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Abstract: Amodel describing the transmission dynamics of
cholera is considered in this article. The concerned model
is investigated under the Caputo-Fabrizio fractal fractional
derivative. The objective of this article is to study theore-
tical and numerical results for the model under our con-
sideration. Classical fixed point approach is used to obtain
sufficient conditions for the existence of solution to the
proposed model. Adam’s Bashforth numerical method is
utilized for the numerical interpretation of the suggested
model. The considered technique is a powerful mathema-
tical tool, that provides a numerical solution for the con-
cerned problem. To discuss the transmission dynamics of
the considered model, several graphical presentations are
given.

Keywords: transmission dynamics, CFFFD,fixed point approach,
Adam’s Bashforth numerical method

1 Introduction

Fractional calculus (FC) is a mathematical discipline that
investigates integrals and derivatives with orders that are
not whole numbers. Leibnitz and L-Hospital have already
wondered what would be a derivative of noninteger order
[1]. Although the concept of FC was first developed in pure
mathematics and is now considered to be a component of
applied mathematics as well. The concept of FC has been
used in various real-world problem investigations. FC has
attracted attention in the fields of science and engineering,
such as signal processing. Researchers have used tools of
FC to model nonlinear systems in signal processing [2].
Many scholars have analyzed FC in control theory to
design controllers for complex systems that cannot be
modeled using classical techniques [3,4]. Awadalla and
Yameni [5] have discussed FC in the field of physics to
model the behavior of materials and systems that exhibit
anomalous diffusion, such as porous media and biological
tissues. Kumar et al. [6] have studied FC for designing of
complex systems such as memristive and memcapacitive
and nonlinear systems such as robotics and power systems.
Some mathematicians have studied the behavior of stock
prices, interest rates, the dynamics of market fluctuations
and risk management using FC concepts [7]. Most researchers
have investigated fractional derivatives to extract features and
information from image contents such as edges, corners, and
textures [8]. In the field of biology, scholars have examined FC
to model the behavior of biological systems such as the cardi-
ovascular system and neural networks. Researchers have pre-
sented a more comprehensive overview of the dynamics of
these systems and help in the development of treatments and
therapies [9–11]. Many researchers have applied tools of FC in
chemistry to model the diffusion of molecules and chemical
reactions in porous materials. In addition, they presented a
more detailed description of the transport and reaction phe-
nomena, which help in the design of catalysts and porous
materials for chemical applications [9].

Khan et al. [13] introduced a ground-breaking concept
regarding differential and integral operators, referred to as
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fractal fractional differential and integral operators. The
aforesaid operators contain the traditional fractional order
operators as special cases. Hence, the mentioned operators
characterized by two parameters: first, the fractional order
denoted as δ, followed by the fractal dimension denoted as
κ. The motivation behind these novel operators lies in their
capacity to address nonlocal phenomena in natural sys-
tems that also exhibit fractal behavior, as evidenced in
previous works [14–16]. Numerous authors have studied
these operators and used them in various fields. Qureshi
and Atangana [17] have used fractal-fractional derivatives
(FFDs) to model and analytically analyze the fluctuations in
diarrheal transmission that occurred in Ghana during the
period from 2008 to 2018. Likewise, Srivastava and Saad
[18] have conducted a similar study. They used FFD to give
the mathematical form to Ebola virus disease. In addition,
the mentioned operators have potential applications in all
other fields. Overall, the concept of fractal fractional pro-
vides a powerful tool for understanding and modeling
complex systems that exhibit fractal patterns or properties.
One of the most essential aspects of describing nonlinear
physical phenomena is finding exact solutions for fractal
fractional differential equations. The theory of derivatives
and integrals of fractal fractional order can be used to
successfully solve various physical phenomena [12].

In recent times, numerous researchers have directed
their focus toward utilizing FFD for modeling real-world
phenomena. The concept of FFD has significant applica-
tions in modeling and studying the dynamics of mentioned
phenomena. Among the issues that have been recently
investigated, cholera stands out prominently. Cholera, an
infection causing gastroenteritis is acquired when an indi-
vidual ingests an infectious dose or inoculum of the patho-
genic Vibrio cholera. The transmission of cholera occurs
through two main routes. Both the primary and secondary
source in which people ingest contaminated food or water
containing pathogenic virion that has come from an
infected person, commonly known as person-to-person
contact–involve people consuming the pathogen through
contaminated seafood and water [19].

