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Abstract: This study demonstrates the use of fractional
calculus in the field of epidemiology, specifically in relation
to dengue illness. Using noninteger order integrals and
derivatives, a novel model is created to examine the impact
of temperature on the transmission of the vector-host dis-
ease, dengue. A comprehensive strategy is proposed and
illustrated, drawing inspiration from the first dengue epi-
demic recorded in 2009 in Cape Verde. The model utilizes a
fractional-order derivative, which has recently acquired
popularity for its adaptability in addressing a wide variety
of applicable problems and exponential kernel. A fixed
point method of Krasnoselskii and Banach is used to deter-
mine the main findings. The semi-analytical results are
then investigated using iterative techniques such as
Laplace-Adomian decomposition method. Computational
models are utilized to support analytical experiments
and enhance the credibility of the results. These models
are useful for simulating and validating the effect of tem-
perature on the complex dynamics of the vector-host
interaction during dengue outbreaks. It is essential to
note that the research draws on dengue outbreak studies
conducted in various geographic regions, thereby pro-
viding a broader perspective and validating the findings
generally. This study not only demonstrates a novel appli-
cation of fractional calculus in epidemiology but also casts
light on the complex relationship between temperature
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and the dynamics of dengue transmission. The obtained
results serve as a foundation for enhancing our under-
standing of the complex interaction between environ-
mental factors and infectious diseases, leading the way
for enhanced prevention and control strategies to combat
global dengue outbreaks.
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1 Introduction

The Dengue transmission model using the Caputo-Fabrizio
fractional derivative has potential applications in several
areas of physics and epidemiology. Physically, the model
contributes to the understanding of infectious disease
dynamics, specifically in the context of dengue transmis-
sion. It aids in predicting the spread and impact of the
disease within a population, considering the fractional-
order nature of the derivative. The application extends to
public health and epidemiology, assisting in the develop-
ment of strategies for disease control and prevention.
Furthermore, the fractional derivative introduces a math-
ematical tool that allows for a more nuanced representa-
tion of complex phenomena, enabling researchers to
capture noninteger order dynamics inherent in certain
systems. This mathematical framework has broader impli-
cations for studying various physical processes character-
ized by fractional dynamics, such as anomalous diffusion
or complex fluid flow, beyond the immediate context of
infectious disease modeling [1-5]. In recent years, various
scientific studies have delved into multidisciplinary domains,
exploring diverse aspects from vaccination effectiveness
assessment using theoretical models [6] to iterative algo-
rithms for solving sparse problems in video technology [7].
The dynamic shifts in corporate social responsibility effi-
ciency amidst the COVID-19 pandemic have been meticu-
lously studied in the Chinese food industry [8], along with
insightful analyses of virus disease models and transmission

8 Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/phys-2023-0169
mailto:asalshihry@pnu.edu.sa
mailto:hhassain@kfu.edu.sa
mailto:aakhammash@uqu.edu.sa
mailto:shahrasool26@gmail.com

2 —— Azzh Saad Alshehry et al.

trend predictions [9]. These studies reflect the broad spec-
trum of research endeavors addressing critical issues ran-
ging from public health implications to technological
advancements, presenting a comprehensive landscape
for scientific exploration and problem-solving [10].

Dengue fever has been more common in recent dec-
ades, putting an estimated 40% of the world’s population at
risk. This extraordinary population expansion, expanding
urbanization without appropriate home water sources,
increasing transfer of the virus among people, and a lack
of efficient mosquito control have all contributed to this
global pandemic [11-17]. Infected Aedes mosquitoes, espe-
cially Aedes aegypti bite people and spread the dengue
virus. Once a mosquito has been infected, it will carry
the virus, infecting anybody it feeds on who is vulnerable
to the disease. Due to the lack of a vaccine, the sole method
of combating dengue fever is the elimination of potential
vectors. Disease transmission mechanisms may be better
understood with the use of suitable mathematical models
[18-20]. Standard epidemiological models use classical
derivatives of integer order. We suggest generalized frac-
tional derivatives for this purpose. Despite a lengthy his-
tory as a pure field of mathematics, fractional calculus
(calculus of noninteger order) has only lately been demon-
strated to be valuable as a practical tool [21]. In this study,
we argue that fractional calculus may be a useful tool for
building epidemiological model. We start by thinking about
a basic epidemiological model that may be used to describe
a dengue fever outbreak. The remainder of the study is
devoted to explaining fractional derivatives in the Riemann—
Liouville sense, recasting the dynamics of the classical model
in terms of fractional derivatives and then using a new
approximation approach to calculate numerical solutions to
the fractional model [22-26]. Comparing these alternative
models with the traditional systems through numerical simu-
lations reveals that the former may be a more accurate repre-
sentation of reality.

