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Abstract: In this article, the (2+1)-dimensional KdV equa-
tion by Hirota’s bilinear scheme is studied. Besides, the
binary bell polynomials and then the bilinear form is cre-
ated. In addition, an interaction lump with k -soliton solu-
tions of the addressed system with known coefficients is
presented. With the assistance of the stated methodology, a
cloaked form of an analytical solution is discovered in
expressions of lump-soliton rational functions with a few
lovable parameters. Solutions to this study’s problems are
identified specifically as belonging to the lump-one, two,
three, and four soliton solutions. By defining the specific
advantages of the epitomized parameters by the depiction
of figures and by interpreting the physical occurrences are
established acceptable soliton arrangements and dealt with the
physical importance of the obtained arrangements. Finally,

under certain conditions, the physical behavior of solutions
is analyzed by using the mentioned method. Moreover, the
graphswith high resolutions including three-dimensional plots,
density plots, and two-dimensional plots to determine a deep
understanding of plotted solutions that will arise in the applied
mathematics and nonlinear physics are employed.

Keywords: Hirota bilinear scheme, (2+1)-dimensional KdV
equation, interaction lump with k-soliton solutions

1 Introduction

Nonlinear partial differential equations (NLPDEs) have
been used in various domains from physics to engineering,
chemistry and biology, and environmental monitoring system
as mathematical models of complex physical processes [1–3].
In the investigation of nonlinear physical events, the exact
solutions to nonlinear evolution equations (NLEEs) play a sig-
nificant role. To obtain the exact solutions of the NLEEs,
the Cole–Hopf transformation is also widely used, e.g., on
the miscellaneous soliton waves in metamaterials model [4],
diffusive susceptible-infected-susceptible epidemic model [5],
and the nonlinear vibration and dispersive wave systems [6].
The optical soliton solutions to the Kudryashov’s quintuple
self-phase modulation with dual-form [7], the unified method
[8], homogeneous Neumann boundary conditions [9], the
Hirota bilinear method [10–12], the acid–base theory of sur-
faces [13], the deep learning algorithm [14], distributed parallel
particle swarm optimization [15], image processing and
flow field reconstruction algorithm [16], behaviors in group
decision-making systems [17], sector beam synthesis in
linear antenna arrays [18], a hybrid stochastic-deterministic
approach [19], a novel fractional-order multiple-model type-
3 [20], N -lump and interaction solutions [21], derivation of
optimized equations for estimation of dispersion coefficient
[22], truss optimization with metaheuristic algorithms and
under dynamic loading [23], an improved Hirota bilinear
method [24], optimal bidding and offering strategies [25],
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quantum chromo dynamics sum rules [26,27], a hybrid con-
volutional neural network [28], the proton-exchange mem-
brane fuel cells based on deep learning [29], the robust
optimization technique [30,31], the network governance
step by step method [32], and the neural network method
[33] are just few of the methodologies discovered for
obtaining explicit solutions to NLEEs. Solitary wave solu-
tions, periodic wave solutions, shock wave solutions, and
other exact solutions were achieved using these methods.
The interested reader can see some good topics in previous
studies [34]–[40].

The objective of this research is to go further into the
subject of how to find solitary waves and lump solutions to
the (2+1)-dimensional Korteweg–de Vries (KdV) equation. To
achieve this, we have adopted the Hirota bilinear method
and the binary bell-polynomials (BBPs) approach.

Ma [41] invented the lump transformation as a straight-
forward and easy approach for obtaining solutions as a
combination of positive functions to NLPDEs. Zhao et al.
[42] obtained the interaction between lump and two kink,
periodic, wave, and other solutions for the Burger system by
using the multidimensional Bell polynomials and based on
the binary Bäcklund transformations and the generalized
Bell polynomials. Akter and Hafez [43] explored the head-
on collision between two-counter propagating positron
acoustic solitons and double layers in an unmagnetized col-
lisionless plasma. By using a technique of the symbolic com-
putations utilizing Maple, Ma obtained the lump-soliton,
lump-kink, and lump-periodic solutions, which were computed
for the Hirota–Satsuma–Ito equation in (2+1) dimensions [44].
The same author explored the novel (2+1)-dimensional non-
linear equations containing lump solutions via the Hirota
bilinear method and he formulated a combined fourth-order
nonlinear equation for guaranteeing the existence of lump
solutions [45]. N-soliton solutions and dynamic property ana-
lysis of the generalized three-component Hirota–Satsuma
coupled KdV equation [46] and a (2+1)-dimensional combined
equation [47] were investigated by capable scholarships.
Numerous exact and lump soliton solutions have been
achieved using the logarithm transformation.