Formulations of real-world process in terms of math-
ematical models play a significant role. With the help of
models, we can understand and predict the transmission of
infectious diseases [20,21]. Cholera is also one of the major
diseases due to which thousands of people lose their lives
worldwide each year. Researchers have investigated the
said disease via mathematical models involving classical
differential equations extensively. Also, some researchers
have used FC for investigations of various infectious diseases
models [22,23]. The use of mathematical models has signifi-
cantly contributed to our understanding of the dynamics of

cholera epidemics and the effectiveness of control measures.
Hailemariam Hntsa and Nerea Kahsay [25] have modeled the
cholera transmission dynamic via mathematical formulation
as follows:
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where = +ρ ρ ρ N
i d

and ( ) = ≥S S0 00 , ( ) = ≥I I0 00 , ( ) =R 0

≥R 00 , ( ) = ≥U U0 00 , and ( ) = ≥B B0 00 . At a given time t ,
the population denoted by ( )N t is categorized based on
their infection status: ( )S t represents susceptible indivi-
duals, ( )I t denotes infected individuals, ( )R t signifies recov-
ered individuals, and ( )U t refers to prevented individuals.
In addition, ( )B t quantifies the concentration of Vibrio cho-
lera in the aquatic environment at time t . In addition, the
nomenclatures of the model is provided in Table 1.

The authors have discussed the global and local stabi-
lity analysis and also discussed boundedness and approx-
imate solutions for various compartments using traditional
derivative. Since the aforesaid model has not yet investi-
gated via fractal FC to understand the complex geometry of
the mentioned dynamical system. Since fractional differen-
tial operators are categorized in subbranches of local
and nonlocal kernels. Those operators that involve power
law kernels are called singular kernels. Moreover, those
operators involve exponential and Mittag-Leffler kernels
are called nonsingular kernels. Both kinds of operators
have their own merits and demerits. Here, we remark
that in general fractional differential operators are non-
local because they involve integrals. On the other hand,
time fractional derivatives have memory effects because
these operators include information about the function at
prior times. The mentioned operators take into account
history and nonlocal dispersed effects, which are necessary
for a more precise and accurate description of and under-
standing of the behavior of complex dynamical systems. A
proper geometrical interpretation still do not exist for the
aforesaid operators. Therefore, various definitions have
been defined by researchers in which we cannot differ-
entiate which one be the most notable and best. Due to
this fact, researchers are continuously investigating the
area for selecting the most better (we refer to the study
by Rosales et al. [26]). In this regards, keeping in mind the
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importance of fractals fractional concept, researchers have
used the said area to investigate epidemiological problems
for more sophisticated analysis. To the best of our informa-
tion, model (1) was studied under the classical derivatives for
global and local stability analysis. But to understand the com-
plex geometry of the adynamic of the aforesaid model, still
the problem has not been investigated by using the concept of
fractals FC. Therefore, keeping in mind the importance of non
singular nonlocal FFDwith exponential kernel, we investigate
model (1) as follows:
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where Dt

δ κ,CFFFD

0 stands for Caputo-Fabrizio fractal frac-
tional derivative (CFFFD), δ is fractional order, κ is the
fractal dimension, and < ≤δ0 1, < ≤κ0 1. In addition, if
we put = =δ κ 1 in model (2), we obtain the traditional
model (1). Hence, the model studied in (1) is a special
case of our proposed model (2). We establish the existence
theory and numerical results for the aforementioned model
using some fixed point theorems [31]. In addition, in case of
numerical analysis, we apply the method used already in
the study by Khan and Atangana [32] for other problems.

Several graphical presentations and CPU time for various
fractals fractional orders are tabulated. In addition, this is
remarkable that using exponential kernel instead of power
law kernel makes the process easy for the theoretical ana-
lysis and numerical calculations in investigation of many
practical applications.

Our article is organized as follows: Introduction is
given in Section 1. In Section 2, we give some basic results.
The existence theory is given in Section 3. The numerical
scheme is developed in Section 4. The numerical simulations
are given in Section 5. Section 6 is devoted to conclusion.

2 Background results

Here, we recollect some definitions and theorems that
we use in our analysis in this article. If ≤ ≤ < ∞t T0 ,

and I� [ ] ( )= =C T C0, be the Banach space with norm
I‖ ‖ ∣ ( )∣=∞ ∈G G tmax .t

Definition 2.1. [31] Suppose that ϒ be continuous and dif-
ferentiable both fractionally and in fractal sense on ( )b0, ,
then we define CFFFD as follows:
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where < ≤δ κ0 , 1, and ( ) ( )= =M M0 1 1.