To accurately describe and effectively halt the spread
of (epidemic/pandemic) illnesses, more in-depth knowl-
edge of mathematical models is required. The spread of
vector-borne illnesses poses a serious risk to both the
health of humans and animals. Many demographic, ecolo-
gical, and societal variables come into play when deter-
mining the geographic range of a disease vector. More
than 700,000 fatalities each year are attributed to vector-
borne illnesses, which account for about 17% of all viral
infections. Dengue fever is a severe, flu-like disease that
mostly affects people living in urban and semi-urban
regions in nations with subtropical and tropical climates
[27,28]. Although there is currently no cure for dengue
fever, it can be effectively treated, and the fatality rate
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can be brought down to around 1% by early diagnosis
and intervention. Female Aedes aegypti mosquitoes are
primarily responsible for transmitting the dengue virus
from infected vectors to susceptible hosts via their bites.
A mosquito infected with the dengue virus may spread the
disease for the entirety of its life after just 410 days of
incubation [28]. An adult mosquito completes the life cycle
after four stages (egg, larva, pupa, and adult). The larvae,
pupae, and adult all spend their time in water, but the
adult is a lively, flying bug. Only the female mosquito
will bite, and only if she needs to feed on human or animal
blood.

Some strong and suitable mathematical analyses have
been proposed [18,20,29-38] for maintaining dengue con-
trol. A model for the dynamic analysis of the spread of
dengue fever using a nonlinear rate of recovery was cre-
ated by Abdelrazec et al. [38] to examine the transfer and
control of the illness. Esteva and Yang [32] developed a
mathematical model for dengue to trace the spread of
two epidemic illnesses across distinct human populations.
Stability analysis provides an explanation for the repro-
duction number R as an epidemic threshold quantity.
According to their simulations, ecological management as
a means of vector control is insufficient at best and at
worst would only serve to stall the progression of infec-
tious diseases temporarily. Using a vaccination may pro-
vide concurrent control against certain serogroups. The
assumptions for parameter threshold values and control
methods in deterministic models of dengue transmission
are reviewed by Andraud et al. [39]. The epidemiological
influence of seasonal variations in temperature and other
climatic factors on the transmission dynamics of dengue
infections has been the subject of recent experimental
research (e.g., see [40]) and mathematical calculations
[41-44]. These sources conduct their mathematical analysis
by using compartmental integer-order epidemic models,
which include an ODE system. However, in most cases,
memory is not required in integer-order systems [45-49].

2 Evaluation of dengue fever

Let us say N, and N, stand for the total number of hosts
and vectors, respectively. The male mosquito N, popula-
tion is divided into the classes of susceptibility A(t), partial
immunity B(t), infection C(t), carrier D(t), and recovery
E(t) in the model’s formulation, while the female mosquito
N, population is divided into the classes of susceptibility
F(t) and infectious G(t) in the same way. A bite from an
infection caused by mosquitoes, for instance, may transmit
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dengue illness to an unwary person. The susceptibility of
hosts, the infectiousness of illnesses, the bitten frequency
of vectors, and the likelihood of transmission all play a role
in establishing the infectiousness of a given host and vector
population. In order to calculate the rate of infection per
vector that is susceptible F(t) and host A(t), we use the

formulae and . In contrast, per suscep-

bB,

bBpy
™ €

tible B(t), we use the formula with B, < By, We

b,
6

hypothesize that some infected individuals are symptom-
free carriers (asymptomatic) and that some recovered indi-
viduals (R,) become vulnerable to the illness once again.
Assuming a negligible death rate induced by infection on
hosts, the natural birth rate of the vector and host, denoted
as u, and u,, respectively, are taken into account. The
ordinary differential equations (ODEs) describing dengue
infection are given as follows:

dA(t h1b
%zﬂhNh‘ﬁTAG PA - A
B _ B2

5 " UE- N BG - u,B
dc h1 hzb
80 - a-w-Bracra-wiie
-t Ty

1

dl()igt) _ wﬁhlAG l/)ﬁhlBG v+ )Ry @
%=PA+V(C+D)+TC—(I/)+H;[)—E

@ _ o B _
TR Nh(C + D)F - u,F

o) _ B )
T = Nh(C + D)F ‘leG,

given the vector’s proper initial condition
F(0)=(0), G(0)=0
and the host’s proper initial condition

A(0)=0, B(O)=0, C0)=0, D®O0)=0, EQ)=0,

moreover, the host and vector’s strengths are described as
follows:

N,=F+G, Ny=A+B+C+D+E

Incorporating both current and historical data into frac-
tional-order models has been proven to accurately depict
the nonlocal behavior of biological systems. We use a frac-
tional-order Liouville-derivative framework to describe
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the dynamical system underlying dengue infection trans-
mission. Caputo [50-52] more correctly described their
fractional system by retaining a constant dimension on
both sides of the system; we did the same to offer a more
accurate description. So, the previously described dengue
system’s fractional Liouville-Caputo derivative is

bﬂ
LEDPA(t) = wolNy - N AG - p’A - 1’A
hot'
LCDIB(t) = vIE - ﬁThBG - u’B
ph1’ thbﬁ
DW= (A=) - T mAGH (L= )

