

Research Article

Azzh Saad Alshehry, Humaira Yasmin*, Ahmed A. Khammash, and Rasool Shah

Numerical analysis of dengue transmission model using Caputo–Fabrizio fractional derivative

<https://doi.org/10.1515/phys-2023-0169>
received July 29, 2023; accepted December 11, 2023

Abstract: This study demonstrates the use of fractional calculus in the field of epidemiology, specifically in relation to dengue illness. Using noninteger order integrals and derivatives, a novel model is created to examine the impact of temperature on the transmission of the vector–host disease, dengue. A comprehensive strategy is proposed and illustrated, drawing inspiration from the first dengue epidemic recorded in 2009 in Cape Verde. The model utilizes a fractional-order derivative, which has recently acquired popularity for its adaptability in addressing a wide variety of applicable problems and exponential kernel. A fixed point method of Krasnoselskii and Banach is used to determine the main findings. The semi-analytical results are then investigated using iterative techniques such as Laplace–Adomian decomposition method. Computational models are utilized to support analytical experiments and enhance the credibility of the results. These models are useful for simulating and validating the effect of temperature on the complex dynamics of the vector–host interaction during dengue outbreaks. It is essential to note that the research draws on dengue outbreak studies conducted in various geographic regions, thereby providing a broader perspective and validating the findings generally. This study not only demonstrates a novel application of fractional calculus in epidemiology but also casts light on the complex relationship between temperature

and the dynamics of dengue transmission. The obtained results serve as a foundation for enhancing our understanding of the complex interaction between environmental factors and infectious diseases, leading the way for enhanced prevention and control strategies to combat global dengue outbreaks.

Keywords: fractional calculus, epidemic model, Caputo–Fabrizio derivative, numerical method, dynamical behavior

1 Introduction

The Dengue transmission model using the Caputo–Fabrizio fractional derivative has potential applications in several areas of physics and epidemiology. Physically, the model contributes to the understanding of infectious disease dynamics, specifically in the context of dengue transmission. It aids in predicting the spread and impact of the disease within a population, considering the fractional-order nature of the derivative. The application extends to public health and epidemiology, assisting in the development of strategies for disease control and prevention. Furthermore, the fractional derivative introduces a mathematical tool that allows for a more nuanced representation of complex phenomena, enabling researchers to capture noninteger order dynamics inherent in certain systems. This mathematical framework has broader implications for studying various physical processes characterized by fractional dynamics, such as anomalous diffusion or complex fluid flow, beyond the immediate context of infectious disease modeling [1–5]. In recent years, various scientific studies have delved into multidisciplinary domains, exploring diverse aspects from vaccination effectiveness assessment using theoretical models [6] to iterative algorithms for solving sparse problems in video technology [7]. The dynamic shifts in corporate social responsibility efficiency amidst the COVID-19 pandemic have been meticulously studied in the Chinese food industry [8], along with insightful analyses of virus disease models and transmission

* Corresponding author: **Humaira Yasmin**, Department of Basic Sciences, General Administration of Preparatory Year, King Faisal University, Al-Ahsa, 31982, Saudi Arabia, e-mail: hhassain@kfu.edu.sa

Azzh Saad Alshehry: Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia, e-mail: asalshihry@pnu.edu.sa

Ahmed A. Khammash: Department of Mathematics, Deanship of Applied Sciences Umm Al-Qura University, Makkah, Saudi Arabia, e-mail: aakkhammash@uqu.edu.sa

Rasool Shah: Department of Mathematics, Abdul Wali University, Mardan, Pakistan, e-mail: shahrasool26@gmail.com

trend predictions [9]. These studies reflect the broad spectrum of research endeavors addressing critical issues ranging from public health implications to technological advancements, presenting a comprehensive landscape for scientific exploration and problem-solving [10].

Dengue fever has been more common in recent decades, putting an estimated 40% of the world's population at risk. This extraordinary population expansion, expanding urbanization without appropriate home water sources, increasing transfer of the virus among people, and a lack of efficient mosquito control have all contributed to this global pandemic [11–17]. Infected *Aedes* mosquitoes, especially *Aedes aegypti* bite people and spread the dengue virus. Once a mosquito has been infected, it will carry the virus, infecting anybody it feeds on who is vulnerable to the disease. Due to the lack of a vaccine, the sole method of combating dengue fever is the elimination of potential vectors. Disease transmission mechanisms may be better understood with the use of suitable mathematical models [18–20]. Standard epidemiological models use classical derivatives of integer order. We suggest generalized fractional derivatives for this purpose. Despite a lengthy history as a pure field of mathematics, fractional calculus (calculus of noninteger order) has only lately been demonstrated to be valuable as a practical tool [21]. In this study, we argue that fractional calculus may be a useful tool for building epidemiological model. We start by thinking about a basic epidemiological model that may be used to describe a dengue fever outbreak. The remainder of the study is devoted to explaining fractional derivatives in the Riemann–Liouville sense, recasting the dynamics of the classical model in terms of fractional derivatives and then using a new approximation approach to calculate numerical solutions to the fractional model [22–26]. Comparing these alternative models with the traditional systems through numerical simulations reveals that the former may be a more accurate representation of reality.

To accurately describe and effectively halt the spread of (epidemic/pandemic) illnesses, more in-depth knowledge of mathematical models is required. The spread of vector-borne illnesses poses a serious risk to both the health of humans and animals. Many demographic, ecological, and societal variables come into play when determining the geographic range of a disease vector. More than 700,000 fatalities each year are attributed to vector-borne illnesses, which account for about 17% of all viral infections. Dengue fever is a severe, flu-like disease that mostly affects people living in urban and semi-urban regions in nations with subtropical and tropical climates [27,28]. Although there is currently no cure for dengue fever, it can be effectively treated, and the fatality rate

can be brought down to around 1% by early diagnosis and intervention. Female *Aedes aegypti* mosquitoes are primarily responsible for transmitting the dengue virus from infected vectors to susceptible hosts *via* their bites. A mosquito infected with the dengue virus may spread the disease for the entirety of its life after just 410 days of incubation [28]. An adult mosquito completes the life cycle after four stages (egg, larva, pupa, and adult). The larvae, pupae, and adult all spend their time in water, but the adult is a lively, flying bug. Only the female mosquito will bite, and only if she needs to feed on human or animal blood.

Some strong and suitable mathematical analyses have been proposed [18,20,29–38] for maintaining dengue control. A model for the dynamic analysis of the spread of dengue fever using a nonlinear rate of recovery was created by Abdelrazec *et al.* [38] to examine the transfer and control of the illness. Esteva and Yang [32] developed a mathematical model for dengue to trace the spread of two epidemic illnesses across distinct human populations. Stability analysis provides an explanation for the reproduction number R as an epidemic threshold quantity. According to their simulations, ecological management as a means of vector control is insufficient at best and at worst would only serve to stall the progression of infectious diseases temporarily. Using a vaccination may provide concurrent control against certain serogroups. The assumptions for parameter threshold values and control methods in deterministic models of dengue transmission are reviewed by Andraud *et al.* [39]. The epidemiological influence of seasonal variations in temperature and other climatic factors on the transmission dynamics of dengue infections has been the subject of recent experimental research (e.g., see [40]) and mathematical calculations [41–44]. These sources conduct their mathematical analysis by using compartmental integer-order epidemic models, which include an ODE system. However, in most cases, memory is not required in integer-order systems [45–49].

2 Evaluation of dengue fever

Let us say N_h and N_v stand for the total number of hosts and vectors, respectively. The male mosquito N_h population is divided into the classes of susceptibility $A(t)$, partial immunity $B(t)$, infection $C(t)$, carrier $D(t)$, and recovery $E(t)$ in the model's formulation, while the female mosquito N_v population is divided into the classes of susceptibility $F(t)$ and infectious $G(t)$ in the same way. A bite from an infection caused by mosquitoes, for instance, may transmit

dengue illness to an unwary person. The susceptibility of hosts, the infectiousness of illnesses, the bitten frequency of vectors, and the likelihood of transmission all play a role in establishing the infectiousness of a given host and vector population. In order to calculate the rate of infection per vector that is susceptible $F(t)$ and host $A(t)$, we use the formulae $\left(\frac{b\beta_v}{N_h}(C + D)\right)$ and $\left(\frac{b\beta_{h1}}{N_h}C\right)$. In contrast, per susceptible $B(t)$, we use the formula $\left(\frac{b\beta_v}{N_h}G\right)$ with $\beta_{h2} < \beta_{h1}$. We hypothesize that some infected individuals are symptom-free carriers (asymptomatic) and that some recovered individuals (R_h) become vulnerable to the illness once again. Assuming a negligible death rate induced by infection on hosts, the natural birth rate of the vector and host, denoted as μ_v and μ_h , respectively, are taken into account. The ordinary differential equations (ODEs) describing dengue infection are given as follows:

$$\begin{cases} \frac{dA(t)}{dt} = \mu_h N_h - \frac{\beta h 1^b}{N_h} AG - p A - \mu_h A \\ \frac{dB(t)}{dt} = v E - \frac{\beta h 2^b}{N_h} BG - \mu_h B \\ \frac{dC(t)}{dt} = (1 - \psi) - \frac{\beta h 1^b}{N_h} AG + (1 - \psi) \frac{\beta h 2^b}{N_h} BG \\ \quad - (\mu_h + \tau + \gamma) C \\ \frac{dD(t)}{dt} = \psi \frac{\beta_{h1}^b}{N_h} AG + \psi \frac{\beta_{h1}^b}{N_h} BG - (v + \mu_h) R_h \\ \frac{dE(t)}{dt} = p A + \gamma(C + D) + \tau C - (\psi + \mu_h) - E \\ \frac{dF(t)}{dt} = \mu_v N_v - \frac{\beta_v^b}{N_h} (C + D) F - \mu_v F \\ \frac{dG(t)}{dt} = \frac{\beta_v^b}{N_h} (C + D) F - \mu_v G, \end{cases} \quad (1)$$

given the vector's proper initial condition

$$F(0) \geq 0, \quad G(0) \geq 0$$

and the host's proper initial condition

$$A(0) \geq 0, \quad B(0) \geq 0, \quad C(0) \geq 0, \quad D(0) \geq 0, \quad E(0) \geq 0,$$

moreover, the host and vector's strengths are described as follows:

$$N_v = F + G, \quad N_h = A + B + C + D + E.$$

Incorporating both current and historical data into fractional-order models has been proven to accurately depict the nonlocal behavior of biological systems. We use a fractional-order Liouville-derivative framework to describe

the dynamical system underlying dengue infection transmission. Caputo [50–52] more correctly described their fractional system by retaining a constant dimension on both sides of the system; we did the same to offer a more accurate description. So, the previously described dengue system's fractional Liouville–Caputo derivative is

$$\begin{cases} {}^{LC}D_t^\vartheta A(t) = \mu_h^\vartheta N_h - \frac{\beta h 1^b}{N_h} AG - p^\vartheta A - \mu_h^\vartheta A \\ {}^{LC}D_t^\vartheta B(t) = v^\vartheta E - \frac{\beta h 2^b}{N_h} BG - \mu_h^\vartheta B \\ {}^{LC}D_t^\vartheta C(t) = (1 - \psi) - \frac{\beta h 1^b}{N_h} AG + (1 - \psi) \frac{\beta h 2^b}{N_h} BG \\ \quad - (\mu_h^\vartheta + \tau^\vartheta + \gamma^\vartheta) C \\ {}^{LC}D_t^\vartheta D(t) = \psi \frac{\beta_{h1}^b}{N_h} AG + \psi \frac{\beta_{h1}^b}{N_h} BG - (v^\vartheta + \mu_h^\vartheta) D \\ {}^{LC}D_t^\vartheta E(t) = p^\vartheta A + \gamma^\vartheta(C + D) + \tau^\vartheta C - (\psi^\vartheta + \mu_h^\vartheta) \\ \quad - E \\ {}^{LC}D_t^\vartheta F(t) = \mu_v^\vartheta N_v - \frac{\beta_v^b}{N_h} (C + D) F - \mu_v^\vartheta F \\ {}^{LC}D_t^\vartheta G(t) = \frac{\beta_v^b}{N_h} (C + D) F - \mu_v^\vartheta G, \end{cases} \quad (2)$$

where ${}^{LC}D_t^\vartheta$ represents fractional derivative (of Liouville and Caputo) of ϑ and ϑ represents the memory index of the system.