Definition 2.2. [31] If ϒ is continuous function on ( )b0, ,
then fractals fractional integral (FFI) is given by

Table 1: Parameters for a system of (1)

Parameters Parameters definition

b A consistent rate of new individuals joining
ρ

i
Mortality rate of an individual unaffected by population density

ρ
d

Density-dependent death rate of an individual

d Mortality rate of an individual resulting from a disease
ϱ Individuals ingestion rates of Vibrio cholera from polluted water
γ Ratio of infected class to the recovered class
α Rate at which susceptible individuals transition from the susceptible class to the protected class as a result of applying a

preventive method
ζ The speed at which individuals who have recovered from an illness gradually lose their immunity
ϕ The rate of individual infected from Vibrio cholera pathogens
K The level of Vibrio cholera concentration in food and water
p The proportion of hygienic compliance, ingestion of cholera bacterium
θ The proportion of compliance with sanitation measures within the infected group
bB Rate at which new instances of Vibrio cholera are generated
ρ

B
Rate at which instances of Vibrio cholera are eliminated
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Lemma 2.2.1. [32] If ϒ be continuous and differentiable both
fractionally and in fractal sense on ( )b0, , and [ ]∈ L bg 0, ,
such that g vanishes when →t 0, then the solution of
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Theorem 2.3. [32] If �1 and �2 be two operators such that
the first one is contraction and the second one is completely
continuous over a closed bounded subset B of a Banach
space � , then the operator equation � �+ =G G G2 has
at least one solution.

3 Existence and uniqueness of
solution

This section is devoted to the main results of the article. We
use Banach and Krasnoselskii’s fixed point theorem [31] to
elaborate the required theory of existence of solution. To
proceed further, we can write the proposed model (2) in
the sense of Caputo–Fabrizio fractional (CF) differential
equations form as follows:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

=

=

=

=

=
= = = = =

−

−

−

−

−

S t κt S I R U B t

I t κt S I R U B t

R t κt S I R U B t

U t κt S I R U B t

B t κt S I R U B t

S S I I R R U U B B

D

D

D

D

D

Φ , , , , , ,

Φ , , , , , ,

Φ , , , , , ,

Φ , , , , , ,

Φ , , , , , ,

0 , 0 , 0 , 0 , 0 ,

t

δCF κ

t

δCF κ

t

δCF κ

t

δCF κ

t

δCF κ

0
1

1

0
1

2

0
1

3

0
1

4

0
1

5

0 0 0 0 0

(3)

where the right-hand sides of proposed model (2) can be
written as follows:
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One of the alternative forms of (3) by using ( )=G S I R U B, , , ,

and ( )=G S I R U B, , , ,0 0 0 0 0 0 to develop the existence theory
can be obtained by considering the following
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Equivalently, we can write the integral form of (4) as
follows:
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Theorem 3.1. Under the assumption ( )D1 and if K( )
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Therefore, one concludes that � fulfills the criteria of
Banach contraction. Hence, � has a unique fixed point.
Consequently, we can claim that the considered model (2)
has a unique solution. □

Theorem 3.2. If assumptions ( )D D,1 2 , and the condition

K
( )

<
−

1
κT

M δ F

κ 1

hold, then the problem (4) has at least one fixed
point. From which we conclude that the proposed model (2)
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With the use of →t t2 1 in right-hand side of (11) implies
that � �∣ ( ( )) ( ( ))∣− →G t G t 02 2 2 1 . Also boundedness of �2

yields that

� �‖ ( ( )) ( ( ))‖− → →∞G t G t t t0, if .2 2 2 1 2 1

Thus, all conditions of Arzelá–Ascoli theorem hold. Therefore,
by using Krasnoselskii’s fixed point theorem, problem (4) has
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at least one fixed point. Consequently, we can claim that the
proposed model (4) has at least one solution. □

4 Numerical method

Following the numerical scheme constructed for general
system in the study by Khan and Atangana [32], the solu-
tion of (4) can be expressed as follows:
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From (4) implies that
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On simplification of the integral, we have
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Finally, we obtain the formula for numerical simulation on
further simplification by using the interpolation formula
(14) and evaluating the integral of (13):
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Now, in view of formula (15), we deduce the numerical
scheme for our proposed model as follows:

( ) ( )
( )

( ( ))

( )
( ( ))

( ) ( )
( )

( ( ))

( )
( ( ))

( ) ( )
( )

( ( ))

( )
( ( ))

( ) ( )
( )

( ( ))

( )
( ( ))

( ) ( )
( )

( ( ))

( )
( ( ))