BG - (i + 77+ y)C
b’ b @
DPD(t) = Y="LAG + Y="-BG - (v0 + D
Ny Ny
LDPE(t) = p?A + y°(C + D) + °C - (¥ + 1))

-E
Y
LDPE(6) = u2N, - €+ DIF ~wF

By
'6D/G() = ~(C + DIF - ]G
where “$D” represents fractional derivative (of Liouville

and Caputo) of ¢ and J represents the memory index of
the system.

3 Basic definitions

Within the domain of this research area, we will elucidate
a range of essential concepts.

Definition 1. Suppose £ € H (a, b) withb > a and g € (0, 1);
under these conditions, the provided Caputo-Fabrizio frac-
tional derivative (CFFD) can be expressed as [53,54]:

CEDPE(r) = (@) jf (@) exp|- ]dtb &)
The function k(g0) in Eq. (3) is chosen such that k(1) = x(0) = 1.
Furthermore, if € does not belong to  '(a, b), the equation

undergoes a transformation, resulting in

ToFE) = 1 K(§) jf(t) £(@) exp|- 1 [0
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Definition 2. Consider g € (0, 1] and let us denote the inte-
gral of the function ¢ to the fractional order ¢ as [53,54]:

d-9)
N(2)

t
_ 1
DIFE) = ) + K(@)!’E(d))dq).

Lemma 1. An issue that arises with the CFFD is [53,54]

IDFE) = 2(t),
£(0) = &,

0<g=1,
where & is real constant.

Alternatively, this can be expressed as being equivalent to
the integral as follows:

t
%
E(O) = &+ — L&) + < !f(cb)dcb.

( )

Definition 3. [37,55] CFFD’s Laplace transform is \D¥ and
g € (0,1] of M(t) is given as follows:

SLIM(D)] - M(0)
s+ @ - )

LIGIEM(0)] =

4 Dengue fever model of fractional

order: existence and uniqueness
results

To establish the existence of at least one solution to the
model, we utilize the theorems of Banach and Krasnoselskii.

h1b
fi(t)A) Bx C; D) E) F) = AuhNh - ﬁThAG - pA - KuhA
hab’
(t,A,B,C,D,E,F) = vE - P BG - u’B
2 Nh h
h1’
f,(t, A,B,C,D,E,F)=(1- 1) - 'BTAG
h
h2v’
+(1- l/))ﬁ BG - () + 0 +y°)C
»’ b”

fu(t,A,B,C,D,E,F) = zpiAG ¢_BG @

(v + Upo)D
fi(t, A, B, CDEF)= p’A + y9(C + D)
+79C - (@7 + 1)
bo
f;(t,A,B,C,D,E,F) = u’N, - NLh(C +D)F - u’F

bﬂ
f;(t,4,B,C, D, E, F) = - ~(C + D)F ~ )G,

DE GRUYTER
where
A(0) =Ny, B(0) =N, C(0)=N; D(0) =N,
EW0)=Ns, F(0)=Ns, G(0)=N.

So our problem becomes

XDSA(t) = f,(t, A, B,C, D, E, F),
LCp?B(t) = f,(t, A, B, C, D, E, F),
LpPc(t) = f,(t,A, B, C, D, E, F),
XDPD(t) = f,(t, A, B, C, D, E, F), (5)
LDYE(t) = f,(t, A, B,C, D, E, F),
LpYF(t) = f,(t,A, B, C, D, E, F),
LDIG(¢) = £,(t, A, B, C, D, E, F),

where
A(0) =N, B(0) = N,
E0) =Ns, F(0) = N,

C(0) =N, D(0) = Ny,

G(O) = N7.
Here, we consider

Ny
N,
N,
, Wo = |Ngj,
Ns
N
N,
S, W()
LG W)
S W)
L& W)
f5(t W)
Jo(t, W()
F (G W()

W(t) =

AOMmMmOO 3>

F(t, W(t) =

Hence, we can express system (5) as follows:

Lepiwg = F(t, w(t)),
w(0) = W,

0<g=<1, ©)

Lemma 1 provides the solution to Eq. (6) if and only if the
right side evaluates at zero.

W(t) + Wy + XF(t, W(b)) + XIF(E, W(®))dd where
0
k()
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and X=£

k()
To facilitate further analysis, we will define the Banach
space O = L[0, T] by specifying the norm of © on the
interval 0 < t < T < o,

IWII =k, ry {IW (O] : W € D} ™

Theorem 1. (Krasnoselskii fixed point theorem) Suppose
D C X is a convex and closed subset, and consider two
operators A and B such that

1) AW, + BW; € D;

(2) 8 is continuous and compact, while A is contraction;
(3) 3 at least one fixed point W, such that AW + BW = W hold.