3 Basic definitions

Within the domain of this research area, we will elucidate a range of essential concepts.

Definition 1. Suppose $\xi \in \mathcal{H}^1(a, b)$ with $b > a$ and $\varphi \in (0, 1)$; under these conditions, the provided Caputo–Fabrizio fractional derivative (CFFD) can be expressed as [53,54]:

$${}^{CF}D_t^\varphi \xi(t) = \frac{\kappa(\varphi)}{1 - \varphi} \int_a^t \xi'(\Phi) \exp\left[-\frac{t - \Phi}{1 - \varphi}\right] d\Phi. \quad (3)$$

The function $\kappa(\varphi)$ in Eq. (3) is chosen such that $\kappa(1) = \kappa(0) = 1$. Furthermore, if ξ does not belong to $\mathcal{H}^1(a, b)$, the equation undergoes a transformation, resulting in

$${}^{CF}D_t^\varphi \xi(t) = \frac{\kappa(\varphi)}{1 - \varphi} \int_a^t \xi(t) - \xi(\Phi) \exp\left[-\frac{t - \Phi}{1 - \varphi}\right] d\Phi.$$

Definition 2. Consider $\varphi \in (0, 1]$ and let us denote the integral of the function ξ to the fractional order φ as [53,54]:

$${}_{0}^{CF}I_t^{\varphi}\xi(t) = \frac{(1 - \varphi)}{\kappa(\varphi)}\xi(t) + \frac{\varphi}{\kappa(\varphi)} \int_0^t \xi(\Phi) d\Phi.$$

Lemma 1. An issue that arises with the CFFD is [53,54]

$$\begin{cases} {}_{0}^{CF}D_t^{\varphi}\xi(t) = z(t), & 0 < \varphi \leq 1, \\ \xi(0) = \xi_0, & \text{where } \xi \text{ is real constant.} \end{cases}$$

Alternatively, this can be expressed as being equivalent to the integral as follows:

$$\xi(t) = \xi_0 + \frac{1 - \varphi}{\kappa(\varphi)}\xi(t) + \frac{\varphi}{\kappa(\varphi)} \int_0^t \xi(\Phi) d\Phi.$$

Definition 3. [37,55] CFFD's Laplace transform is ${}_{0}^{CF}I_t^{\varphi}$ and $\varphi \in (0, 1]$ of $M(t)$ is given as follows:

$$L[{}_{0}^{CF}I_t^{\varphi}M(t)] = \frac{sL[M(t)] - M(0)}{s + \varphi(1 - s)}.$$

4 Dengue fever model of fractional order: existence and uniqueness results

To establish the existence of at least one solution to the model, we utilize the theorems of Banach and Krasnoselskii.

$$\begin{cases} f_1(t, A, B, C, D, E, F) = \mu_h N_h - \frac{\beta h 1^b}{N_h} AG - pA - \mu_h A \\ f_2(t, A, B, C, D, E, F) = v^{\vartheta} E - \frac{\beta h 2^b}{N_h} BG - \mu_h^{\vartheta} B \\ f_3(t, A, B, C, D, E, F) = (1 - \psi) - \frac{\beta h 1^b}{N_h} AG \\ + (1 - \psi) \frac{\beta h 2^b}{N_h} BG - (\mu_h^{\vartheta} + \tau^{\vartheta} + \gamma^{\vartheta}) C \\ f_4(t, A, B, C, D, E, F) = \psi \frac{\beta_{h1}^{\vartheta}}{N_h} AG + \psi \frac{\beta_{h1}^b}{N_h} BG \\ - (v^{\vartheta} + \mu_h^{\vartheta}) D \\ f_5(t, A, B, C, D, E, F) = p^{\vartheta} A + \gamma^{\vartheta} (C + D) \\ + \tau^{\vartheta} C - (\psi^{\vartheta} + \mu_h^{\vartheta}) - E \\ f_6(t, A, B, C, D, E, F) = \mu_v^{\vartheta} N_v - \frac{\beta_v^b}{N_h} (C + D) F - \mu_v^{\vartheta} F \\ f_7(t, A, B, C, D, E, F) = \frac{\beta_v^b}{N_h} (C + D) F - \mu_v^{\vartheta} G, \end{cases} \quad (4)$$

where

$$A(0) = N_1, \quad B(0) = N_2, \quad C(0) = N_3, \quad D(0) = N_4,$$

$$E(0) = N_5, \quad F(0) = N_6, \quad G(0) = N_7.$$

So our problem becomes

$$\begin{cases} {}_{0}^{LC}D_t^{\vartheta}A(t) = f_1(t, A, B, C, D, E, F), \\ {}_{0}^{LC}D_t^{\vartheta}B(t) = f_2(t, A, B, C, D, E, F), \\ {}_{0}^{LC}D_t^{\vartheta}C(t) = f_3(t, A, B, C, D, E, F), \\ {}_{0}^{LC}D_t^{\vartheta}D(t) = f_4(t, A, B, C, D, E, F), \\ {}_{0}^{LC}D_t^{\vartheta}E(t) = f_5(t, A, B, C, D, E, F), \\ {}_{0}^{LC}D_t^{\vartheta}F(t) = f_6(t, A, B, C, D, E, F), \\ {}_{0}^{LC}D_t^{\vartheta}G(t) = f_7(t, A, B, C, D, E, F), \end{cases} \quad (5)$$

where

$$A(0) = N_1, \quad B(0) = N_2, \quad C(0) = N_3, \quad D(0) = N_4,$$

$$E(0) = N_5, \quad F(0) = N_6, \quad G(0) = N_7.$$

Here, we consider

$$W(t) = \begin{bmatrix} A \\ B \\ C \\ D \\ E \\ F \\ G \end{bmatrix}, \quad W_0 = \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_5 \\ N_6 \\ N_7 \end{bmatrix},$$

$$F(t, W(t)) = \begin{bmatrix} f_1(t, W(t)) \\ f_2(t, W(t)) \\ f_3(t, W(t)) \\ f_4(t, W(t)) \\ f_5(t, W(t)) \\ f_6(t, W(t)) \\ f_7(t, W(t)) \end{bmatrix}.$$

Hence, we can express system (5) as follows:

$$\begin{cases} {}_{0}^{LC}D_t^{\vartheta}W_t = F(t, W(t)), & 0 < \varphi \leq 1, \\ W(0) = W_0, \end{cases} \quad (6)$$

Lemma 1 provides the solution to Eq. (6) if and only if the right side evaluates at zero.

$$W(t) + W_0 + X F(t, W(t)) + \bar{X} \int_0^t F(\xi, W(\Phi)) d\Phi \quad \text{where} \\ X = \frac{1 - \varphi}{\kappa(\varphi)},$$

$$\text{and } \bar{X} = \frac{\varphi}{\kappa(\varphi)}.$$

To facilitate further analysis, we will define the Banach space $\mathcal{D} = L[0, T]$ by specifying the norm of \mathcal{D} on the interval $0 < t \leq T < \infty$.

$$\|W\| = \sup_{t \in [0, T]} \{|W(t)| : W \in \mathcal{D}\} \quad (7)$$

Theorem 1. (Krasnoselskii fixed point theorem) Suppose $\mathcal{D} \subset \mathcal{X}$ is a convex and closed subset, and consider two operators \mathcal{A} and \mathcal{B} such that

- (1) $\mathcal{A}W_1 + \mathcal{B}W_2 \in \mathcal{D}$;
- (2) \mathcal{B} is continuous and compact, while \mathcal{A} is contraction;
- (3) \exists at least one fixed point W , such that $\mathcal{A}W + \mathcal{B}W = W$ hold.

The following statement holds:

(\mathcal{H}_1) Assume $\kappa_F > 0$ is a given constant, then

$$|F(t, W(t)) - F(t, \bar{W}(t))| \leq \kappa_F |W - \bar{W}|,$$

(\mathcal{H}_2) Let $C_F > 0$ and $\mathcal{M}_F > 0$ be two constants. In this case, we have the following relationship:

$$|F(t, W)| \leq C_F |W| + \mathcal{M}_F.$$

Theorem 2. Thanks to Theorem 4.1, If $G\kappa_F < 1$, then the problem defined by Eqs (4) and (7) has at least one solution.

Proof. Suppose we intend to define the set \mathcal{D} as a set that possesses both compact and closed. $\mathcal{D} = \{W \in \mathcal{X} : \|W\| \leq r\}$. Consider the operators \mathcal{A} and \mathcal{B} , then we have the following:

$$\begin{aligned} \mathcal{A}W(t) &= W_0 + GF(t, W(t)) \\ \mathcal{B}W(t) &= \bar{G} \int_0^t F(\xi, W(\xi)) d\xi. \end{aligned} \quad (8)$$

Let W and \bar{W} belong to \mathcal{X} for the contraction condition of \mathcal{A} defined in Eq. (8). In this case, we can observe the following relationship:

$$\begin{aligned} \|\mathcal{A}W - \mathcal{A}\bar{W}\| &= \sup_{t \in [0, T]} |\mathcal{A}W(t) - \mathcal{A}\bar{W}(t)| \\ &= \sup_{t \in [0, T]} |G| |F(t, W(t)) - F(t, \bar{W}(t))| \quad (9) \\ &\leq G\kappa_F [||W - \bar{W}||], \end{aligned}$$

thus \mathcal{A} is contraction. For compactness of \mathcal{B} , consider

$$\begin{aligned} |\mathcal{B}W(t)| &= \left| \bar{G} \int_0^t F(\Phi, W(\Phi)) d\Phi \right| \\ &\leq \bar{G} \int_0^t |F(\Phi, W(\Phi))| d\Phi. \end{aligned} \quad (10)$$

Taking max of Eq. (10), we have

$$\begin{aligned} \|\mathcal{B}W\| &\leq \bar{G} \sup_{t \in [0, T]} \int_0^t |F(\Phi, W(\Phi))| d\Phi \\ &\leq \bar{G} \sup_{t \in [0, T]} \int_0^t [C_F \|W\| + \mathcal{M}_F] d\Phi \\ &\leq \bar{G} T (C_F r + \mathcal{M}_F). \end{aligned} \quad (11)$$

Consequently, \mathcal{B} is bounded in Eq. (11). Assuming the domain of t is $t_1 < t_2$, we obtain the following:

$$\begin{aligned} |\mathcal{B}W(t_2) - \mathcal{B}W(t_1)| &= \left| \bar{G} \int_0^{t_2} F(\Phi, W) d\Phi \right. \\ &\quad \left. - \bar{G} \int_0^{t_1} F(\Phi, W) d\Phi \right| \\ &= \left| \bar{G} \int_0^{t_2} F(\Phi, W) d\Phi \right. \\ &\quad \left. + \bar{G} \int_{t_1}^0 F(\Phi, W(\Phi)) d\Phi \right| \\ &\leq \bar{G} \int_{t_1}^{t_2} |F(\Phi, W)| d\Phi \\ &\leq \bar{G} (C_F r + \mathcal{M}_F). \end{aligned} \quad (12)$$

Upon $t_2 \rightarrow t_1$, the right side of Eq. (12) tends to zero. In addition, \mathcal{B} is uniformly bounded, so

$$|\mathcal{B}W(t_2) - \mathcal{B}W(t_1)| \rightarrow 0.$$

Thus, satisfying all the assumptions of Theorem 1, the analyzed model (Eq. (6)), possesses at least one solution due to the complete continuity of \mathcal{B} . \square

Theorem 3. Considering (\mathcal{H}_1), if $\bar{G}F(1 + T) < 1$ is satisfied, then there exists a unique solution to the problem presented in Eq. (6). Consequently, the model (4) possesses at most one solution.