The Hirota BBPs unifies the Hirota bilinear method
and the BBPs to give systematic and straightforward hand-
ling of the solution process of nonlinear equations. We
have employed an improved version of the Hirota BBPs
approach to acquire variety lump solutions to the (2+1)-
dimensional KdV system. Lump solutions construct posi-
tive quadratic function solutions of a novel type, and also
lump-multi-soliton combines a positive quadratic function
and different exponential functions solutions. So it is feasible
to develop lump and lump-solitons solutions to NLPDEs with
simplifying the complicated computations. For this purpose,

the Hirota bilinear form along with BBPs of the proposed
problem is utilized to create the mentioned solutions.

The following (2+1)-dimensional Hietarinta equation
has been introduced and studied by some researchers,
for example, the spectral transform of a KdV equation in
two space dimensions by using of the weak Lax pair [48],
single- and multi-solitary wave solutions [49], generalized
dromion solutions of the (2+1)-dimensional KdV equation
[50], the localized excitations of the (2+1)-dimensional KdV
equation [51], and solitons and singular solitons for the
Gardner-KP equation [52]. The (2+1)-dimensional KdV equa-
tion [53] is considered as follows:

( )+ − = =u uv u u v3 0, ,t x xxx x y (1.1)

or ∫=u v xd ,
x

y where ( )=u u x y t, , and ( )=v v x y t, , . Wang
et al. [53] offered the periodic type of three-wave solutions
for Eq. (1.1) using Hirota’s bilinear form. Based on the Pain-
levé analysis in the study by Wang et al. [53], the new exact
periodic cross-kink wave solutions for the (2+1)-dimensional
KdV equation were obtained by Liu and Ye [54]. The fol-
lowing transformations are obtained

( ) [ ( )]
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where here u0 and v0 are two constants and ( )ϕ x y t, , is
uncertain function. According to the Painlevé analysis, the
bilinear formalism of the (2+1)-dimensional KdV equation
was obtained in the study by Liu et al. [55]. In the study by
Liu et al. [56], the interaction between lump-type solutions
to (2+1)-dimensional asymmetrical Nizhnik–Novikov–Ve-
selov equation were obtained. Ilhan et al. [57] used the
Hirota bilinear method for investigating the third-order
evolution equation to determine the soliton-type solutions.

The BBPs was considered in the study by Shen et al.
[58]. Based on the study by Li et al. [24],℘ ℘( )= x x x, , …, n1 2

be a ∞C function with the following multi-variables:
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with the below formalism (BBPs [24])
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The multidimensional BBPs can be written as follows:
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We can find the required relations as the following:
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Proposition 1.1. Let ( )= ∕μ ln Ω Ω
1 1 2 and ( )=μ ln Ω Ω ,

2 1 2 and
hence, the relation between BBPs and Hirota D-operator
shows
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with the following derivative
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Proposition 1.2. Take P( ) = ∑ =γ δΞ 0i i d x d x, … , j j1 1
and =μ

1

( )∕ln Ω Ω1 2 , ( )=μ ln Ω Ω ,
1 1 2 we consider
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with the following mentioned conditions:
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The generalized Bell polynomials ( )ξϒn x n x, … , j j1 1
is pre-

sented as follows:
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The Cole–Hopf relation is given as follows:
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with
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To be used in later stages, the mentioned issue with the
bilinear form to the (2+1)-dimensional KdV equation is
obtained from
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Gang et al. [59] studied an integrable of the generalized
Calogero–Bogoyavlenskii–Schiff–Bogoyavlensky–Konopel-
chenko equation by employing Hirota’s bilinear method
and obtained the multiple-soliton solutions. Zhao et al.
[60] investigated the N-soliton solutions of a generalized
(2+1)-dimensional Hirota–Satsuma–Ito equation by means
of the bilinear method and three kinds of high-order hybrid
solutions were presented. Based on the bilinear method
for a generalized (2+1)-dimensional nonlinear wave equa-
tion, the N-soliton solutions, were obtained in the study by
He et al. [61]. In the study of lump-N soliton solutions, Tan et al.
investigated M-solitons for the (2+1)-dimensional KdV system
[62,63] and some new lump solutions of the (2+1)-dimensional
breaking Soliton system [64] by the help of Hirota bilinear
technique. The Hirota bilinear scheme and τ -function form-
alismwere used in the study of localized nonlinear wave inter-
action structures generated by the six-soliton solutions of the
generalized Kadomtsev–Petviashvili equation [65]. Cheng et al.
[66] investigated an extended KdV equation in (2+1)-dimen-
sions, which cannot be directly bilinearized.

Based on the invariant subspace method, the Lie sym-
metries including Riemann–Liouville and Erdelyi–Kober
fractional derivatives of time-fractional form of the
Gardner equation have been studied [67]. Numerical
analysis of bioconvective heat and mass transfer across
a nonlinear stretching sheet with hybrid nanofluids was
investigated in the study by [68]. The (2+1)-dimensional
Benjamin–Bona–Mahony–Burgers model was considered
and reduced to the bilinear form by using the Hirota
bilinear scheme [69]. The modified Oskolkov equation in
incompressible viscoelastic Kelvin–Voigt fluid and fluid
dynamics was considered using the modified simple
equation method to retrieve various dynamical struc-
tural solutions of the nonlinear models [70].

