6u1 6111 6u1 0 28] O'BO2
ol 0,0 0t 9% 2
= ox L X3 U ox; v ox? p “ @
ou, ou, ou, d*u, B
U F U = V—— — —— 1y, 3
! 6X1 2 6x3 3 6x3 aX32 P 2
LOT | oT | oT
Lox, 2ax3 36X3
4
0T ac aT) d.[(aT) @
= a-— ==+ 5= |
ox3 0x3 0X3 dw| 0X3
ac  ac acC oxc| d.(oT)
— Uy + U— = dp| —= | + —|— 6
Tox Mo Mo @ axgz] d..| 9% :
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U = ng, U = ng, C = Cs, x3=0- Cf(Tf - TX3)

—tﬂ at x3=0 (6)
faxgy 3 )
y—0,C—>o0, T—>oo, atxz— o, 7

Egs. (9)-(12) are the governing equations, and they involve
several parameters that v, T, C, and a represent viscosity,
temperature, volumetric nanoparticle ratio, and thermal diffu-
sivity, respectively. The Brownian, thermophoretic coefficients,
and the balance of the heat capacity of carrier fluid and nano-
particles are represented by, d; , d;, and 7, respectively. To
reduce the model equations to a dimensionless form, we use
the following transformations:

xX1tXy

( X1tXp
u = Uge\ L

e,y = weel

l +
=[S )

(F + F + G+ (G,

1
T-T, 2
-1
f o

_ C_Coo
G- Ca

(")
Xze\ 2L

0= 8

o[

2VL

We obtain the following equations by plugging in these
coordinates into Eq. (2)-(7), with Eq. (1) being satisfied
uniquely:

F” - 2F*+ GF) + FF" + GF” - MF" =0, (9

G” - 2G* + G'’F) + FG" + GG” - MG” =0,  (10)

”

(1

o~ A(BG’ + OF’) + F&’ + GO’ + N,0'¢’ + N.o* = 0,

¢ - A(9G’ + OF") + FO' + GO’ + Ny0'9’ + No% = 0, (12)

F(0) =0, G(0)=0, F(0) =1, G'(0) = a, and
0'(0) = -Bi(1 - 6(0)),

¢(0) =1, F'(®) =0, G(®) =0, 6(=) =0, ¢(»)=0. (13)

Egs. (9)-(12) are the governing equations, and they
involve several dimensionless parameters defined as:

2
M= %", Ny = 1dp(Cx, = Co)/v, Ny = 1d(Ty, — T.o)/v  repre-

sent the magnetic, Brownian, and thermophoretic para-
meters, respectively. The local Prandtl number, Biot
number, and Schmidt number are represented by:

1
2 X1tx2

Pr = —, Bi U, £, Sc = dl,,’ respectively.

v opi o oo
a _tf

3 Methodology

The definition of the ith Haar wavelet family is as follows
for { € [A, B], where A, B € R.
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1, where{ € [t, t,)

l/)l(() =1{-1, where { € [t, t;) (14)
0, elsewhere,
with
t=kimy, t,=(k+1)/2/m, and t; = k + 1/my.  (15)

When it comes to wavelet analysis, each 2M subin-
terval in the given domain [A, B] has a uniform length of
(= (B,A)/2M. The maximum resolution, m; = 2/, that
may be achieved is represented by M = 2j. The parameter
(M) indicates how many of these subintervals are exam-
ined in detail. The wavelet transformation is controlled
by two complex parameters, the dilatation parameter,
j=0,1,..,J.and k=0,1, .. ,m - 1, the translation para-
meter. The formula for the wavelet number is represented
as i =m; + k+ 1. Regarding the integrals of the Haar
function,

¢
Pa©) = [0, (16)
0
¢
Py = [p0ds, 1=12., an
0
These integrals are computed using Eq. (14)
( - tl) fOI‘ ( € [tb tz)
o) = (-, for( €t t) (18)
0, elsewhere,
1 2
E((_ t)*, for (€ [t, &)
! l(t - ()2 for (€ [t t;)
poO) = (4mt 20 T "YW
W , for (€ [t3, 1)
0, elsewhere,
1 3
E((‘ 4)*, for { € [t, &)
() - (6~ O for (€ [6,6)
po@) =14m? " 6 ? o)
1
4m12 (( - 1’ for ( € [t3) 1)
0, elsewhere.
The notations are also presented as follows:
L
Ca = [pu(0)ac, e
0
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L
Co = [0z, (22)
0
The Haar wavelet function summation can be
expressed as follows:
F({) = Y agh(0). (23
i=1
For the provided problems (9)—(12), we may approxi-
mate the highest-order derivatives of F, G, 6, and ¢ by

using wavelets, which makes it easier to build a direct
and precise approach of HWCM.

2M

F"({) = Y agh(0), 24
i=1
2M

G"({) = Y bp(Q), (25)
i=1
2M

0(0) = Y ch((), (26)
i=1
2M

¢"(0) = Y dp({). @7
i=1

Eq. (24) is integrated to yield the corresponding values
of F”({), F"({), F({), and F({).