Proof. Let $\mathcal{P} : \mathcal{X} \rightarrow \mathcal{X}$ be an operator defined as follows:

$$\mathcal{P}W(t) = W_0 + GF(t, W(t)) + \bar{G} \int_0^t F(\Phi, W(\Phi)) d\Phi.$$

Let $W, \bar{W} \in \mathcal{X}$, then

$$\begin{aligned}
\|\mathcal{P}(W) - \mathcal{P}(\bar{W})\| &= \sup_{t \in [0, T]} |\mathcal{P}(W)(t) - \mathcal{P}(\bar{W})(t)| \\
&\leq \sup_{t \in [0, T]} |F(t, W(t)) - F(t, \bar{W}(t))| \\
&\quad + \bar{G} \sup_{t \in [0, T]} \int_0^t |(F(\Phi, W(\Phi))) \\
&\quad - F(\Phi, (\bar{W}(\Phi)))| d\Phi \\
&\leq \bar{G} \kappa_F \|W - \bar{W}\| + G K_F T \|W - \bar{W}\|,
\end{aligned}$$

which suggests that

$$\|\mathcal{P}(W - \mathcal{P}(\bar{W}))\| \leq \bar{G} \kappa_F (1 + T) \|W - \bar{W}\|. \quad (13)$$

Therefore, the problem stated in Eq. (6) can have a maximum of one solution, implying that model (5) possesses a unique solution. \square

5 Developing a generic algorithm to solve the model under consideration

Setting $\kappa(\varphi) = 1$ and applying the Laplace transform yields the series-type solution to the issue. It is thus possible to construct the following algorithm:

$$\begin{aligned}
\frac{s \mathcal{L}[A(t)] - A(0)}{s + \varphi(1 - s)} &= \left[\mu_h^{\vartheta} N_h - \frac{\beta h 1^{\vartheta}}{N_h} AG - p^{\vartheta} A - \mu_h^{\vartheta} A \right] \\
\frac{s \mathcal{L}[B(t)] - B(0)}{s + \varphi(1 - s)} &= \left[v^{\vartheta} E - \frac{\beta h 2^{\vartheta}}{N_h} BG - \mu_h^{\vartheta} B \right] \\
\frac{s \mathcal{L}[C(t)] - C(0)}{s + \varphi(1 - s)} &= \left[(1 - \psi) - \frac{\beta h 1^{\vartheta}}{N_h} AG \right. \\
&\quad \left. + (1 - \psi) \frac{\beta h 2^{\vartheta}}{N_h} BG \right] \\
&\quad - [(\mu_h^{\vartheta} + \tau^{\vartheta} + \gamma^{\vartheta}) C] \\
\frac{s \mathcal{L}[D(t)] - D(0)}{s + \varphi(1 - s)} &= \left[\psi \frac{\beta_{h1}^{\vartheta}}{N_h} AG + \psi \frac{\beta_{h1}^{\vartheta}}{N_h} BG \right. \\
&\quad \left. - (v^{\vartheta} + \mu_h^{\vartheta}) D \right] \quad (14)
\end{aligned}$$

$$\frac{s \mathcal{L}[E(t)] - E(0)}{s + \varphi(1 - s)} = [p^{\vartheta} A + \gamma^{\vartheta} (C + D) + \tau^{\vartheta} C$$

$$- (\psi^{\vartheta} + \mu_h^{\vartheta}) - E]$$

$$\frac{s \mathcal{L}[F(t)] - F(0)}{s + \varphi(1 - s)} = \left[\mu_v^{\vartheta} N_v - \frac{\beta_v^{\vartheta}}{N_h} (C + D) F - \mu_v^{\vartheta} F \right]$$

$$\frac{s \mathcal{L}[G(t)] - G(0)}{s + \varphi(1 - s)} = \left[\frac{\beta_v^{\vartheta}}{N_h} (C + D) F - \mu_v^{\vartheta} G \right]$$

$$\begin{aligned}
\mathcal{L}[A(t)] &= \frac{A(0)}{S} + \frac{s + \varphi(1 - s)}{S} \mathcal{L} \left[\mu_h^{\vartheta} N_h - \frac{\beta h 1^{\vartheta}}{N_h} AG \right. \\
&\quad \left. - p^{\vartheta} A - \mu_h^{\vartheta} A \right] \\
\mathcal{L}[B(t)] &= \frac{B(0)}{S} + \frac{s + \varphi(1 - s)}{S} \mathcal{L} \left[v^{\vartheta} E - \frac{\beta h 2^{\vartheta}}{N_h} BG \right. \\
&\quad \left. - \mu_h^{\vartheta} B \right] \\
\mathcal{L}[C(t)] &= \frac{C(0)}{S} + \frac{s + \varphi(1 - s)}{S} \mathcal{L} \left[(1 - \psi) \right. \\
&\quad \left. - \frac{\beta h 1^{\vartheta}}{N_h} AG + (1 - \psi) \frac{\beta h 2^{\vartheta}}{N_h} BG \right] \\
\mathcal{L}[D(t)] &= \frac{D(0)}{S} + \frac{s + \varphi(1 - s)}{S} \mathcal{L} \left[\psi \frac{\beta_{h1}^{\vartheta}}{N_h} AG \right. \\
&\quad \left. + \psi \frac{\beta_{h1}^{\vartheta}}{N_h} BG - (v^{\vartheta} + \mu_h^{\vartheta}) D \right] \\
\mathcal{L}[E(t)] &= \frac{E(0)}{S} + \frac{s + \varphi(1 - s)}{S} \mathcal{L} [p^{\vartheta} A + \gamma^{\vartheta} (C + D) \\
&\quad + \tau^{\vartheta} C - (\psi^{\vartheta} + \mu_h^{\vartheta}) - E] \\
\mathcal{L}[F(t)] &= \frac{F(0)}{S} + \frac{s + \varphi(1 - s)}{S} \mathcal{L} \left[\mu_v^{\vartheta} N_v \right. \\
&\quad \left. - \frac{\beta_v^{\vartheta}}{N_h} (C + D) F - \mu_v^{\vartheta} F \right] \\
\mathcal{L}[G(t)] &= \frac{G(0)}{S} + \frac{s + \varphi(1 - s)}{S} \mathcal{L} \left[\frac{\beta_v^{\vartheta}}{N_h} (C + D) F \right. \\
&\quad \left. - \mu_v^{\vartheta} G \right]. \quad (15)
\end{aligned}$$

Using the initial conditions of system (2):

$$\begin{aligned}
 \mathcal{L}[A(t)] &= \frac{N_1}{s} + \frac{s + \mathcal{G}(1-s)}{s} \mathcal{L} \left[\mu_h^{\vartheta} N_h - \frac{\beta h 1^{b^{\vartheta}}}{N_h} A G \right. \\
 &\quad \left. - p^{\vartheta} A - \mu_h^{\vartheta} A \right] \\
 \mathcal{L}[B(t)] &= \frac{N_2}{s} + \frac{s + \mathcal{G}(1-s)}{s} \mathcal{L} \left[v^{\vartheta} E - \frac{\beta h 2^{b^{\vartheta}}}{N_h} B G - \mu_h^{\vartheta} B \right] \\
 \mathcal{L}[C(t)] &= \frac{N_3}{s} + \frac{s + \mathcal{G}(1-s)}{s} \mathcal{L} \left[(1 - \psi) - \frac{\beta h 1^{b^{\vartheta}}}{N_h} A G \right. \\
 &\quad \left. + (1 - \psi) \frac{\beta h 2^{b^{\vartheta}}}{N_h} B G \right] \\
 \mathcal{L}[D(t)] &= \frac{N_4}{s} + \frac{s + \mathcal{G}(1-s)}{s} \mathcal{L} \left[\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} A G + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} B G \right. \\
 &\quad \left. - (\nu^{\vartheta} + \mu_h^{\vartheta}) D \right] \\
 \mathcal{L}[E(t)] &= \frac{N_5}{s} + \frac{s + \mathcal{G}(1-s)}{s} \mathcal{L} [p^{\vartheta} A + \gamma^{\vartheta} (C + D) \\
 &\quad + \tau^{\vartheta} C - (\psi^{\vartheta} + \mu_h^{\vartheta}) - E] \\
 \mathcal{L}[F(t)] &= \frac{N_6}{s} + \frac{s + \mathcal{G}(1-s)}{s} \mathcal{L} \left[\mu_v^{\vartheta} N_v \right. \\
 &\quad \left. - \frac{\beta_v^{b^{\vartheta}}}{N_h} (C F + D F) - \mu_v^{\vartheta} F \right] \\
 \mathcal{L}[G(t)] &= \frac{N_7}{s} + \frac{s + \mathcal{G}(1-s)}{s} \mathcal{L} \left[\frac{\beta_v^{b^{\vartheta}}}{N_h} (C F + D F) - \mu_v^{\vartheta} G \right].
 \end{aligned} \tag{16}$$

Now we calculate the series form solutions is given as, *i.e.*,

$$\begin{aligned}
 A(t) &= \sum_{n=0}^{\infty} A_n(t), \quad B(t) = \sum_{n=0}^{\infty} B_n(t), \quad C(t) = \sum_{n=0}^{\infty} C_n(t), \\
 D(t) &= \sum_{n=0}^{\infty} D_n(t), \quad E(t) = \sum_{n=0}^{\infty} E_n(t), \\
 F(t) &= \sum_{n=0}^{\infty} F_n(t), \quad G(t) = \sum_{n=0}^{\infty} G_n(t).
 \end{aligned}$$