Some closed-form invariant solutions and dynamical
behavior of multiple solitons for the (2+1)-dimensional

Different lump k-soliton solutions to (2+1)-dimensional KdV system  3



nonlinear rth dispersionless Dym equation using the Lie
symmetry approach have been found by Kumar et al. [71].
The (2+1)-dimensional Kadomtsev–Petviashvili–Benjamin–
Bona–Mahony equation by using two powerful techniques,
the Lie symmetry method and the generalized exponential
rational function method, with the help of symbolic com-
putations has been worked [72]. The (2+1)-dimensional
modified Calogero–Bogoyavlenskii–Schiff equation using
the Lie group of transformation method was studied, and
all of the vector fields, commutation table, invariant sur-
face condition, Lie symmetry reductions, infinitesimal gen-
erators, and explicit solutions were constructed [73].

The Hirota bilinear method was used to the equation
of the shallow water wave in oceanography and atmo-
spheric science was extended to (3+1) dimensions [74].
The (2+1)-dimensional variable-coefficient Caudrey–Dodd–
Gibbon–Kotera–Sawada model used in soliton hypothesis
and implemented by operating the Hirota bilinear scheme
was studied [75]. Zhou et al. [76] studied the (3+1)-dimen-
sional variable-coefficient nonlinear wave equation, which
is taken in soliton theory and generated by utilizing the
Hirota bilinear technique and obtained some new exact
analytical solutions, containing interaction between a lump-
two kink solitons and interaction between two lumps.

The important topic of this article is to gain the
valuable results on exact analytical solutions, containing
interaction lump with k -soliton solutions for the (2+1)-
dimensional KdV equation. There is a famous fact that
soliton equations can be rewritten as the Hirota bilinear
forms by applying the Hirota bilinear derivatives. These
good results are shown that the Hirota bilinear derivative
is a powerful mathematical tool to handle nonlinear integr-
able equation from nature. On the basis of the Hirota
bilinear forms of this considered equation, a class of
good results such as the lump-1 soliton solutions, lump
double soliton solutions, N-soliton solutions, and rational
solutions was obtained.

The arrangement and organization of this article is
given as follows. In Section 2, the interaction lump with
k -soliton solutions in subsections including lump-one, two,
three, and four soliton solutions to the (2+1)-D KdV equa-
tion by employing the BBP and the bilinear form of Eq.
(1.15) and according to Hirota’s direct scheme are dis-
cussed. Finally, conclusions are given is Section 3.

2 Resonant soliton solutions

The lump-one, two, three, and four soliton wave solutions
are studied and presented in the following subsections. The

general form of the lump with k -soliton solution can be
written as follows:
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=
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2

2

2

1

2 1
(2.1)

where

= + + + =+ + +a λ x λ y λ t λ l k, 1, 2,…, .l l l l l1 2 3

2.1 Lump-1 soliton solutions

There are many aforementioned equations, and we have to
specify the number of equation as follows:
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Afterward, the values ( )=λ l, 1 : 14l will be received. By
substituting Eq. (2.2) into (1.15) and taking the coefficients
of exponential function ( )eΦ x y t, , and polynomials function
with regard to x y t, , to zero, we yield a system of nonlinear
algebraic for constants ( )=λ l, 1 : 14l . We can obtain the rela-
tionship between ( )= +u u ϕ2 ln xy0 and ( )= +v v ϕ2 ln xx0 by
using of the logarithm transformation.

2.1.1 Category I solutions
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where λs are free values for =s 2, 4, 5, 6, 8, 9, 12, 13, 14. To
obtain the real function, we need the following condition:

≠λ 0.2 (2.4)

Along with the bilinear equation and using the values of
parameters obtained in Eq. (2.3) in Eq. (2.2), we acquire
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If → ∞x , then lump-one soliton solution of solution functions u

andv with any time. Figures 1 and 2 show the dynamical proper-
ties of lump and move forward of soliton as exponential func-
tion with plots of u and v by the following determined values:
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in Eq. (2.5). By using the aforementioned parameters, the
structural properties among a lump and one parallel
y-kink of solutions are shown in Figures 1 and 2 and with
illustrations of 3D and 2D plots. It is remarkable that chan-
ging the parameters affects the final results.

2.1.2 Set II solutions

= = = = = = =
= = = =
= − − = =

=

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

λ λ λ v λ λ λ λ

λ λ

0, , 0, ,

0, , , ,

3 , , ,

,

1 2 3 4 4 5 7 6 6

7 8 8 9 9 10 10

11 9
3

9 0 12 12 13 13

14 14

(2.6)

where λs are free values for =s 4, 6, 8, 9, 10, 12, 13, 14.
Using the values of parameter obtained in Eq. (2.6) in Eq.
(2.2) yields

( )

( )

( )
= +

+ + + +

− − + + +

− − + + +
u u

λ λ λ

λ yλ λ λ λ
2

e

e
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3

4
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6 8
2

13
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9
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9
3

9 0 9 10 12

(2.7)

Figure 1: Plot of lump-one soliton solution (2.5) (u1) (3D, density, and 2D plot y).