¥ 1
F"() = Y afp({) - ZCi,l]; (28)
i=1
e 1
PO = Y - 1) 29
i=1
2M 1 (2
F(0) = Yafps) - Z?Cm], 30)
i=1
2M 1 (3
F(O) = Y ap) - Z?Ci’l]' (3D
i=1

Let (L) stand for a large number. Egs. (24)-(31) can be
substituted into Egs. (9)-(12) to obtain a numerical solution
for the ordinary differential equations. The following part
presents a graphical depiction of the results obtained from
the suggested solution.

4 Results and discussion

The influence of the magnetic field strength on F’({) and
G’({) is seen in Figure 3. Results from this graphic illustrate
that, for a given increasing parameter (M), there is a
noticeable decrease in the boundary-layer thickness and
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Figure 3: Evolutions of “M” on F'({) and G'({).

the velocity profile strength represented by the letters
F’(¢) and G’(¢). This phenomenon has a physical basis,
although a conductive fluid reacts to a magnetic field by
having the ability to flow electricity, and the magnetic
force acting within the boundary layer prevents the fluid
from moving and causes it to slow down. In conclusion, the
magnetic field regulates the gap between the boundary
layers.

The impact of the ratio parameter on F’({) and G’({) is
observed in Figure 4. The current phenomenon is reduced
to 2D flow when a = 0, while the problem is turned down
to axisymmetric flow when a = 1. In addition, as seen in
Figure 4, the velocity F’({) falls, while it G’({) increases as
the ratio parameter rises.

Figures 5 and 6 show that increasing the stretching
ratio rate decreases temperature 6({) and nanoparticle
concentration profile ¢({). Results show that magnetic
field strength raises nanofluid temperature and concentra-

tion. Magnetic parameter increases dimensionless
M =0.5,A=3,N; =Ny =0.3,Pr =0.72,5¢=0.24,8i=0.1
LoFT ; : . :
Blue Lines=F'(¢)
osk. Orange Dashed Lines = G'(s")
S o
) @=01,03,05,0.7
L 04
0.2
oo, ‘ . . .
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Evolutions of “a” on F'({) and G'({).
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Figure 5: Evolutions of “M” and “a” on 6({).

A=3,N; =Np=0.3,Pr =0.72,5¢=0.24,Bi=0.1

1.0[%

(Blue)a = 0.3
(Orange)a = 0.5
(Black)a = 0.8

#(<)

0.8 1.0
Figure 6: Evolutions of “M” and “a” on ¢({).

temperature and nano-concentration profiles. Heat is pro-
duced because the Lorentz force resists fluid motion. More
required magnetic fields thicken thermal and nanoparticle
volume fraction boundary layers.

0(¢) and ¢({) over the sheet are graphically repre-
sented in Figures 7 and 8, respectively, showing the effects
of changing the thermophoretic parameters (N;) and Brow-
nian motion parameter Nb values. A fascinating physical
finding is revealed: an increase in the thermophoretic
parameter (IV;) causes the thickness of the boundary layer
to increase for both dimensionless functions. This finding
clarifies the relationship between these parameters and
the complex dynamics controlling the system. The thermo-
phoretic force of a temperature gradient causes the flow to
be accelerated away from the stretching surface. By doing
so, heat is transferred from the surface, and (N;) is raised.
Figure 8 shows the thermophoretic influence of (\;) on
nanoparticle volume fraction ¢({). As Nb grows, the nano-
particle volume fraction or concentration profile ¢({)
decreases.
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a=0.5,A=3,M=0.5,Pr=0.72,5¢=0.24,Bi=0.1
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Figure 7: Evolutions of “Nt” and “Nb” on 6({).

Temperature and nano-concentration distributions as
a function of the local Biot number (Bi) for varying tem-
perature exponent parameter (A) values are depicted in
Figures 9 and 10, respectively. It is shown that as (A) rises,
so do the temperature and concentration profiles. The con-
dition A = -1 cannot be the adiabatic case due to two more
events in the energy equation. It has been noted that as the
Biot number rises, so do the temperature and concentra-
tion profiles. The Biot number physically refers to the ratio
of surface convection to internal conduction. Moreover, as
the Biot number grows, so does the convection at the sur-
face, causing an increase in surface temperature.