The nonlinear terms AG , BG , CF , and DF decomposed in terms of Adomian polynomial as follows:

$$A(t)G(t) = \sum_{n=0}^{\infty} R_n(t),$$

where

$$R_n = \frac{1}{Y(n+1)} \frac{d^n}{d\varrho^n} \left[\left(\sum_{k=0}^n \varrho^k A_k \right) \left(\sum_{k=0}^n \varrho^k G_k \right) \right] \Bigg|_{\varrho=0}$$

$$\begin{aligned}
 n = 0 : R_0 &= A_0 G_0 \\
 n = 1 : R_1 &= A_0 G_1 + A_1 G_0 \\
 n = 2 : R_2 &= A_0 G_2 + A_1 G_1 + A_2 G_0 \\
 n = 3 : R_3 &= A_0 G_3 + A_1 G_2 + A_2 G_1 + A_3 G_0 \\
 n = 4 : R_4 &= A_0 G_4 + A_1 G_3 + A_2 G_2 + A_3 G_1 + A_4 G_0 \\
 &\vdots \\
 n = n : R_n &= A_0 G_n + A_1 G_{n-1} + \cdots + A_{n-1} G_1 + A_n G_0
 \end{aligned}$$

$$B(t)G(t) = \sum_{n=0}^{\infty} M_n(t),$$

where

$$M_n = \frac{1}{Y(n+1)} \frac{d^n}{d\varrho^n} \left[\left(\sum_{k=0}^n \varrho^k B_k \right) \left(\sum_{k=0}^n \varrho^k G_k \right) \right] \Bigg|_{\varrho=0}$$

$$\begin{aligned}
 n = 0 : M_0 &= B_0 G_0 \\
 n = 1 : M_1 &= B_0 G_1 + B_1 G_0 \\
 n = 2 : M_2 &= B_0 G_2 + B_1 G_1 + B_2 G_0 \\
 n = 3 : M_3 &= B_0 G_3 + B_1 G_2 + B_2 G_1 + B_3 G_0 \\
 n = 4 : M_4 &= B_0 G_4 + B_1 G_3 + B_2 G_2 + B_3 G_1 + B_4 G_0 \\
 &\vdots \\
 n = n : M_n &= B_0 G_n + B_1 G_{n-1} + \cdots + B_{n-1} G_1 + B_n G_0
 \end{aligned}$$

$$C(t)F(t) = \sum_{n=0}^{\infty} Q_n(t),$$

where

$$Q_n = \frac{1}{Y(n+1)} \frac{d^n}{d\varrho^n} \left[\left(\sum_{k=0}^n \varrho^k C_k \right) \left(\sum_{k=0}^n \varrho^k F_k \right) \right] \Bigg|_{\varrho=0}$$

$$\begin{aligned}
 n = 0 : Q_0 &= C_0 F_0 \\
 n = 1 : Q_1 &= C_0 F_1 + C_1 F_0 \\
 n = 2 : Q_2 &= C_0 F_2 + C_1 F_1 + C_2 F_0 \\
 n = 3 : Q_3 &= C_0 F_3 + C_1 F_2 + C_2 F_1 + C_3 F_0 \\
 n = 4 : Q_4 &= C_0 F_4 + C_1 F_3 + C_2 F_2 + C_3 F_1 + C_4 F_0 \\
 &\vdots \\
 n = n : Q_n &= C_0 F_n + C_1 F_{n-1} + \cdots + C_{n-1} F_1 + C_n F_0
 \end{aligned}$$

$$D(t)F(t) = \sum_{n=0}^{\infty} N_n(t),$$

where

$$N_n = \frac{1}{Y(n+1)} \frac{d^n}{d\varrho^n} \left[\left(\sum_{k=0}^n \varrho^k D_k \right) \left(\sum_{k=0}^n \varrho^k F_k \right) \right] \Bigg|_{\varrho=0}$$

$$\begin{aligned}
 n = 0 : N_0 &= D_0 F_0 \\
 n = 1 : N_1 &= D_0 F_1 + D_1 F_0 \\
 n = 2 : N_2 &= D_0 F_2 + D_1 F_1 + D_2 F_0 \\
 n = 3 : N_3 &= D_0 F_3 + D_1 F_2 + D_2 F_1 + D_3 F_0 \\
 n = 4 : N_4 &= D_0 F_4 + D_1 F_3 + D_2 F_2 + D_3 F_1 + D_4 F_0 \\
 &\vdots \\
 n = n : N_n &= D_0 F_n + D_1 F_{n-1} + \cdots + D_{n-1} F_1 + D_n F_0.
 \end{aligned}$$

Considering these values, model develops as follows:

$$\begin{aligned}
 & \left[\mathcal{L} \left[\sum_{k=0}^{\infty} A_k(t) \right] \right] = \frac{N_1}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L} \\
 & \left[\mu_h^{\vartheta} N_h - \frac{\beta h 1^{b^{\vartheta}}}{N_h} \sum_{k=0}^{\infty} R_k(t) - p^{\vartheta} \sum_{k=0}^{\infty} A_k(t) \right. \\
 & \quad \left. - \mu_h^{\vartheta} \sum_{k=0}^{\infty} A_k(t) \right] \\
 & \left[\mathcal{L} \left[\sum_{k=0}^{\infty} B_k(t) \right] \right] = \frac{N_2}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L} \\
 & \left[v^{\vartheta} \sum_{k=0}^{\infty} E_k(t) - \frac{\beta h 2^{b^{\vartheta}}}{N_h} \sum_{k=0}^{\infty} M_k(t) - \mu_h^{\vartheta} \sum_{k=0}^{\infty} B_k(t) \right] \\
 & \left[\mathcal{L} \left[\sum_{k=0}^{\infty} C_k(t) \right] \right] = \frac{N_3}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L} \\
 & \left[(1 - \psi) - \frac{\beta h 1^{b^{\vartheta}}}{N_h} \sum_{k=0}^{\infty} R_k(t) + (1 - \psi) \frac{\beta h 2^{b^{\vartheta}}}{N_h} \sum_{k=0}^{\infty} M_k(t) \right] \\
 & \left[\mathcal{L} \left[\sum_{k=0}^{\infty} D_k(t) \right] \right] = \frac{N_4}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L} \\
 & \left[\psi \frac{\beta h_1^{b^{\vartheta}}}{N_h} \sum_{k=0}^{\infty} R_k(t) + \psi \frac{\beta h_1^{b^{\vartheta}}}{N_h} \sum_{k=0}^{\infty} M_k(t) \right. \\
 & \quad \left. - (v^{\vartheta} + \mu_h^{\vartheta}) \sum_{k=0}^{\infty} D_k(t) \right] \\
 & \left[\mathcal{L} \left[\sum_{k=0}^{\infty} E_k(t) \right] \right] = \frac{N_5}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L} \\
 & \left[p^{\vartheta} \sum_{k=0}^{\infty} A_k(t) + \gamma^{\vartheta} \left(\sum_{k=0}^{\infty} C_k(t) + \sum_{k=0}^{\infty} D_k(t) \right) + \tau^{\vartheta} \sum_{k=0}^{\infty} C_k(t) \right. \\
 & \quad \left. - (\psi^{\vartheta} + \mu_h^{\vartheta}) - \sum_{k=0}^{\infty} E_k(t) \right] \\
 & \left[\mathcal{L} \left[\sum_{k=0}^{\infty} F_k(t) \right] \right] = \frac{N_6}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L} \\
 & \left[\mu_v^{\vartheta} N_v - \frac{\beta_v^{b^{\vartheta}}}{N_h} \left(\sum_{k=0}^{\infty} Q_k(t) + \sum_{k=0}^{\infty} N_k(t) \right) - \mu_v^{\vartheta} \sum_{k=0}^{\infty} F_k(t) \right] \\
 & \left[\mathcal{L} \left[\sum_{k=0}^{\infty} G_k(t) \right] \right] = \frac{N_7}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L} \\
 & \left[\frac{\beta_v^{b^{\vartheta}}}{N_h} \left(\sum_{k=0}^{\infty} Q_k(t) + \sum_{k=0}^{\infty} N_k(t) \right) - \mu_v^{\vartheta} \sum_{k=0}^{\infty} G_k(t) \right].
 \end{aligned} \tag{17}$$

Comparing the terms of Eq. (17), the following complications arise;

Case 1: If we set $n = 0$, then

$$\begin{aligned}
 \mathcal{L}[A_0(t)] &= \frac{N_1}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L}[\mu_h^{\vartheta} N_h] \\
 \mathcal{L}[B_0(t)] &= \frac{N_2}{s} \\
 \mathcal{L}[C_0(t)] &= \frac{N_3}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L}[(1 - \psi)] \\
 \mathcal{L}[D_0(t)] &= \frac{N_4}{s} \\
 \mathcal{L}[E_0(t)] &= \frac{N_5}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L}(\psi^{\vartheta} + \mu_h^{\vartheta}) \\
 \mathcal{L}[F_0(t)] &= \frac{N_6}{s} + \frac{s + \wp(1-s)}{s} \mathcal{L}[\mu_v^{\vartheta} N_v] \\
 \mathcal{L}[G_0(t)] &= \frac{N_7}{s}.
 \end{aligned} \tag{18}$$

Taking inverse Laplace transformation, and we obtain

$$\begin{cases}
 A_0(t) = N_1 + (\mu_h^{\vartheta} N_h)[1 + \wp(t-1)] \\
 B_0(t) = N_2 \\
 C_0(t) = N_3 + (1 - \psi)[1 + \wp(t-1)] \\
 D_0(t) = N_4 \\
 E_0(t) = N_5 + (\psi^{\vartheta} + \mu_h^{\vartheta})[1 + \wp(t-1)] \\
 F_0(t) = N_6 + (\mu_v^{\vartheta} N_v)[1 + \wp(t-1)] \\
 G_0(t) = N_7.
 \end{cases} \tag{19}$$

Case 2: If we set $n = 1$, then

$$\left\{ \begin{array}{l} \mathcal{L}[A_1(t)] = \frac{s + \varphi(1-s)}{s} \mathcal{L} \left[-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) \right. \\ \quad \left. - p^{\vartheta} A_0(t) - \mu_h^{\vartheta} A_0(t) \right] \\ \mathcal{L}[B_1(t)] = \frac{s + \varphi(1-s)}{s} \mathcal{L} \left[v^{\vartheta} E_0(t) \right. \\ \quad \left. - \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - \mu_h^{\vartheta} B_0(t) \right] \\ \mathcal{L}[C_1(t)] = \frac{s + \varphi(1-s)}{s} \mathcal{L} \left[-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0 \right. \\ \quad \left. + (1-\psi) \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) \right] \\ \mathcal{L}[D_1(t)] = \frac{s + \varphi(1-s)}{s} \mathcal{L} \left[\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) \right. \\ \quad \left. + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - (\nu^{\vartheta} + \mu_h^{\vartheta}) D_0(t) \right] \\ \mathcal{L}[E_1(t)] = \frac{s + \varphi(1-s)}{s} \mathcal{L} \left[p^{\vartheta} A_0(t) \right. \\ \quad \left. + \gamma^{\vartheta} (C_0(t) + D_0(t)) + \tau^{\vartheta} C_0(t) \right. \\ \quad \left. - (\psi^{\vartheta} + \mu_h^{\vartheta}) - E_0(t) \right] \\ \mathcal{L}[F_1(t)] = \frac{s + \varphi(1-s)}{s} \mathcal{L} \left[-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) \right. \\ \quad \left. + D_0(t) F_0(t)) - \mu_v^{\vartheta} F_0(t) \right] \\ \mathcal{L}[G_1(t)] = \frac{s + \varphi(1-s)}{s} \mathcal{L} \left[\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) \right. \\ \quad \left. + D_0(t) F_0(t)) - \mu_v^{\vartheta} G_0(t) \right] \end{array} \right. \quad (20)$$

Taking inverse Laplace transformation, we obtain

$$\left\{ \begin{array}{l} A_1(t) = \left[-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) - p^{\vartheta} A_0(t) - \mu_h^{\vartheta} A_0(t) \right] [1 \\ \quad + \varphi(t-1)] \\ B_1(t) = \left[v^{\vartheta} E_0(t) - \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - \mu_h^{\vartheta} B_0(t) \right] [1 \\ \quad + \varphi(t-1)] \\ C_1(t) = \left[-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0 + (1-\psi) \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) \right] [1 \\ \quad + \varphi(t-1)] \\ D_1(t) = \left[\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) \right. \\ \quad \left. - (\nu^{\vartheta} + \mu_h^{\vartheta}) D_0(t) \right] [1 + \varphi(t-1)] \\ E_1(t) = \left[-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t)) - \mu_v^{\vartheta} F_0(t) \right] [1 \\ \quad + \varphi(t-1)] \\ F_1(t) = \left[-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} F_0(t) \right] [1 \\ \quad + \varphi(t-1)] \\ G_1(t) = \left[\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} G_0(t) \right] [1 \\ \quad + \varphi(t-1)]. \end{array} \right. \quad (21)$$