The following statement holds:
(H1) Assume kr > 0 is a given constant, then

[F(t, W(t)) = F(t, W(D)| < ke|[W - W],
(H>) Let Cr > 0 and MFr > 0 be two constants. In this case,
we have the following relationship:

[E(t, W)I < CFlW| + M.

Theorem 2. Thanks to Theorem 4.1, If Gkr <1, then the
problem defined by Eqs (4) and (7) has at least one solution.

Proof. Suppose we intend to define the set D as a set that
possesses both compact and closed. D = {W € X : ||W|| < r}.
Consider the operators A and B, then we have the following:

AW() = Wy + GE(t, W(D))
t
_ 8
BW(t) = G [F(, W()de. ®
0

Let W and W belong to X for the contraction condition of
A defined in Eq. (8). In this case, we can observe the
following relationship:

AW - AW|| = sup |JAW(L) - AW ()|

te[0,T]

= sup G|F(t, W(t)) - E(t, W(t))| (9)
t€[0,T]

< Grel||W - W],

thus A is contraction. For compactness of 8, consider

IBW(0)] =

G JF(@, W(®))dd
0

\ (10)
<G _[|F(cp, W (®))|do.
0
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Taking max of Eq. (10), we have

t
IBWI|<G sup [IF(@, w(@)|de
te[0,T] 0
o (a1
<G sup [[CrIW|| + Mplde
17

t[0,T
< GT(CFI" + MF)

Consequently, 8 is bounded in Eq. (11). Assuming the
domain oft is t; < t,, we obtain the following:

1BW () - BW ()|

12}
G J'F(cp, W)do
0

]
-G IF((ID, W)do
0

)
G |F(®, W)do
‘(I: 12)

0
+C IF((ID, W (®))dd

4

2]
<G J'|F(c1>, w)|do
4

< G(Cer + Mp).

Upon & — 4, the right side of Eq. (12) tends to zero. In
addition, 8 is uniformly bounded, so

IBW(t) - BW(t)| — 0.

Thus, satisfying all the assumptions of Theorem 1, the ana-
lyzed model (Eq. (6)), possesses at least one solution due to
the complete continuity of 8. |

Theorem 3. Considering (H,), if GF(1 + T) < 1 is satisfied,
then there exists a unique solution to the problem presented
in Eq. (6). Consequently, the model (4) possesses at most one
solution.

Proof. Let # : X — X be an operator defined as follows:
4

PW(t) = Wy + GE(t, W(t)) + c‘;_[F(cp, W(®))d®.
0

Let W, W € X, then
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[P(W) = P(W)||= sup [PW)(E) -~ PW)(O)

t€[0,T]

< sup GIF(t, W(b)) - F(t, W (D))

te[0,T]

t
+ G sup |[|(F@, w(@))

te[0,T] 0

- F(, (W(®)))|d®

< Gkp||W - W|| + GKeT||W - W],

which suggests that

[P(W (=PI < Gre(1 + TH|W - W]|.

(13)

Therefore, the problem stated in Eq. (6) can have a max-
imum of one solution, implying that model (5) possesses a

unique solution.

O

5 Developing a generic algorithm

to solve the model under
consideration

Setting k(g0) = 1 and applying the Laplace transform yields
the series-type solution to the issue. It is thus possible to

construct the following algorithm:

hob’
+(1- w)BThBG

- [y + 77 +y")C]

L] -D©) _| B . BY
s+pl-s) lehAG+¢NhBG
-+ Up2)D

SLIE®)] - E©) _

9 9 9
s+ p-s) [p’A +y’(C+ D) + T°C

- @ +u)) - E]

SLIFO1-FO) | o BY L,
s+ g-5) = U, Ny Nh(C+D)F u, F

b0
SLGOI=6O) B (0, pyp_ o
Ny

s+ -s)

SLIA®D)] - AQ) _ L PR
stpi-s) Upo Ny N, AG - p’A - uA
sLIBOI-BO) |, pr2Y |
—s+@(l—s) = |vYE —h BG yhB
sLlcol-c© |, B
stpi-s |0V TN A

(14)

LIA®)] =

L[B(O)] =

LIC®)] =

L[] =

LIE®)] =

LIF(@)] =

LIG(] =
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A(0) s+ g(l-5s) ph1’
S + S ,£ ;uhaNh - Nh AG
- p’A - ulA
- b’
BO) , stpl-s) |, g2
S S h
— y,fB
C0) s+g(-5s) _
s * S L[(l ¥)
ph1’ pha2t’
-—AG+ (1 -Y)—BG
N, a-v N
D(0) L 57 g1 S)L wﬁﬂAG
S S Ny
(15)
bz?