The impact of (Pr) and (Sc) on 6({) the temperature
profile is depicted in Figure 11. The thermal concentration
is more important than the concentration for fluids with
low Prandtl numbers, like electrolyte solutions. We find
that a decrease in thermal diffusivity is correlated with
an increase in the Prandtl number (Pr), which in turn
causes the thermal boundary layer to thin simultaneously.
This decrease is consistent with a higher heat transfer rate

@=0.5,A=3,M=0.5,Pr=0.72,5¢=0.24,Bi=0.1

100}

(Blue)Nb = 0.2
(Orange)Nb = 0.4
(Black)Nb = 0.8

0.8

0.6

#(<)

il Nt=01,03

0'0 C 1 1 1 1 1 1
0.0 0.2 04 0.6 0.8 1.0

£

Figure 8: Evolutions of “Nt” and “Nb” on ¢({).
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Figure 9: Evolutions of “Bi” and “A” on 6({).
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Figure 10: Evolutions of “Bi” and “A” on ¢({).
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Figure 11: Evolutions of “Pr” and “Sc” on 6({).

at the sheet interface. Furthermore, an interesting finding
occurs at higher Schmidt numbers (Sc): the temperature
distribution shows local aberrations, especially near the
stretched sheet. These results provide light on the complex
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Figure 12: Evolutions of “Pr” and “Sc” on ¢({).

thermal dynamics close to the boundary layer by high-
lighting the delicate interplay between Prandtl and Schmidt
numbers.

Figure 12 shows that larger values of (Sc) correspond
to a thinner concentration boundary layer due to a
smaller Brownian diffusion coefficient DB. When the
Prandtl number is large enough, the profiles show
that SGH occurs (even for positive values of (4) Just beyond
the stretching surface, ¢({), it slightly decreases, while Pr
slightly increases.

Table 1 displays a comparative examination of the
HWCM findings in respect to previously obtained results.
There is a clear and significant agreement between the two
sets of results, as seen by the commendable congruence in
values across several metrics. Tables 2 and 3 display the
-G”(0) and -F”(0) values obtained using the HWCM solu-
tions, respectively. These values are presented for various
combinations of (M) and (a). More precisely, when

Table 1: Wall temperature gradient comparison [34,36] represented
by 6'(0).B; = M = a = 0, Nt = Nb = 0.00001.

Pr A 0'(0)
[29] [31] Present HWCM
0 -0.54964375 -0.549641 -0.549643407
1 -0.95478270 -0.954763 -0.9547826971
3 -1.56029540 -1.560175 -1.5605674022
5 -1.5 1.35324050 1.353250 1.3532405205
0 -1.52123900 -1.521662 -1.5212389982
1 -2.50013157 -2.500653 -2.5001315727
3 -3.88655510 -3.886678 -3.8866541019
10 -1.5 2.20002816 2.200456 2.2009643651
0 -2.25742372 -2.259142 -2.25745437184
1 -3.66037218 -3.662782 -3.6605671782
3 -5.62819631 -5.630445 -5.62816053101
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Table 2: Link between the parameters, Pr = 0.5, Sc = 0.2, B; = 0.1,
and A = 2.5, by showing numerical values of G"(0) at the sheet’s surface
that correspond to different combinations of (M) and (a).

M a G”(0)
iteration HWCM
0 0.5 89 0.784943489
0.5 34 0.8621073370
1.0 25 0.9324605413
1.5 21 0.9976634541
2.0 18 1.0587435990
0.5 0.6 31 1.0627548401
0.7 29 1.2719543637
0.8 26 1.4894654082
0.9 28 17146934784

Table 3: Link between the parameters, Pr = 0.5, Sc = 0.2, Bi = 0.1,
and A = 2.5, by showing numerical values of F"(0) at the sheet’s surface
that correspond to different combinations of (M) and (a)

M a F”(0)
Iteration HWCM
0 0.5 89 1.5698884578
0.5 0.6 34 1.7242436741
1.0 0.7 25 1.8643610826
1.5 0.8 21 1.9953271033
2.0 0.9 18 2.1176791980
0.5 31 1.7712565668
0.6 29 1.8170650624
0.7 26 1.8617663102
0.8 28 1.9053449760

keeping (a) a constant value of 0.5, an increase in (M)
results in an increase in both -G”(0) and -F”(0). Similarly,
keeping (M) constant at a value of 0.5 shows that increasing
the parameter results in the improvement of both -G”(0)
and -F”(0).

5 Conclusion

The investigations that came before are prompted, in large
part, by the features of the MHD flow of nanofluid over a
stretching sheet under convective conditions. These char-
acteristics have been investigated in great detail. Following
the transformation of the governing equations into a system
of coupled nonlinear differential equations, a novel method
known as the HWCM was applied to find a solution to the
equations. The proposed approach is highly adaptable in
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dealing with irregular domains and providing localized,
multiresolution solutions. Nevertheless, one should take
into account the susceptibility of the system to the Gibbs
phenomenon, its restricted smoothness, and the potential
difficulties arising from nonlinearities and slower conver-
gence rates. When studying the MHD flow model over an
exponentially stretched sheet with convective heating, it is
important to pay attention to accurately capturing magnetic
fields, fluid dynamics, and temperature distributions.
Ensuring numerical stability, verifying against estab-
lished solutions, and mitigating potential thermal instabil-
ities are essential for achieving precise and dependable out-
comes in this particular application.

When the temperature exponent (A) is decreased to
specific negative values, the profile of the temperature
increases. As a result, the parameters’ effect on the tem-
perature gradient along the wall is reversed when A = -1,
relative to the case when A > 0. The temperature rises as
the Brownian motion parameter (Nb) rises, but the con-
centration of nanoparticles falls.
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