Figure 2: Plot of lump-one soliton solution (2.5) (v1) (3D, density, and 2D plot y).
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If → ∞x with >λ 0,13 then lump-one soliton solution of
solution functions u2 and v2 with any time. Figures 3 and
Figure 4 show the dynamical properties of lump and move
forward of soliton as exponential function by plots ofu and
v by the below determined values

= = = = = = =
= = = =

λ λ λ λ λ λ λ

λ u v t

2, 1, 1, 1, 1, 1, 1,

1, 1, 2, 1,

4 6 8 9 10 12 13

14 0 0

in Eq. (2.7). By using of the aforementioned parameters the
physical properties among a lump and one parallel y-kink
of solutions as shown in Figures 3 and 4 and by 3D, density,
and 2D graphs.

2.2 Lump-2 soliton solutions

To find the exact forms of solutions of the Eq. (1.15), we
define the lump-two soliton solutions as follows:

( ) ( )

( )

= + + +

+ + +

ϕ a a λ a λ a

λ a a λ

exp exp

exp ,

1

2

2

2
17 3 18 4

19 3 4 20

(2.8)

= + + + = + + +a λ t λ x λ y λ a λ t λ x λ y λ, ,1 3 1 2 4 2 7 5 6 8

= + + + = + + +a λ t λ x λ y λ a λ t λ x λ y λ, .3 11 9 10 12 4 15 13 14 16

Afterward, the values ( )=λ l, 1 : 20l arbitrary constants that
are to be discovered. By inserting Eq. (2.8) into Eq. (1.15), a

system of algebraic equations is fulfilled. We acquire the
following cases from the solutions of the system:

2.2.1 Set I solutions

( )

( )

= = = = = =
=

= − = − = +
= − +

u λ λ λ λ λ λ

s

λ λ λ λ λ λ λ v

λ λ λ v

0, 0, ,

2, 4, 6, 8, 12, 13, 16,

, , 3 ,

3 ,

s s0 1 3 5 7

9 13 10 14 11 13 13
2

0

15 13 13
2

0

(2.9)

Figure 3: Graph of lump-one soliton solution (2.7) (u2) (3D, density, and 2D plot y).
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where λs are free values for =s 2, 4, 6, 8, 12, 13, 16,…, 20.
Along with the bilinear equation and using the values of
parameters determined in Eq. (2.9) in Eq. (2.8), we yield

( ( ))

( ) ( ) ( ) ( )

( ( ))

= +

= +

⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠

∂
∂ ∂

∂
∂

∂
∂

u u ϕ x y t

u

ϕ x y t ϕ x y t ϕ x y t ϕ x y t

ϕ x y t

2 ln , ,

2

, , , , , , , ,

, ,
,

xy

y x x y

0

0 2

2

(2.10)
( ( ))

( ) ( ) ( )

( ( ))
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= +

⎛
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⎞
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⎝
⎞
⎠

∂
∂

∂
∂

v v ϕ x y t

v

ϕ x y t ϕ x y t ϕ x y t
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2 ln , ,

2

, , , , , ,

, ,
,

xx

x x

0

0

2

2

2

2

( ) ( ) ( )

( )

= + + + +

+ + +

+ − + +

− + + + + + +

ϕ yλ λ yλ λ λ

λ λ λ

e

e e .

λ λ v t λ x λ y λ

λ λ v t λ x λ y λ λ y λ λ

2 4
2

6 8
2

17
3

18
3

19
2

20

13 13
2

0 13 14 12

13 13
2

0 13 14 16 14 12 16

If → ∞x , then we obtain lump-two soliton solution of solu-
tion functions u and v with any time. Figures 5 and 6 show
the dynamical properties of lump and move forward of
solitons as two exponential functions by plots of u and v

by the following determined amounts:

= = = = = = = = =
= = = =

λ λ λ λ λ λ λ λ λ

λ λ v t

2, 1, 1, 2,

3, 1, 2, 1,

2 4 6 8 12 14 16 17 18

19 20 0

in Eq. (2.10). By using of the aforementioned parameters,
the physical properties among lump-two and one parallel
y-kink of two kink solutions are presented in Figures 5 and
6 and by 3D, density, and 2D graphs.