+ wNL;BG - (v + ,»)D

E(0) . s+ g -5)

S s LIpP’A+y'(C+ D)

+79C - @7 + ) - E]

FO) s+@d-3)
s S
BY

- NLh(C + D)F - u’F

€@ ,sxpdzs, Bj(c + D)F
S S Ny

- u’G|
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Using the initial conditions of system (2): n=0:Ry=AGy
nzl:R1=A061+AlGO
9
N S+ @(1 -S) Bhlb n=2:R =AyGy + AGy + AGy
A)] = =+ 2 Ll - AG
L140] S S L Hpo N Ny, n=3:R=A)G3+AGy+ AGy + A3Gy
n=4:R,=AyGy + A1G3 + AGy + A3G1 + A4Gy
- p’A - ulA 3
n=n:R,=AoG, + AGyq +-+ A-1G1 + A,Gy
N, s+p-s) |, ph2Y . w
LIBO) = "5+ == LUE =y =BG~y B B(t)G(t) = ZOMn(t),
Ny s+ gl- h1’
cle) = 4 SEEEZD [(1 v - P a where
ph2”’ e Z Q“By Z 0“Gi
+(1-¥)~—BG Y(n + 1) do" k=0
Nh Q=0
b" n=0:M0=B()GO
N, s+@l-s
L[D(®)] = ?4 + % wﬁhl - AG + 'P_BG n=1:M = ByG1 + BiGy
(16) n=2:M = ByGy, + BiG1 + B,Gy
n=3:M;= ByG3 + BiGy + ByGy + B3Gy
= (Vl9 + [.lhO)D n=4:M,;= ByGy + BiGs + By,G, + B3sGy + ByGy
Ny s+gl-s =n: M, = ByG, + BiGp-1 +--+ By_1G1 + B,G
.E[E(t)]=?5+ @é )L[p3A+y"(C+D) n=n:Mp= boln + b1Gn-1 n-1G1 + BpGo
+79C - (P + ) - E] COF) = Y Q,(D),
n=0
Ny s+gd-s
ciF@) = 2+ STELES) flyo, where
y 0= v Z@"C S o5
Vvt k k
- “Y(CF + DF) - u’F " Y(n+ 1) de” =0 i
Nh Q=0
n=0:Q,=GCk
b’ 0
N + (1 -
LIGH] = =L + LR Sy @é 9 | (CF+DF) u’cG n=1:0Q,=CkF + CF
§ n=2:0Q,=CkF;+ GF + GF
n=3:Q,=CkF; + CF, + GF, + C
Now we calculate the series form solutions is given as, i.e., Qs of3 vz #1 3o
n=4:Q4=C0F21+C1F3+C2F2+C3F1+C4F0
A = YA, BO) = YB(D, €)= Y Gl '
ngo " ngo " ,Zo ! n=n:Q,= Ch + Clp-q +-+ Gl + Gl
D(t) = ) Du(t), E(t)= Y En(0), D(OE(t) = z (D),
n=0 n=0 n=0
- - where
F(t)= ) D(t), G(t) = ) Gu(0).
n=0 n=0 n n
1 dr X X
The nonlinear terms AG, BG, CF, and DF decomposed in Ny = Y(n + 1) do” Z "Dy ZQ Fi
terms of Adomian polynomial as follows: Q=0
hd n=0:Ny = DOFO
ADG() = ) Ry(0), n=1:N = DoFy + D;F,
n=0 n=2:N,=DyF,+ DF; + D,Fy
where n =3: N3 = DyF; + DiF, + D,F; + D3F,
n n=4:N, = DyF, + DiF5 + DyF, + D3F; + DyFy
1 :
n Z 0"A Z "Gy )
T Y+ D) dQ =0 n=n:N,=DoE + DiFq + -+ Dy_1F, + DF,.

Q=0
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Considering these values, model develops as follows:

Mﬁ*@)ﬂ-%
S

LY A =
k=0

p’

h1!
12Ny — B ZRka) p’ ZAk(o

- ZAk(o
k=0

&+s+@(l—s)£
s

LY Bu(| =
k=0

hot’ 2
B ZMka)—uh ZBk(t)

v? ) Ex(t) -
k=0

_3+s+5p(1—s)£

L zCk(t) =
k=0

P o«

ﬁ’” ZR () + wﬁ ZMk(t)

= (V7 + 1) ) Di(t)
k=0

N, stpd-s)
N N

LY B =
k=0

lp” Y A(t) + y*’[ZCk(o + ) Di(t)
k=0 k=0 k=0

- @+ ) - ZEk(f)