Case 3: If we set $n = 2$, then

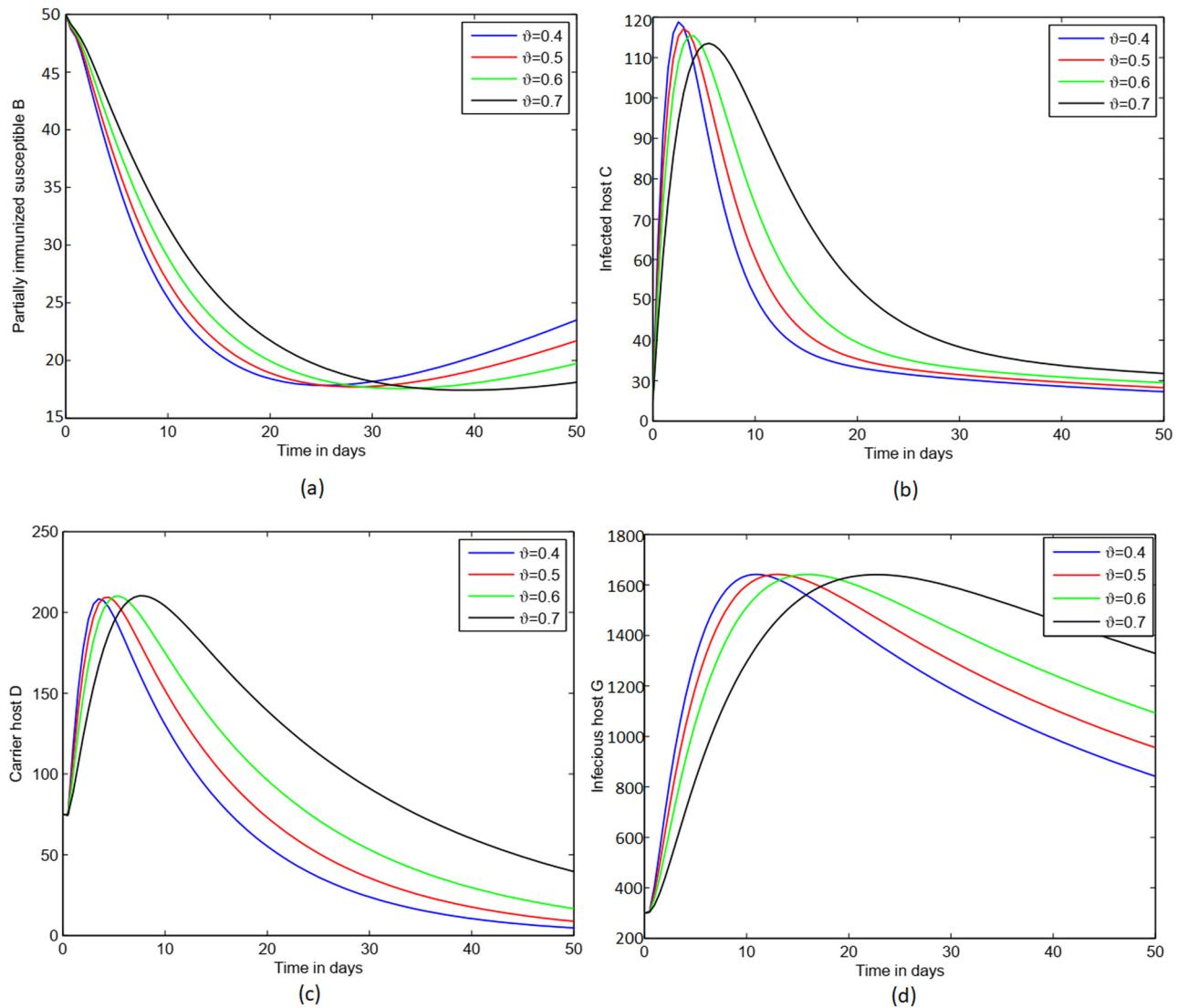
$$\left\{
 \begin{aligned}
 \mathcal{L}[A_2(t)] &= \frac{s + \varrho(1 - s)}{s} \mathcal{L} \left[-\frac{\beta h 1^{b^\vartheta}}{N_h} A_1(t) G_1(t) \right. \\
 &\quad \left. - p^\vartheta A_1(t) - \mu_h^\vartheta A_1(t) \right] \\
 \mathcal{L}[B_2(t)] &= \frac{s + \varrho(1 - s)}{s} \mathcal{L} \left[v^\vartheta E_1(t) \right. \\
 &\quad \left. - \frac{\beta h 2^{b^\vartheta}}{N_h} B_1(t) G_1(t) - \mu_h^\vartheta B_1(t) \right] \\
 \mathcal{L}[C_2(t)] &= \frac{s + \varrho(1 - s)}{s} \mathcal{L} \left[-\frac{\beta h 1^{b^\vartheta}}{N_h} A_1(t) G_1 \right. \\
 &\quad \left. + (1 - \psi) \frac{\beta h 2^{b^\vartheta}}{N_h} B_1(t) G_1(t) \right] \\
 \mathcal{L}[D_2(t)] &= \frac{s + \varrho(1 - s)}{s} \mathcal{L} \left[\psi \frac{\beta_{h1}^{b^\vartheta}}{N_h} A_1(t) G_1(t) \right. \\
 &\quad \left. + \psi \frac{\beta_{h1}^{b^\vartheta}}{N_h} B_1(t) G_1(t) - (\nu^\vartheta + \mu_h^\vartheta) D_1(t) \right] \\
 \mathcal{L}[E_2(t)] &= \frac{s + \varrho(1 - s)}{s} \mathcal{L} \left[p^\vartheta A_1(t) \right. \\
 &\quad \left. + \gamma^\vartheta (C_1(t) + D_1(t)) + \tau^\vartheta C_1(t) - (\psi^\vartheta + \mu_h^\vartheta) \right. \\
 &\quad \left. - E_1(t) \right] \\
 \mathcal{L}[F_2(t)] &= \frac{s + \varrho(1 - s)}{s} \mathcal{L} \left[-\frac{\beta_v^{b^\vartheta}}{N_h} (C_1(t) F_1(t) \right. \\
 &\quad \left. + D_1(t) F_1(t)) - \mu_v^\vartheta F_1(t) \right] \\
 \mathcal{L}[G_2(t)] &= \frac{s + \varrho(1 - s)}{s} \mathcal{L} \left[\frac{\beta_v^{b^\vartheta}}{N_h} (C_1(t) F_1(t) \right. \\
 &\quad \left. + D_1(t) F_1(t)) - \mu_v^\vartheta G_1(t) \right].
 \end{aligned} \tag{22}
 \right.$$

Taking inverse Laplace transformation, we obtain (23)

$$\begin{aligned}
 A_2(t) &= \left[-\frac{\beta h 1^{b^{\vartheta}}}{N_h} \left(\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) - p^{\vartheta} A_0(t) - \mu_h^{\vartheta} A_0(t) \right) \left(\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} G_0(t) \right) - p^{\vartheta} \left(-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) - p^{\vartheta} A_0(t) \right. \right. \\
 &\quad \left. \left. - \mu_h^{\vartheta} A_0(t) \right) - \mu_h^{\vartheta} \left(-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) - p^{\vartheta} A_0(t) - \mu_h^{\vartheta} A_0(t) \right) \right] \left[1 + 2\varphi(t-1) + \varphi^2 \left(\frac{t^2}{2!} - 2t + 1 \right) \right] \\
 B_2(t) &= \left[v^{\vartheta} \left(-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + N_0(t)) - \mu_v^{\vartheta} F_0(t) \right) - \frac{\beta h 2^{b^{\vartheta}}}{N_h} \left(v^{\vartheta} E_0(t) - \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - \mu_h^{\vartheta} B_0(t) \right) \left(\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} G_0(t) \right) \right. \\
 &\quad \left. - \mu_h^{\vartheta} \left(v^{\vartheta} E_0(t) - \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - \mu_h^{\vartheta} B_0(t) \right) \right] \left[1 + 2\varphi(t-1) + \varphi^2 \left(\frac{t^2}{2!} - 2t + 1 \right) \right] \\
 C_2(t) &= \left[-\frac{\beta h 1^{b^{\vartheta}}}{N_h} \left(-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) - p^{\vartheta} A_0(t) - \mu_h^{\vartheta} A_0(t) \right) \left(\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} G_0(t) \right) \right. \\
 &\quad \left. + (1-\psi) \frac{\beta h 2^{b^{\vartheta}}}{N_h} \left(v^{\vartheta} E_0(t) - \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - \mu_h^{\vartheta} B_0(t) \right) \left(\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} G_0(t) \right) \right] \left[1 + 2\varphi(t-1) + \varphi^2 \left(\frac{t^2}{2!} - 2t + 1 \right) \right] \\
 D_2(t) &= \left[\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} \left(-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) - p^{\vartheta} A_0(t) - \mu_h^{\vartheta} A_0(t) \right) \left(\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} G_0(t) \right) \right. \\
 &\quad \left. + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} \left(v^{\vartheta} E_0(t) - \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - \mu_h^{\vartheta} B_0(t) \right) \left(\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) \right. \right. \\
 &\quad \left. \left. - \mu_v^{\vartheta} G_0(t) \right) - (\nu^{\vartheta} + \mu_h^{\vartheta}) \left(\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - (\nu^{\vartheta} + \mu_h^{\vartheta}) D_0(t) \right) \right] \left[1 + 2\varphi(t-1) + \varphi^2 \left(\frac{t^2}{2!} - 2t + 1 \right) \right] \\
 E_2(t) &= \left[p^{\vartheta} \left(-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) - p^{\vartheta} A_0(t) - \mu_h^{\vartheta} A_0(t) \right) + \gamma^{\vartheta} \left(-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + (1-\psi) \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) \right) \right. \\
 &\quad \left. + \left(\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - (\nu^{\vartheta} + \mu_h^{\vartheta}) D_0(t) \right) \right] + \tau^{\vartheta} \left(-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + (1-\psi) \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) \right) - (\psi^{\vartheta} + \mu_h^{\vartheta}) \\
 &\quad \left. - \left(-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + N_0(t)) - \mu_v^{\vartheta} F_0(t) \right) \right] \left[1 + 2\varphi(t-1) + \varphi^2 \left(\frac{t^2}{2!} - 2t + 1 \right) \right] \\
 F_2(t) &= \left[-\frac{\beta_v^{b^{\vartheta}}}{N_h} \left(-\frac{\beta h 1^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + (1-\psi) \frac{\beta h 2^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) \right) \left(-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} F_0(t) \right) \right. \\
 &\quad \left. + \left(\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - (\nu^{\vartheta} + \mu_h^{\vartheta}) D_0(t) \right) \left(-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} F_0(t) \right) \right] \\
 &\quad \left. - \mu_v^{\vartheta} \left(-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} F_0(t) \right) \right] \left[1 + 2\varphi(t-1) + \varphi^2 \left(\frac{t^2}{2!} - 2t + 1 \right) \right] \\
 G_2(t) &= \left[\frac{\beta_v^{b^{\vartheta}}}{N_h} \left(C_1(t) \left(\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - (\nu^{\vartheta} + \mu_h^{\vartheta}) D_0(t) \right) \left(-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} F_0(t) \right) \right. \right. \\
 &\quad \left. \left. + \left(\psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} A_0(t) G_0(t) + \psi \frac{\beta_{h1}^{b^{\vartheta}}}{N_h} B_0(t) G_0(t) - (\nu^{\vartheta} + \mu_h^{\vartheta}) D_0(t) \right) \left(-\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} F_0(t) \right) \right) \right] \\
 &\quad \left. - \mu_v^{\vartheta} \left(\frac{\beta_v^{b^{\vartheta}}}{N_h} (C_0(t) F_0(t) + D_0(t) F_0(t)) - \mu_v^{\vartheta} G_0(t) \right) \right] \left[1 + 2\varphi(t-1) + \varphi^2 \left(\frac{t^2}{2!} - 2t + 1 \right) \right]
 \end{aligned} \tag{23}$$