2.2.2 Set II solutions

= − =

= = = = = −
= = = = = =

= =

λ
λ λ

λ
λ

λ λ v

λ

λ λ λ λ λ λ λ λ λ λ v
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, 3 ,

, , , , 3 ,

, 0,

, ,
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5 6

2

3

5 6 0

2

2 2 4 4 5 5 6 6 7 5 0

8 8 9 11 13 14 15

10 10 12 12

(2.11)

where λ λ λ λ λ λ λ, , , , , , ,2 4 5 6 8 10 12 and ( )=λ i, 16 : 20i are free
amounts and with the following

≠λ 0.2 (2.12)

Along with the bilinear equation and using the values
of parameters determined in Eq. (2.11) in Eq. (2.10), we
acquire

Figure 4: Graph of lump-one soliton solution (2.7) (v2) (3D, density, and 2D plot y).
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If → ∞x with >λ 0,13 then lump-two soliton solution of
solution functions u and v with any time. Figures 7 and 8
show the dynamical properties of lump and progress of
solitons as two exponential functions with plots of u and
v with the following determined parameters:

= = = = = = = = =
= = = = =

λ λ λ λ λ λ λ λ λ λ

λ λ v t

1, 2,

3, 1, 2, 2, 1,

4 5 6 8 10 12 16 17 18 19

20 2 0

in Eq. (2.13). By using the aforementioned parameters, the phy-
sical properties among lump-two and one parallel y-kink of
two kink solutions are presented in Figures 7 and 8 and by 3D,
density, and 2D graphs.

2.2.3 Other solutions
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(2.14)
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Figure 5: Graph of lump-two soliton solution (2.10) (u1) (3D, density, and 2D plot y).
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and

( ) ( )= + = +

=

u u ϕ v v ϕ

i

2 ln , 2 ln ,

3, 4, 5, 6, 7, 8.

i i xy i i xx0 0 (2.15)

2.3 Lump-combined 2 soliton solutions

Here, to discover the exact forms of solutions of the afore-
mentioned equation, we need to define the lump-combined
2 soliton solutions as follows:

( ) ( )= + + + +ϕ a a λ a λ a λcosh sinh ,1

2

2

2
17 3 18 4 19 (2.16)

= + + + = + + +a λ t λ x λ y λ a λ t λ x λ y λ, ,1 3 1 2 4 2 7 5 6 8

= + + + = + + +a λ t λ x λ y λ a λ t λ x λ y λ, .3 11 9 10 12 4 15 13 14 16

Afterward, the values ( )=λ l, 1 : 19l arbitrary constants are
to be discovered. Inserting (2.16) into Eq. (1.15), a system of
algebraic equations is fulfilled. We acquire the following
cases from the solutions of the system:

Figure 7: Graph of lump-two soliton solution (2.13) (u2) (3D, density, and 2D plot y).

Figure 6: Graph of lump-two soliton solution (2.10) (v1) (3D, density, and 2D plot y).
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2.3.1 Set I solutions

= − = =

= = − =

λ
λ λ

λ
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λ λ v
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s λ λ v λ

, 3 , ,
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= − − = = =λ λ λ v λ λ λ λ u3 , , , 0,11 9
3

9 0 18 18 19 19 0

where λ λ λ λ λ λ λ, , , , , ,…, ,2 4 5 6 8 9 17 and λ19 are free amounts,
and we have the following:

≠λ 0.2 (2.18)

The lump-combined 2 soliton solution of equation is acquired
after inserting Eqs (2.17) and (2.18) into Eq. (2.16), as shown in
the following equation:
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If → ∞x , then we obtain lump-combined two soliton solu-
tion of solution functions u and v with any time. Figures 9
and 10 offer the dynamical properties of lump and progress
of two solitons as exponential functions with plots of u and
v with the following determined parameters
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= = = =
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in Eq. (2.19). By using of the aforementioned parameters,
the physical properties among one lump and two parallel
y-kink of combined soliton solutions as shown in Figures 9
and 10 and by 3D, density, and 2D graphs.

2.3.2 Set II solutions
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Figure 8: Graph of lump-two soliton solution (2.13) (v2) (3D plot, density plot, and 2D plot y), respectively.
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where λ1, λ2, λ4, λ7, λ8, λ9, λ12, … , λ16, are free amounts. We
have the following issues:
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The lump-combined 2 soliton solution of equation is acquired
after inserting Eqs (2.20) and (2.21) into Eq. (2.8) as shown in
the following equation:
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If → ∞x with >λ 0,13 then we obtain lump-two soliton
solution of solution functions u and v with any time.
Figures 11 and 12 show the dynamical properties of
lump and progress of two solitons as exponential functions
with plots of u and v with the following determined
parameters:
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Figure 9: Graph of lump-combined two soliton solution (2.19) (u1) (3D, density plot, and 2D plot y).

Figure 10: Graph of lump-combined two soliton solution (2.19) (v1) (3D, density, and 2D plot y).
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in Eq. (2.22). By utilizing the aforementioned parameters,
the graphical properties among one lump and one parallel
y-kink of combined soliton solutions are presented in
Figures 11 and 12.