%+S+@(1_5)L
s

LY F(t)| =
k=0

p? o
ulN, - B—[Zoka) * ZNk(o] ul Y F(t)
k=0

L ZGk(t) =
ﬁb”[

&+S+@(1_5)L
s s

Y Q) + ZNk(o] 1l ¥ Ge(o)|
k=0

+ 79 ) G(t)
k=0

(17
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Comparing the terms of Eq. (17), the following compli-
cations arise;
Case 1: If we set n = 0, then

L[Ay(D)] =

N; s+@l-s
— %aym]

N
LIBy(O)] =

1 —
cle) = 2+ SELZD i -y
L[Dy(t)] = % (18)
£l = 22+ SO o sy

i) = 5+ LD o

s L[Gy(D)] = —
l(l - ﬁ nt i Re(t) + (1 - ﬁ z Mk(t)] Taking inverse Laplace transformation, and we obtain
Ap(t) = Ny + (upeN[1 + go(t - 1)]
o N, s+od-s) By(t) = N,
£ 3 px(o) - s %L Co(t) = Ny + (1= P)[1 + go(t ~ 1)]
Dy(t) = Ny (19)

Eo(t) = Ns + (7 + p))[1 + go(t - D]

Fo(t) = Ng + (u’N)[1 + go(t - D]
Go(t) = N7.
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Case 2: If we set n =1, then

1- hy’
stmon = D A B a0600
- pPAo(t) - 1 Ap(t)

L[Bi(0] = %HL VIE(t)
h2’
£ N, Bo0G(®) - 4Bo(0)
- hlb"
sico) = =D - B s,
pra”
RN YO0
1
i) = S wﬁ L A4g(0Go(®
ﬁi?lo 9
+ YEBAOG(O) = (v + iy )Do(0)
h
2101 = ZED oo
+ Y2(Co(t) + Do(t)) + TCo(t)
SRRSO}
1- »’
cion = S22 AP on
+ DUOFO) - 1RO
1- b’
z16i01 = LD 1P cor
+ Do(DF(0)) ~ 1) Gol()

] (20)

Numerical analysis of dengue transmission == 9

Taking inverse Laplace transformation, we obtain

h1t’
A(t) = _ﬁNh A(1)Go(t) = pPAg(t) = 1 Ag(D)|11
+ go(t - 1]
h2b’
By(t) = |V9E(t) - ﬁThBo(t)Go(t) - 1P Bo(0)|11
+ go(t - 1]
h1’ hob’
G(t) = BN Ap(B)Go + (1 - l/))ﬁ Bo(t)Go(t)|[1
+ g(t - 1)
»® »®
Dy(t) = wNLZAo(t)Go(t) ¥ wNL;Bo(f)Go(t)
Q1)
= (V9 + w)Do(D)|[1 + go(t — 1)]
pY
Eq(t) = —_(Co(t)Fo(t) + No() - uFy(t)|l1
+ go(t - 1]
bﬂ
Fi(t) = -NLh(Co(t)Fo(t) + Do(DFy(1)) = uFo(t) [1
+ go(t - 1)]
bl‘}
Gi(t) = NLhwo(t)Po(t) + Do(O)F(1)) = 1 Go(0)|[1
+ go(t - D).
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Case 3: If we set n = 2, then

bx?
L1 = L2 0B a 06,0
= pPA () — 1) Ay (1)
LBy0)] = %HL VIE(t)
hob’
_E N, BOGD - uBy(t)
_ h p’
rleo)= B 1-F Nl 406,
N
+@1 l,b) Bl(t)Gl(t)
s+ gl - Bm
LIDy(1)] = f Ll M OG0

bz?
+ l/)%&(t)ﬁ(t) = (v + w)Dy(0)

+ Di(OF:(1)) - 1 Gi(D)|-

LIED)] = “”—“'s)zs[ 2A,(6)
+p2(Gi(t) + D) + T0Ci() - @ + 1)
- B
_ b
LIF(0)] = W b ERCOLIC
+ Dy(OF(1)) = uJFy(t)
1 _ b
si6,01 = S0 omeo

(22)
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Taking inverse Laplace transformation, we obtain (23)