Table 1: Interpretation of the parameters and its values

Parameters	Description of parameters	Values	Source
β_{h1}	Transmission from vectors to susceptible A	0.75	[55]
β_{h2}	Vector-to-susceptible B transmission probability	0.375	Assume
μ_v	Vector's birth and death rates	0.0295	Assume
ϑ	Fractional memory index	0.5	Assume
τ	Rate of individual recovery	Variable	Assume
v	Rate at which the host's immunity declines	0.05	Assume
β_v	Probability of transmission from humans to vectors	0.75	[55]
γ	Rate at which the host recovers	0.32883	[37]
ψ	Asymptomatic carrier proportion	Variable	Assume
b	Vector's biting rate	0.5	[55]
p	Vaccination fraction for type A susceptible hosts	0.3	Assume
μ_h	Human's birth and death rates	0.000046 to 0.004500	[37]

**Figure 1:** Illustration for depicting the interaction between host and vector populations, where (a) $\vartheta = 0.4$, (b) 0.5, (c) 0.6, and (d) 0.7.

and so forth. To find more terms in the series solution, this method might be used. Consequently, we arrive at the solution as follows:

$$\begin{cases} A(t) = A_0(t) + A_1(t) + A_2(t) + \dots \\ B(t) = B_0(t) + B_1(t) + B_2(t) + \dots \\ C(t) = C_0(t) + C_1(t) + C_2(t) + \dots \\ D(t) = D_0(t) + D_1(t) + D_2(t) + \dots \\ E(t) = E_0(t) + E_1(t) + E_2(t) + \dots \\ F(t) = F_0(t) + F_1(t) + F_2(t) + \dots \\ G(t) = G_0(t) + G_1(t) + G_2(t) + \dots \end{cases} \quad (24)$$

6 Computational results

In this section of the study, we present the outcomes relating to the approximate series solution of the proposed model. To obtain these results, we utilize the approximate values of the parameters specified in Table 1. Considering these parameter values, we generate plots that illustrate the solution up to five terms. Figures 1–6 correspond to different fractional orders within the model.

For different values of the parameters given in Table 1, we run simulations using the model 2, inspecting the time

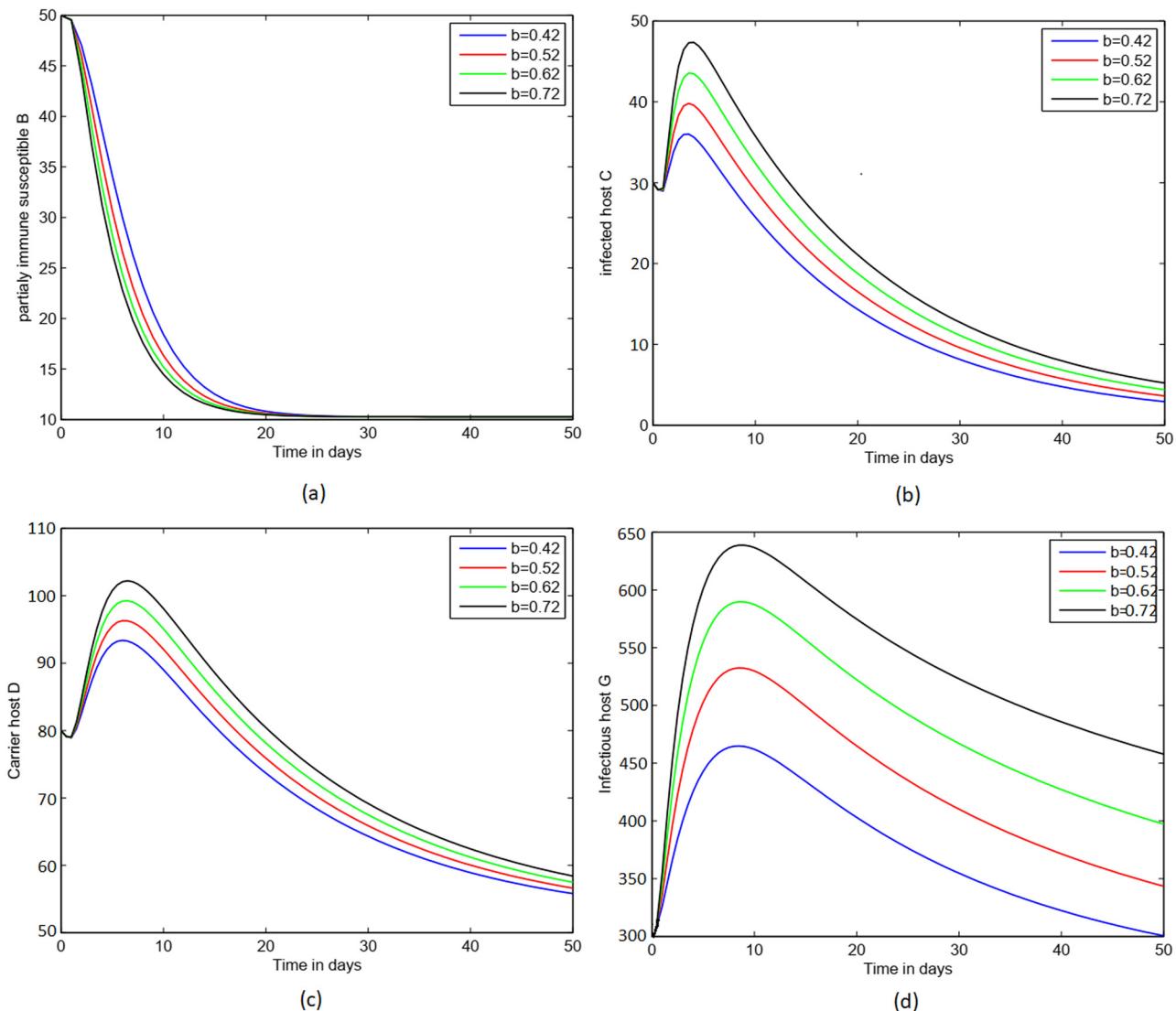


Figure 2: Illustration for depicting the interaction between host and vector populations, where (a) $b = 0.42$, (b) 0.52, (c) 0.62, and (d) 0.72.

series through the Laplace Adomian decomposition approach in order to better understand the proposed fractional model's dynamics. To see how the fractional order effects the system, we depict the dengue virus's behavior in Figure 1 by varying ϑ . It is shown that the index of memory may be lowered to reduce the prevalence of illness in a community. In order to reduce the prevalence of infections in the population as a whole, it is recommended that policymakers implement a strategy and procedure that reduce the memory index ϑ . Figure 2 shows the population and changes in biting rate, which can help you better understand the impact of the vectors biting rate. We found that the vector bite rate is crucial in the sense of increasing the virus infection level as a whole, and thus we can limit the dengue infection level by reducing the mosquito biting

rate. Due to global warming, which creates favorable conditions for the proliferation of mosquitoes, the bite rate and, by extension, the infection rate will rise. In Figure 3, we change ψ , which is the asymptomatic fraction, to see how it affects the pace of virus spread and how we might slow it down. Infected host people may be profoundly impacted by the asymptomatic percentage, as we have shown. The asymptomatic subset, on the other hand, has been shown to infect and disseminate the dengue virus to areas where it is not prevalent. This suggests that asymptomatic carriers pose a greater threat, suggesting greater levels of control. In Figures 4 and 5, we see how the dynamics of system 2 change when the vaccination rate and treatment intensity are varied; this suggests that the vaccination rate has a little impact on the system overall,

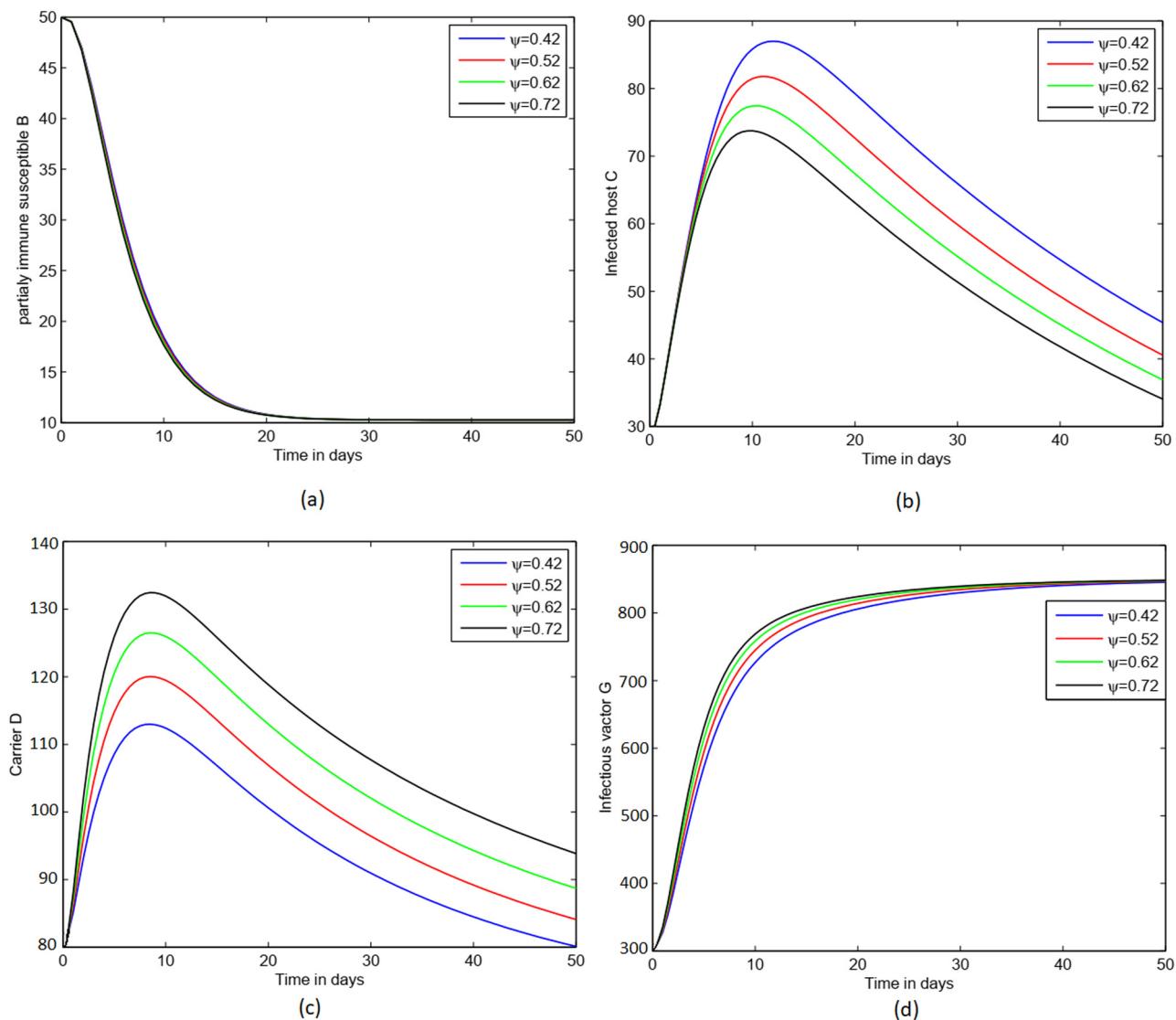


Figure 3: Illustration for depicting the interaction between host and vector populations, where (a) $\psi = 0.42$, (b) 0.52, (c) 0.62, and (d) 0.72.