2.3.3 Set III solutions

( )

=
+

=

=

= − ∕ +
+

λ
λ

λ λ
λ λ λ λ

s

λ λ v
λ

λ λ
λ λ

2 2
, ,

2, 4, 8, 9, 12, …, 16, 17, 19

3 4 4
2 2

,

s s1

17

2
2

6
2 9 2

3 9
2

0

17

2
2

6
2 9 2

(2.23)

( )

= =
+

= − ∕ +
+

λ λ
λ

λ λ
λ λ

λ λ λ v
λ

λ λ
λ

0,
2 2

,

3 4 4
2 2

,

18 5

17

2
2

6
2 9 6

7 6 9
2

0

17

2
2

6
2 9

( )

( )

= −
+

+
= − ∕ +

= ∕
+

+

λ
λ λ

λ

λ

λ λ

λ λ v λ

u
λ λ λ

λ

λ

λ λ

2
2 2

,

1 4 12 ,

1 2
2 2

,

10

2
2

6
2

17

17

2
2

6
2

11 9
2

0 9

0

2
2

6
2

9

17

17

2
2

6
2

where λ2, λ4, λ8, λ9, λ12, … , λ16, λ17, λ19, are arbitrary values.
We have the following issues:

≠ + ≠λ λ λ0, 0.17 2
2

6
2 (2.24)

The lump-combined 2 soliton solution of equation is
acquired after inserting Eqs (2.23) and (2.24) into Eq. (2.8),
which are shown as follows:
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Figure 11: Graph of lump-combined two soliton solution (2.22) (u2) (3D, density, and 2D plot y).
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If → ∞x with >λ 0,13 then we obtain lump-two soliton
solution of solution functions u and v with any time.
Figures 13 and 14 show the dynamical properties of
lump and progress of two solitons as exponential functions

with plots of u and v with the following determined
parameters:

= = = = = = = =
= = = = = =
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λ λ λ v t
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in Eq. (2.25). By using of the aforementioned parameters,
the graphical properties among one lump and one parallel
y-kink of combined soliton solutions are presented in
Figures 13 and 14 and by 3D, density, and 2D graphs.

2.3.4 Set IV solutions
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Figure 12: Graph of lump-combined two soliton solution (2.22) (v2) (3D, density, and 2D plot y).

Figure 13: Graphs of lump-combined two soliton solution (2.25) (u3) (3D, density, and 2D plot y).

Different lump k-soliton solutions to (2+1)-dimensional KdV system  13



( )

= = −

= −
+ −

=

λ
λ λ u

λ λ
λ

u

λ

λ
λ λ u λ λ λ u u

λ λ

λ

2 , 2 ,

2
2 12

,

0,

8

4 6 0

10
2

5

9

0

10

11

5 10
2

0
2

7 10
4

6 0
3

0

10
5

5

18

=
+

= ∕
− +

λ
λ λ u

λ λ λ u

v
λ λ λ u

λ λ

2
4

,

1 3
12

,

19

10
2

17
2

0
2

5
2

10
4

6
2

0
2

0

7 10
4

6 0
3

5 10
4

where λ4, λ5, λ6, λ7, λ10, λ λ,…,12 16, λ17 are arbitrary values,
will be discovered. Also, we have the following issues:
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The lump-combined 2 soliton solution of equation is
acquired after inserting Eqs (2.26) and (2.27) into Eq. (2.8),
as shown in the following equation:
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If → ∞x with >λ 0,13 then we obtain lump-two soliton
solution of solution functions u and v with any time.
Figures 15 and 16 show the dynamical properties of lump
and progress of two solitons as exponential functions with
plots of u and v with the following determined parameters:
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Figure 14: Graphs of lump-combined two soliton solution (2.25) (v3) (3D, density, and 2D plot y).

Figure 15: Graphs of lump-combined two soliton solution (2.28) (u4) (3D, density, and 2D plot y).
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in Eq. (2.28). By utilizing the aforementioned values, the
graphical properties among one lump and one parallel
y-kink of combined soliton solutions are presented in
Figures 15 and 16 and by 3D, density, and 2D graphs.

2.3.5 Other solutions
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2.4 Lump-3 soliton solutions

In this subsection, to discover the exact forms of solutions
of the aforementioned equation, we need to define the
following lump-3 soliton solutions as follows:
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Figure 16: Graphs of lump-combined two soliton solution (2.28) (v4) (3D, density, and 2D plot y).
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Afterward, the values ( )=λ l, 1 : 24l of arbitrary constants
need to be discovered. Inserting Eq. (2.31) into Eq. (1.15) a
system of algebraic equations is fulfilled. We acquire the
following cases from the solutions of the system:

2.4.1 Set I solutions
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where λ2, λ4, λ5, λ6, λ8, λ9, λ12, λ13, λ16, λ17, and λ20 are arbitrary
amounts. The lump-three soliton solution of equation is acquired
after inserting Eq. (2.32) into Eq. (2.31), as shown below:
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If → ∞x , then we obtain lump-three soliton solution of
solution functions u and v with any time. Figures 17 and
18 offer the dynamical properties of lump and progress of
three solitons as exponential functions with plots ofu and v

with the following determined parameters:

Figure 17: Graph of lump-three soliton solution (2.33) (u1) (3D, density, and 2D plot y).