pnt”’ [ pnr’ ) Y o| B
A(t) = N ThAo(t)Go(t) = PPAq(t) = 1 Ao(t) Vh(c‘)(t)ﬂ’( ) + Do(t)Fo(t)) = 1 Golt)|- N, Ag(t)Go(t) = p°Aq(t)
. g’ . . 1
= A0 = )= = Ad(0G(0) = PPAoD) = AD| {1+ 2o(t = 1) + 5~ 2+ 1
By hob’ hot’ 0’
By(t) = IU ——(Co( MFo(t) + No(t)) = u Fo(t)| = ﬂTh VIE(t) - B N Bo(t)Golt) — 147 Bo(t) Vh(c"(t)ﬂ’(t) + Do(t)Fo(t)) ~ 1 Got)
9 phat’ . 22
- 1P| UOEq(t) - N, Bo(t)Go(t) = i, Bo(t)|| |1+ 2go(t - 1) + @Z[E -2t + 1,
_pnt’ [ pnt?’ £
G(t) = N, N, Ao(t)Go(t) = pPAo(t) = 1 Ao(0) (Co(t)Fo(t) + Do(t)Fo(t)) ~ 1 Golt)
bﬁ[ hob’ b’ 2
—_ B ) _ ﬁ _ 9 v _ 9 _ 2 t_ _
+(1-9) l Eo(t) N, Bo(t)Go(t) — uy, Bo(t) N, (Co(®)Fo(t) + Do(t)Fo(t)) — 1) Go(t)|| |1+ 2¢o(t —- 1) + g 21 2t +1
B[ pnp’ i
Dy(t) = l/JNL; N Ag(t)Go(t) = p°Ao(t) - HhAo(t) (Co( )Fo() + Do(t)Fo(t)) = 1 Go(t)
By hob’ £
* - - U‘?Eo(t) B v Bol0Go(0) = 17Bo(0)| 1—(Colt)Folt) + Do(t)Fo(0)
h h
»’ »? 2
- 1)Gol)|- v + )Y = Ao(01Go(0) + l/)lBo (OGo(t) = V0 + wa)Do(t)|| (1 + 2g0(t - 1) + @2[5 -2+ 1]
» o 2 (23
Rl h2
Eqxt) = |p? _BNh Ag(t)Go(t) = pPAolt) - #;l’Ao(t) +y9 [ ﬁN ——Ao(t)Go + (1 - l/})ﬁ Bo(t)Go(t)
b’ v’ o J
B 1t oY
+ wNL;Ao(t)Go(t) + l/)NL;Bo(t)Go(t) = (V7 + wa)Do(t)|| + 77 £ N, Ao(t)Go + (1 - lﬂ)ﬁ Bo(t)Go(t) |~ (17 + u,? )
By N s
A (Co(t)Fo(t) + No(0)) — u, Fo(t)|| |1+ 2¢o(t - 1) + o o 2t+1
Y[ pne” n' ,B””
K(t) = |- N, ﬁN Ao()Go + (1 - w>ﬁ (O)Go(t) || =~ Co( )Fo(t) + Do(t)Folt)) = Fo(t)
Bb” ﬁb” »’
+ leL;AO(t)GO(t) + szL;BO(t)GO(t) = (V7 + 1,9)Do(t) —NLh(Co(t)Fo(t) + Do()Fo(t)) - yfFo(t)
'Bb‘? tZ
= 1| = (GOF(0) + DoOF(0) = uRo(0)|| |1+ 200t = 1) + @2[5 -2+ 1”
h .
Bb“’ B b“’ v
Go(t) = N Gi(t) 1/1#140( )Go(t) + IP*BO )Go(t) = (V7 + 1,9)Dot) —NLh(Co(t)Fo( ) + Do(t)Fo(t)) — 1 Fo(t)
b’ ﬁb" b?
+ l/JNL;AU(t)Go(t) + wNL;Bo(t)Go(t) - (7 + yo)Do(t) —NLh(co(t)Fo(t) + Do(t)Fo(t) — HIFo(t)
»’ 2
#V —(Co(t)Fo(t) + Do(t)Fo(t)) - #JGo(t) 1+2g(t - 1) + g o 2t+1
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Table 1: Interpretation of the parameters and its values
Parameters Description of parameters Values Source
B Transmission from vectors to susceptible A 0.75 [55]
B Vector-to-susceptible B transmission probability 0.375 Assume
u, Vector’s birth and death rates 0.0295 Assume
Fractional memory index 0.5 Assume
T Rate of individual recovery Variable Assume
v Rate at which the host’s immunity declines 0.05 Assume
B, Probability of transmission from humans to vectors 0.75 [55]
y Rate at which the host recovers 0.32883 [371
Y Asymptomatic carrier proportion Variable Assume
b Vector’s biting rate 0.5 [55]
p Vaccination fraction for type A susceptible hosts 0.3 Assume
Uy Human’s birth and death rates 0.000046 to 0.004500 [371
50 . : - -
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Figure 1: Illustration for depicting the interaction between host and vector populations, where (a) ¢ = 0.4, (b) 0.5, (c) 0.6, and (d) 0.7.
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and so forth. To find more terms in the series solution, 0 Com putational results
this method might be used. Consequently, we arrive at the
solution as follows:

A(t) = Ag(t) + Ag(0) + A (0) +-
B(t) = By(t) + By(t) + By(t) +--
C(t) = Go(t) + Go(t) + Co(t) +---

D(t) = Do(t) + Dy(t) + Do(t) + -+ (24)
E(t) = Eo(t) + Eo(t) + Ex(f) +--
F(t) = Fo(t) + Fi(t) + (L) +-
G(t) = Go(t) + Gy(t) + Go(t) +-
50 ;
———b=0.42
b=0.52
= ——— b=0.62]
——b=0.72
m 40 §
2
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§ 30t
g
§ 250
.g
g 20f
15f \\\
\\\\
10 .
0 10 20 30 40 50
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In this section of the study, we present the outcomes
relating to the approximate series solution of the proposed
model. To obtain these results, we utilize the approximate
values of the parameters specified in Table 1. Considering
these parameter values, we generate plots that illustrate
the solution up to five terms. Figures 1-6 correspond to
different fractional orders within the model.