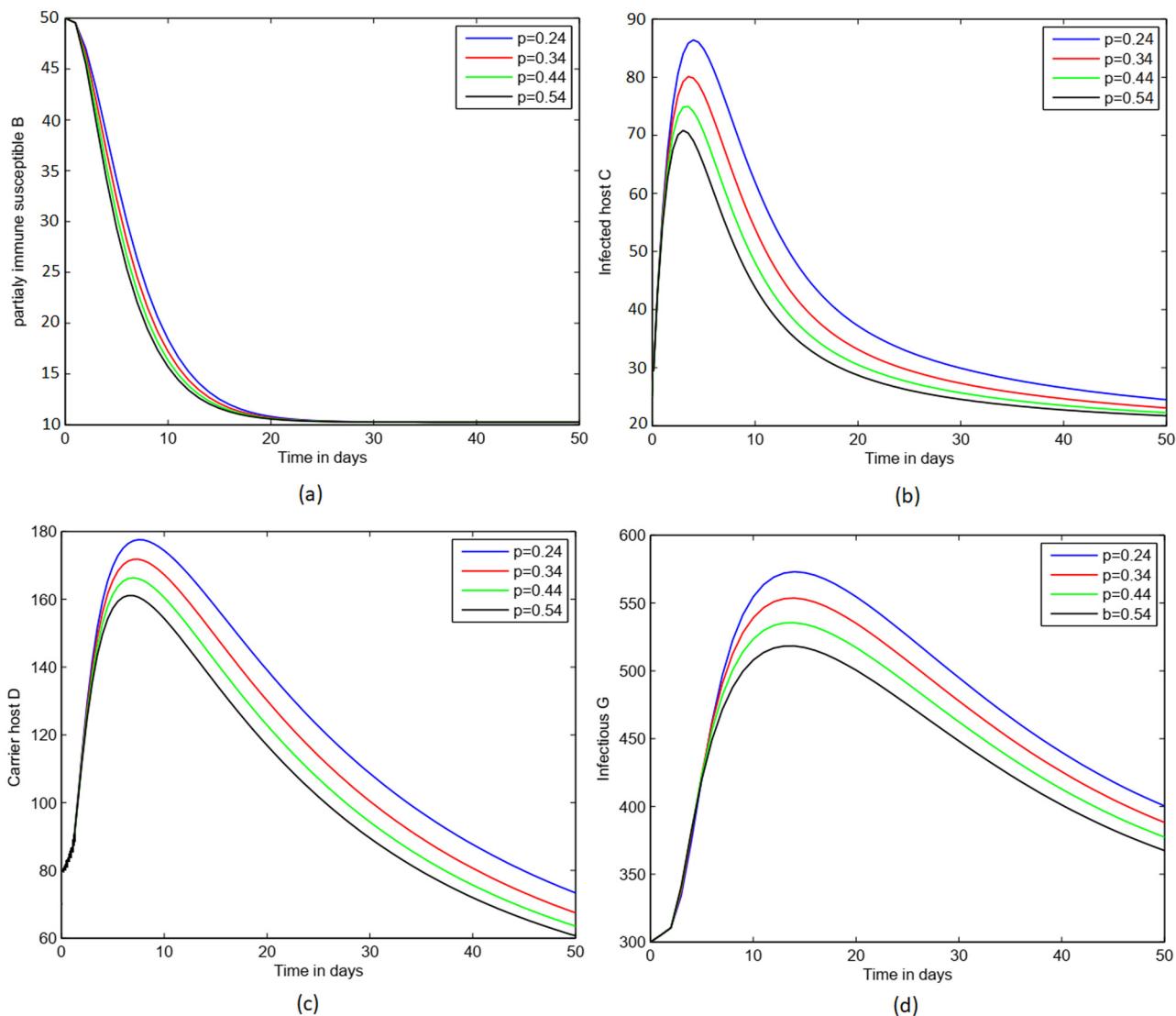


Figure 4: Illustration for depicting the interaction between host and vector populations, where (a) $p = 0.24$, (b) 0.34, (c) 0.44, and (d) 0.54.

but treatment has a significant role to play in reducing the number of infected people. Changing v by a little amount in the second-to-last simulation (shown in Figure 6) showed that the widespread level was very sensitive to this input parameter. This suggests that dengue's partial immunity is crucial, prompting stronger measures of management.

7 Conclusion

The article focuses on the dengue virus, which is transmitted by mosquitoes and causes illness in humans. It presents a

comprehensive overview of research concerning the virus, with a specific emphasis on the concerns of scientists regarding its potential for rapid spread and the growing risk of an epidemic. To gain a deeper understanding of the intricate dynamics of dengue fever transmission, the study proposes the use of a mathematical model that incorporates crucial factors such as vaccination and the application of fractional derivatives. This article represents a noteworthy advancement in our understanding of the transmission dynamics of dengue fever and serves as a crucial resource for individuals engaged in prevention, detection, and treatment efforts for the illness. The utilization of fractional

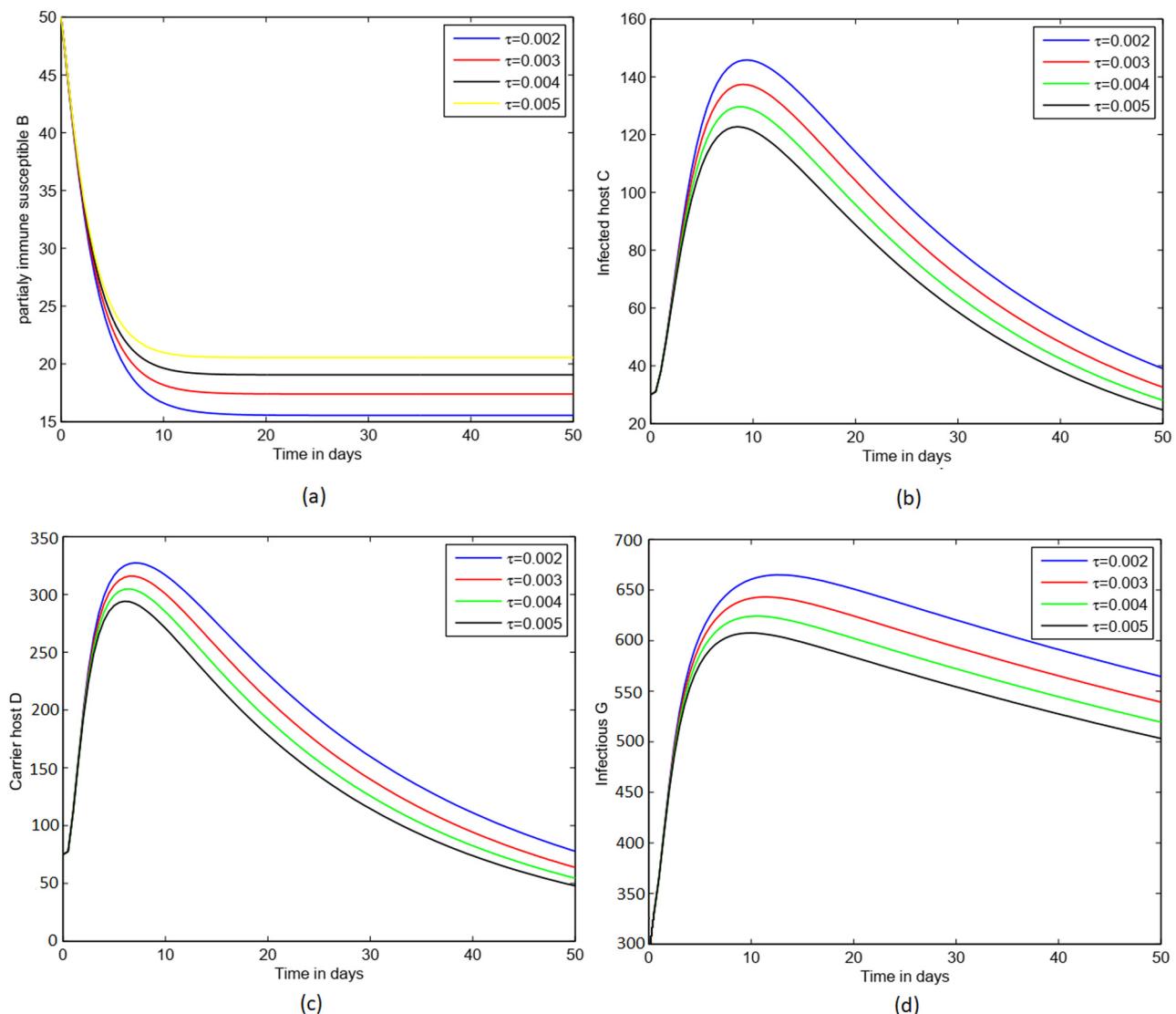


Figure 5: Illustration for depicting the interaction between host and vector populations, where (a) $\tau = 0.002$, (b) 0.003, (c) 0.004, and (d) 0.005.

derivatives and diverse computational methodologies opens up new possibilities for improving management strategies and treatments for dengue fever. Furthermore, the research underscores the significance of collaborative endeavors in addressing complex infectious diseases and establishes a solid groundwork for future investigations into dengue fever.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R183), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 5280).

Funding information: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R183), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 5280).

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

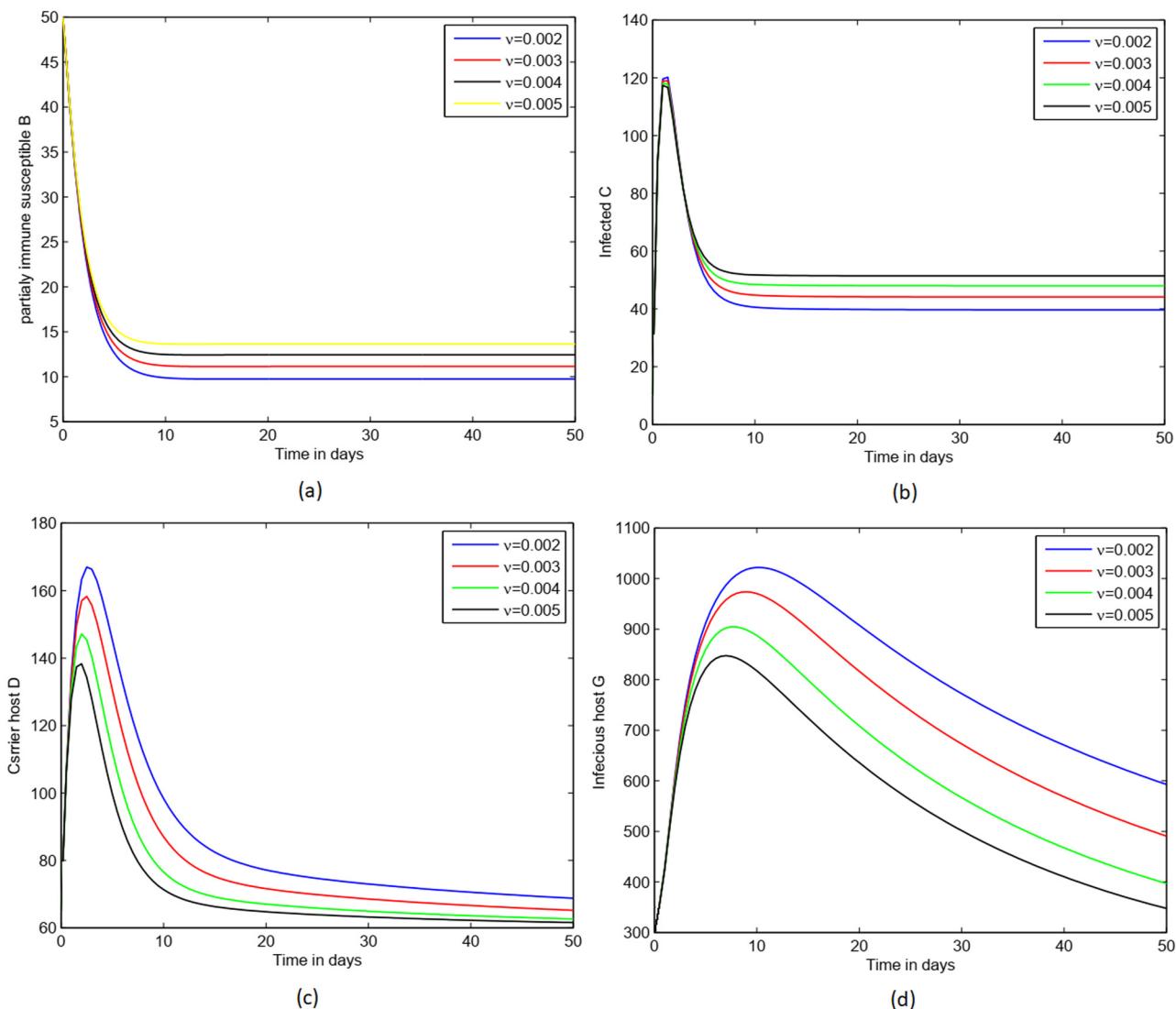


Figure 6: Illustration for depicting the interaction between host and vector populations, where (a) $v = 0.002$, (b) 0.003, (c) 0.004, and (d) 0.005.