Figure 18: Graph of lump-three soliton solution (2.33) (v1) (3D, density, and 2D plot y).
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in Eq. (2.33). By utilizing the aforementioned values, the gra-
phical properties among one lump and intersection of two
line y-kink and x-kink of three kink solutions are presented
in Figures 17 and 18 and by 3D, density, and 2D graphs.

2.4.2 Set II solutions
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where λ2, λ4, λ6, λ8, λ9, λ12, λ13, λ16, and λ17 are arbitrary
amounts. The lump-three soliton solution of equation is
acquired after inserting Eq. (2.34) into Eq. (2.31), as follows:
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If → ∞x with >λ 0,13 then we obtain lump-three soliton solu-
tion of solution functions u and v with any time. Figures 19 and
20 offer the dynamical properties of lump and progress of three
solitons as exponential functions with plots of u and v with the
following determined parameters:
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in Eq. (2.35). By utilizing the aforementioned values, the
graphical properties among one lump and intersection of

two line y-kink and x -kink of three kink solutions are
presented in Figures 19 and 20 and by 3D, density, and
2D graphs.

2.4.3 Set III solutions

= − = = −

= = = = = =
=

λ
λ λ

λ
λ

λ λ v

λ
λ λ v

λ λ λ λ u λ λ

s

, 3 , 3 ,

0, ,

2, 4, 5, 6, 8, 10, 12, 13, 16, 17, 20,

s s

1

5 6

2

3

5 6 0

2

7 5 0

9 11 14 18 0

(2.36)

where λ2, λ4, λ6, λ8, λ9, λ12, λ13, λ16, and λ17 are arbitrary
amounts. The lump-three soliton solution of equation is
acquired after inserting Eq. (2.34) into Eq. (2.31), and is
shown below:

( ) ( )

( )

( )

( )

⎜ ⎟

= = +

= ⎛
⎝ − + + ⎞

⎠
+ − + + + +

+
+ +

+

− − + +

− − + +

u ϕ v v ϕ

ϕ
tλ λ v

λ

xλ λ

λ
λ y λ

tλ v xλ yλ λ λ

λ

λ λ

2 ln , 2 ln ,

3

3 e

e

e .

xy xx

yλ λ

λ λ v t λ x λ

λ λ v t λ x λ

3 3 2 0 3

3

5 6 0

2

5 6

2

2 4

2

5 0 5 6 8
2

21

22
3

23
3

24

10 12

13
3

13 0 13 16

17
3

17 0 17 20

(2.37)

If → ∞x with >λ 0,13 then we obtain lump-three soliton
solution of solution functions u and v with any time.
Figures 21 and 22 offer the dynamical properties of lump
and progress of three solitons as exponential functions
with plots of u and v with the following determined
parameters:
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in Eq. (2.37). By utilizing the aforementioned values, the
graphical properties among one lump and intersection of
two line x-y-kink and x-kink of three kink solutions are
presented in Figures 19 and 20 and by 3D, density, and
2D graphs.
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Figure 19: Graph of lump-three soliton solution (2.35) (u2) (3D, density, and 2D plot y).

Figure 20: Graph of lump-three soliton solution (2.35) (v2) (3D, density, and 2D plot y).

Figure 21: Graph of lump-three soliton solution (2.37) (u3) (3D, density, and 2D plot y).
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2.4.4 Other solutions
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2.5 Lump-4 soliton solutions

In this section, to discover the exact forms of solutions of
the aforementioned equation, we define the lump-four
soliton solutions as follows:
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Afterward, the values ( )=λ l, 1 : 29l arbitrary constants
are to be discovered. By inserting (2.40) into Eq. (1.15), a
system of algebraic equations is fulfilled. We acquire the
following cases from the solutions of the system:

2.5.1 Set I solutions
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where λ2, λ4, λ5, λ6, λ8, λ9, λ12, λ13, λ16, λ17, λ20, λ ,21 and λ24 are
arbitrary amounts. The lump-four soliton solution of equation
is acquired after inserting Eq. (2.41) into Eq. (2.40), as follows:
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Figure 22: Graph of lump-three soliton solution (2.37) (v3) (3D, density, and 2D plot y).
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If → ∞x , then we obtain lump-four soliton solution of solu-
tion functions u and v with any time. Figures 23 and 24
offer the dynamical properties of lump and move forward
of four soliton waves as exponential functions with graphs
of u and v by the following determined amounts:
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in Eq. (2.42). By utilizing the aforementioned values, the
graphical properties among one lump and intersection of
two line y-kink and x-kink of four kink solutions are pre-
sented in Figures 23 and 24 and by 3D, density, and 2D graphs.