For different values of the parameters given in Table 1,
we run simulations using the model 2, inspecting the time
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Figure 2: Illustration for depicting the interaction between host and vector populations, where (a) b = 0.42, (b) 0.52, (c) 0.62, and (d) 0.72.
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series through the Laplace Adomian decomposition
approach in order to better understand the proposed frac-
tional model’s dynamics. To see how the fractional order
effects the system, we depict the dengue virus’s behavior in
Figure 1 by varying 9. It is shown that the index of memory
may be lowered to reduce the prevalence of illness in a
community. In order to reduce the prevalence of infections
in the population as a whole, it is recommended that pol-
icymakers implement a strategy and procedure that reduce
the memory index . Figure 2 shows the population and
changes in biting rate, which can help you better under-
stand the impact of the vectors biting rate. We found that
the vector bite rate is crucial in the sense of increasing the
virus infection level as a whole, and thus we can limit the
dengue infection level by reducing the mosquito biting

50
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rate. Due to global warming, which creates favorable con-
ditions for the proliferation of mosquitoes, the bite rate
and, by extension, the infection rate will rise. In Figure 3,
we change ¥, which is the asymptomatic fraction, to see
how it affects the pace of virus spread and how we might
slow it down. Infected host people may be profoundly
impacted by the asymptomatic percentage, as we have
shown. The asymptomatic subset, on the other hand, has
been shown to infect and disseminate the dengue virus to
areas where it is not prevalent. This suggests that asympto-
matic carriers pose a greater threat, suggesting greater
levels of control. In Figures 4 and 5, we see how the
dynamics of system 2 change when the vaccination rate
and treatment intensity are varied; this suggests that the
vaccination rate has a little impact on the system overall,

T 90 T T T T
— y=0.42 — y=0.42
45} — y=0.52|] — y=0.52
y=0.62 8ot y=0.62 |4
— y=0.72 —_—
o a0l \% | y=0.72
o
£ 701
g 35 &)
3 -
3 2
@ 30+ o 60
S L
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S 25 £
8 50 g
& 20f
401
15F
10 ’ . 30 " L n L
0 10 20 30 40 50 0 10 20 30 40 50
Time in days Time in days
(a) (b)
140 T T T T 900 T T T T
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130} y=0.62 |4 800 | =042
y=0.72 ¥=0.52
y=0.62
1201 © 700 y=0.72
S
(=) ©
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€ 110 » 600} 1
© >
o S
kst
R}
100} < 500} i
90} 400}
80 L L L L 300 L L L .
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Time in days Time in days
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(d)

Figure 3: Illustration for depicting the interaction between host and vector populations, where (a) ¥ = 0.42, (b) 0.52, (c) 0.62, and (d) 0.72.
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Figure 4: Illustration for depicting the interaction between host and vector populations, where (a) p = 0.24, (b) 0.34, (c) 0.44, and (d) 0.54.

but treatment has a significant role to play in reducing the
number of infected people. Changing v by a little amount in
the second-to-last simulation (shown in Figure 6) showed
that the widespread level was very sensitive to this input
parameter. This suggests that dengue’s partial immunity is
crucial, prompting stronger measures of management.

7 Conclusion

The article focuses on the dengue virus, which is transmitted
by mosquitoes and causes illness in humans. It presents a

comprehensive overview of research concerning the virus,
with a specific emphasis on the concerns of scientists regarding
its potential for rapid spread and the growing risk of an
epidemic. To gain a deeper understanding of the intricate
dynamics of dengue fever transmission, the study proposes
the use of a mathematical model that incorporates crucial
factors such as vaccination and the application of fractional
derivatives. This article represents a noteworthy advance-
ment in our understanding of the transmission dynamics
of dengue fever and serves as a crucial resource for indi-
viduals engaged in prevention, detection, and treatment
efforts for the illness. The utilization of fractional
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Figure 5: Illustration for depicting the interaction between host and vector populations, where (a) 7 = 0.002, (b) 0.003, (c) 0.004, and (d) 0.005.

derivatives and diverse computational methodologies opens
up new possibilities for improving management strategies
and treatments for dengue fever. Furthermore, the research
underscores the significance of collaborative endeavors in
addressing complex infectious diseases and establishes a solid
groundwork for future investigations into dengue fever.
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