References

- [1] Niazi AUK, Iqbal N, Wannalookkhee F, Nonlaopon K. Controllability for fuzzy fractional evolution equations in credibility space. *Fractal Fract.* 2021;5(3):112.
- [2] Srivastava HM, Khan H, Arif M. Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions. *Math Meth Appl Sci.* 2020;43(1):199–212.
- [3] Yasmin H, Aljahdaly NH, Saeed AM. Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique. *Fractal Fract.* 2023;7(7):491.
- [4] Alderremy AA, Iqbal N, Aly S, Nonlaopon K. Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series. *Symmetry* 2022;14(9):1944.
- [5] Al-Sawalha MM, Khan A, Ababneh OY, Botmart T. Fractional view analysis of Kersten-Krasilashchik coupled KdV-mKdV systems with non-singular kernel derivatives. *AIMS Math.* 2022;7:1834–59.
- [6] Xie X, Xie B, Xiong D, Hou M, Zuo J, Wei G, et al. New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness. *J Ambient Intell Human Comput.* 2022;14:12789–805. doi: 10.1007/s12652-022-04199-9.
- [7] Zhou X, Liu X, Zhang G, Jia L, Wang X, Zhao Z. An iterative threshold algorithm of Log-sum regularization for sparse problem. *IEEE Trans Circuits Syst Video Technol.* 2023;33(9):4728–40. doi: 10.1109/TCSVT.2023.3247944.
- [8] Chen Z, Zhu W, Feng H, Luo H. Changes in corporate social responsibility efficiency in Chinese food industry brought by COVID-19 pandemic? A study with the super-efficiency DEA-Malmquist-Tobit model. *Front Public Health.* 2022;10:875030. doi: 10.3389/fpubh.2022.875030.

[9] Wang L, She A, Xie Y. The dynamics analysis of Gompertz virus disease model under impulsive control. *Scientific Reports*. 2023;13(1):10180. doi: 10.1038/s41598-023-37205-x.

[10] Zhao Y, Hu M, Jin Y, Chen F, Wang X, Wang B, et al. Predicting the transmission trend of respiratory viruses in new regions via geo spatial similarity learning. *Int J Appl Earth Observ Geo Inform*. 2023;125:103559. doi: <https://doi.org/10.1016/j.jag.2023.103559>.

[11] Semenza JC, Menne B. Climate change and infectious diseases in Europe. *Lancet Infect Diseases*. 2009;9(6):365–75.

[12] Farman M, Batool M, Nisar KS, Ghaffari AS, Ahmad A. Controllability and analysis of sustainable approach for cancer treatment with chemotherapy by using the fractional operator. *Results Phys*. 2023;106630.

[13] Nisar KS, Farman M, Abdel-Aty M, Cao J. A review on epidemic models in sight of fractional calculus. *Alexandr Eng J*. 2023;75:81–113.

[14] Nisar KS, Farman M, Hincal E, Shehzad A. Modelling and analysis of bad impact of smoking in society with constant proportional-Caputo Fabrizio operator. *Chaos Solitons Fractals*. 2023;172:113549.

[15] Farman M, Sarwar R, Askar S, Ahmad H, Sultan M, Akram MM. Fractional order model to study the impact of planting genetically modified trees on the regulation of atmospheric carbon dioxide with analysis and modeling. *Results Phys*. 2023;48:106409.

[16] Farman M, Sarwar R, Akgul A. Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator. *Chaos Solitons Fractals*. 2023;170:113373.

[17] Farman M, Shehzad A, Akgul A, Baleanu D, Sen MDL. Modelling and analysis of a measles epidemic model with the constant proportional Caputo operator. *Symmetry*. 2023;15(2):468.

[18] Derouich M, Boutayeb A. Dengue fever: mathematical modelling and computer simulation. *Appl Math Comput*. 2006;177(2):528–44.

[19] Otero M, Schweigmann N, Solari HG. A stochastic spatial dynamical model for Aedes aegypti. *Bulletin Math Biol*. 2008;70(5):1297–325.

[20] Thome RC, Yang HM, Esteva L. Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. *Math Biosci*. 2010;223(1):12–23.

[21] Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. *Commun Nonlinear Sci Numer Simulat*. 2011;16(3):1140–53.

[22] Rehman HU, Iqbal I, Hashemi MS, Mirzazadeh M, Eslami M. Analysis of cubic-quartic-nonlinear Schrödinger's equation with cubic-quintic-septic-nonic form of self-phase modulation through different techniques. *Optik* 2023;287:171028.

[23] Neirameh A, Eslami M. New solitary wave solutions for fractional Jaulent-Miodek hierarchy equation. *Modern Phys Lett B*. 2022;36(07):2150612.

[24] Eslami M, Rezazadeh H. The first integral method for Wu-Zhang system with conformable time-fractional derivative. *Calcolo*. 2016;53:475–85.

[25] Eslami M, Neyrame A, Ebrahimi M. Explicit solutions of nonlinear (2+1)-dimensional dispersive long wave equation. *J King Saud Univ Sci*. 2012;24(1):69–71.

[26] Asghari Y, Eslami M, Rezazadeh H. Novel optical solitons for the Ablowitz-Ladik lattice equation with conformable derivatives in the optical fibers. *Opt Quantum Electron*. 2023;55(10):930.

[27] AbuBakar S, Puteh SEW, Kastner R, Oliver L, Lim SH, Hanley R, et al. Epidemiology (2012–2019) and costs (2009–2019) of dengue in Malaysia: a systematic literature review. *Int J Infect Diseases*. 2022;124:240–7.

[28] Tebeje WM, Getahun SK, Tilahun BK, Melis YM, Fissaah GH, Hagos AG, et al. Entomological, epidemiological, and climatological investigation of the 2019 Dengue fever outbreak in Gewane district, Afar region, North-East Ethiopia. 2022.

[29] Chowell G, Diaz-Duenas P, Miller JC, Alcazar-Velazco A, Hyman JM, Fenimore PW, et al. Estimation of the reproduction number of dengue fever from spatial epidemic data. *Math Biosci*. 2007;208(2):571–89.

[30] Dietz K. Transmission and control of Arbovirus diseases. *Epidemiology*. 1975;104:104–21.

[31] Esteva L, Vargas C. Analysis of a dengue disease transmission model. *Math Biosci*. 1998;150(2):131–51.

[32] Esteva L, Yang HM. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. *Math Biosci*. 2005;198(2):132–47.

[33] Garba SM, Gumel AB, Bakar MA. Backward bifurcations in dengue transmission dynamics. *Math Biosci*. 2008;215(1):11–25.

[34] Pinho STRD, Ferreira CP, Esteva L, Barreto FR, Morato e Silva VC, Teixeira MGL. Modelling the dynamics of dengue real epidemics. *Philosoph Trans R Soc A Math Phys Eng Sci*. 2010;368(1933):5679–93.

[35] Sardar T, Rana S, Chatopadhyay J. A mathematical model of dengue transmission with memory. *Commun Nonlinear Sci Numer Simulat*. 2015;22(1–3):511–25.

[36] Stanislavsky AA. Memory effects and macroscopic manifestation of randomness. *Phys Rev E*. 2000;61(5):4752.

[37] Syafruddin S, Noorani MSM. SEIR model for transmission of dengue fever in Selangor Malaysia. *Int J Modern Phys Confer Series*. 2012;9:380–9.

[38] Abdelrazec A, Belair J, Shan C, Zhu H. Modeling the spread and control of dengue with limited public health resources. *Math Biosci*. 2016;271:136–45.

[39] Andraud M, Hens N, Marais C, Beutels P. Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. *PLoS One*. 2012;7(11):e49085.

[40] Robert MA, Christofferson RC, Weber PD, Wearing HJ. Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change. *Epidemics*. 2019;28:100344.

[41] Alto BW, Bettinardi D. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. *Amer J Tropical Med Hygiene*. 2013;88(3):497.

[42] Taghikhani R, Gumel AB. Mathematics of dengue transmission dynamics: roles of vector vertical transmission and temperature fluctuations. *Infect Disease Model*. 2018;3:266–92.

[43] Chen SC, Hsieh MH. Modeling the transmission dynamics of dengue fever: implications of temperature effects. *Sci Total Environ*. 2012;431:385–91.

[44] Yang HM, Macoris MLG, Galvani KC, Andrigatti MTM, Wanderley DMV. Assessing the effects of temperature on dengue transmission. *Epidemiol Infect*. 2009;137(8):1179–87.

[45] Alshammari S, Al-Sawalha MM, Shah R. Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential. *Fract Fract*. 2023;7(2):140.

[46] Yasmin H, Aljahdaly NH, Saeed AM, Shah R. Investigating symmetric soliton solutions for the fractional coupled Konno-Onno

system using improved versions of a novel analytical technique. *Mathematics*. 2023;11(12):2686.

[47] Shah R, Alkhezi Y, Alhamad K. An analytical approach to solve the fractional Benney equation using the q-homotopy analysis transform method. *Symmetry*. 2023;15(3):669.

[48] Yasmin H, Alshehry AS, Saeed AM, Shah R, Nonlaopon K. Application of the q-homotopy analysis transform method to fractional-order Kolmogorov and Rosenau-Hyman models within the Atangana-Baleanu operator. *Symmetry*. 2023;15(3):671.

[49] Yasmin H, Alshehry AS, Ganie AH, Mahnashi AM. Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation. *Optik*. 2023;171576.

[50] Acay B, Inc M, Khan A, Yusuf A. Fractional methicillin-resistant *Staphylococcus aureus* infection model under Caputo operator. *J Appl Math Comput*. 2021;67(1):755–83.

[51] Yusuf A, Acay B, Mustapha UT, Inc M, Baleanu D. Mathematical modeling of pine wilt disease with Caputo fractional operator. *Chaos Solitons Fract*. 2021;143:110569.

[52] Inc M, Acay B, Berhe HW, Yusuf A, Khan A, Yao SW. Analysis of novel fractional COVID-19 model with real-life data application. *Results Phys*. 2021;23:103968.

[53] Shaikh A, Tassaddiq A, Nisar KS, Baleanu D. Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations. *Adv Differ Equ*. 2019;2019(1):1–14.

[54] Khan SA, Shah K, Zaman G, Jarad F. Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative. *Chaos Interdiscipl J Nonlinear Sci*. 2019;29(1):013128.

[55] Derouich M, Boutayeb A, Twizell EH. A model of dengue fever. *Biomed Eng Online*. 2003;2(1):1–10.