2.5.2 Set II solutions
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where λ2, λ4, λ5, λ6, λ8, λ9, λ12, λ14, λ16, λ18, λ20, λ ,22 and λ24 are
arbitrary values, and we have the following issue:

≠λ 0.2 (2.44)

The lump-four soliton solution of equation is acquired after
inserting Eq. (2.44) into Eq. (2.40):
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If → ∞x with >λ 0,13 then we obtain lump-four soliton
solution of solution functions u and v with any time.
Figures 25 and 26 offer the dynamical properties of lump
and move forward of four soliton waves as exponential

Figure 23: Graph of lump-four soliton solution (2.42) (u1) (3D, density, and 2D plot y).
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functions with plots of u and v with the following deter-
mined values:
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in Eq. (2.45). By utilizing the aforementioned values, the graphical
properties among one lump and intersection of two line y-kink
and x -kink of three kink solutions are presented in Figures 25
and 26 and by 3D, density, and 2D graphs.

It is remarkable to detect that the found solitons of the
aforementioned equation are general and for the indivi-
dual values of the involved parameters some exacting solu-
tions available in the proceeding literature which are sev-
eral new and not develop in the former study.

2.5.3 Other solutions
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3 Discussion

This section presents graphical representations of some
obtained solutions. The 3D-surface graphs, 2D-density

Figure 24: Graph of lump-four soliton solution (2.42) (v1) (3D, density, and 2D plot y).
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graphs, and 2D-line graphs of retrieved solutions are plotted
using Maple software. In plotted graphs, (f1), (f2), (f3) repre-
sent the 3D-surface graphs, 2D-density graphs, and 2D-
line graphs, respectively. The suitable numeric values are
assigned to undetermined constants are presented earlier to
generate the well-shaped graphs of obtained solutions. From
the corresponding sets of obtained solutions, the considered
values can be taken for plotting the graphs of acquired solu-
tions. The acquired solutions of are graphically presented in
Figures 1–26. The graphical representations include lump-1
soliton, lump-2 soliton, lump-3 soliton, and lump-4 soliton
solutions. The graphs exhibit the effect of variation in the
fractional parameter on the obtained solutions. The evolution
of a lump-1 soliton is shown corresponding to the solution
Eq. (2.5) through Figures 1 and 2 by choosing the values of
selected parameters. Graphical simulations for the lump-1
soliton solution Eq. (2.7) are presented in Figures 3 and 4.
The evolution of lump-2 soliton solution is illustrated from
Figures 5 to 6, which has been obtained corresponding to the

solution for Eq. (2.10). Also, graphical simulations for the
lump-2 soliton solution Eq. (2.13) are presented in Figures 7
and 8. The evolution of lump-combined 2 soliton solution is
illustrated in Figures 9 to 10, which has been obtained corre-
sponding to the solution for Eq. (2.19). Also, the graphical
simulations for the lump-combined 2 soliton solution Eq.
(2.22) are presented in Figures 11 and 12. Moreover, the gra-
phical simulations for the lump-combined 2 soliton solution
Eq. (2.25) are shown in Figures 13 and 14. In another form, the
graphical simulations for the lump-combined 2 soliton solu-
tion Eq. (2.28) are offered in Figures 15 and 16. The graphical
simulations for the lump-3 soliton solution Eqs. (2.33), (2.35)
and (2.37) are shown in Figures 17 and 18, Figures 19 and 20,
and Figures 21 and 22, respectively. Finally, the graphical
simulations for the lump-4 soliton solution Eqs. (2.42) and
(2.45) are presented in Figures 23 and 24 and Figure 25 and
26, respectively. It is evident that the amplitude of the wave
varies from one asymptotic state to another in each one of the
mentioned cases for the lump-k soliton.

Figure 25: Graph of lump-four soliton solution (2.45) (u2) (3D, density, and 2D plot y).

Figure 26: Graph of lump-four soliton solution (2.35) (v2) (3D, density, and 2D plot y).
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4 Conclusion

The (2+1)-dimensional KdV equation was studied in the
current work, and the lump-N soliton wave solutions of
the mentioned system were reached productively by the
impressive multidimensional BBPs. The main contribution
was to find the lump with k-soliton solutions. We investigated
the analytical behavior of the obtained solutions by assigning
appropriate values to the free-involved parameters. These
new results were studied by using of a new method based
on the Hirota bilinear technique. Besides, the bilinear form
was obtained, and the N-soliton solutions were established.
On top of that, lump-one, two, three, and four soliton solu-
tions and multiwave solutions of the addressed system with
known coefficients were presented. Some characteristics of
the solutions were analyzed by visualizing the solutions. Also,
the graphical illustrations of the solutions are provided. The
solutions derived in this study were verified and genuinely
beneficial for nonlinear scientific applications. The lump-
soliton solutions will be useful additions to the literature
for understanding related physical systems. In future, the
nonlinear KdV model can also be investigated by other non-
linearity laws and the exact methods.
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