= + ⎡
⎣ − + ⎤

⎦

− ⎡
⎣ − + ⎤

⎦

= + ⎡
⎣ − + ⎤

⎦

− ⎡
⎣ − + ⎤

⎦

= + ⎡
⎣ − + ⎤

⎦

− ⎡
⎣ − + ⎤

⎦

= + ⎡
⎣ − + ⎤

⎦

− ⎡
⎣ − + ⎤

⎦

= + ⎡
⎣ − + ⎤

⎦

− ⎡
⎣ − + ⎤

⎦

+

−

−
−

− −

+

−

−
−

− −

+

−

−
−

− −

+

−

−
−

− −

+

−

−
−

− −

S t S t
κt

M δ
δ

δ t
t G t

κt

M δ
δ

δ t
t G t

I t I t
κt

M δ
δ

δ t
t G t

κt

M δ
δ

δ t
t G t

R t R t
κt

M δ
δ

δ t
t G t

κt

M δ
δ

δ t
t G t

U t U t
κt

M δ
δ

δ t
t G t

κt

M δ
δ

δ t
t G t

B t B t
κt

M δ
δ

δ t
t G t

κt

M δ
δ

δ t
t G t

1
3 Δ

2
Φ ,

1
Δ

2
Φ , ,

1
3 Δ

2
Φ ,

1
Δ

2
Φ , ,

1
3 Δ

2
Φ ,

1
Δ

2
Φ , ,

1
3 Δ

2
Φ ,

1
Δ

2
Φ , ,

1
3 Δ

2
Φ ,

1
Δ

2
Φ , .

i i

i
κ

i i

i
κ

i i

i i

i
κ

i i

i
κ

i i

i i

i
κ

i i

i
κ

i i

i i

i
κ

i i

i
κ

i i

i i

i
κ

i i

i
κ

i i

1

1

1

1
1

1 1 1

1

1

2

1
1

2 1 1

1

1

3

1
1

3 1 1

1

1

4

1
1

4 1 1

1

1

5

1
1

5 1 1

(16)

The proposed numerical method has some advantages, and
for instance, it evaluates one extra function per step and
produces high-order accuracy. The aforesaid numericalmethod
also called the explicit type numerical scheme. In addition, the
Adams–Bashforth method demonstrates excellent computa-
tional efficiency in low-dimensional systems simulation.
Recently, some researchers have confirmed experimentally

Table 2: Parameters values taken from [25]

Parameters Values Parameters Values

b 0.00082 ρ
i ×4.21 10‒5

ρ
d ×3.245 10‒8 d 0.01

ϱ 1 γ 0.2
α 0.1 ζ 0.01
ϕ 10 K 106

p 0.7 θ 0.8
b ρ‒B B

‒0.33
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and theoretically that the aforesaid numerical method poses
better numerical stability as compared to original predictor–
corrector numerical method [33].

5 Numerical simulations

In the preceding section, we apply the previous section
numerical scheme and use the parameters values given

in Table 2. Moreover, taking ( ) =S 0 8,000 , ( ) =I 0 3,000 ,
( ) =R 0 1,000 , ( ) =U 0 4,000 , and ( ) =B 0 25,000 as initial

data from [25].
The solution are presented graphically in Figures 1–6

using various values of fractals and fractional orders.
In Figures 1–6, we have presented the approximate

solution for the proposed model using distinct values of
fractals-fractional orders. The concerned dynamics have
been demonstrated for very small as for large values
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Figure 1: Presentation of numerical solution of S I R U, , , for different values of δ and =κ 0.82.
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Figure 2: Presentation of numerical solution of B for different values of δ and =κ 0.82.
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of fractals order different fractional orders. The fractals
orders have a significant impact on the dynamics of different
classes. In the same way, smaller fractional order derivatives
play significant roles in the decay process as with the men-
tioned the process become faster than greater orders. More-
over, here in Figures 7–10, we simulate the results for the
proposed model using various fractals fractional orders.

Here, one thing we can see that when →κ 1 and →δ 1, the
convergence in curves of solution is obtained.

Here, in Table 3, we compute the CPU time for different
fractals fractional orders of various compartments. The
time computational cost is much more small although the
system is nonlinear. This indicates the numerical efficiency
of the proposed method.
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Figure 3: Presentation of numerical solution of S I R U, , , for different values of δ and =κ 0.99.
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Figure 4: Presentation of numerical solution of B for different values of δ and =κ 0.99.
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Figure 5: Presentation of numerical solutions of S I R U, , , for different values of δ and =κ 1.0.
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Figure 6: Presentation of numerical solution of B for different values of δ and =κ 1.0.
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6 Conclusion

Mathematical models have been considered powerful
tools to investigate various natural and environmental
phenomenons from different perspectives. Therefore, epi-
demiology has been very well considered under the men-
tioned tools for further explorations and investigations.
The bacterial illness cholera is typically transmitted
by tainted water that cause dehydration from infected

human. If this is not properly treated, then cause death
within few hours. By keeping in mind the importance of
the aforesaid illness, we have considered a compartmental
mathematical model for the aforesaid disease to investi-
gate it from mathematical perspectives. We have used
the concept of nonlocal fractals FC concept to elaborate
some theoretical and numerical results. By considering
the proposed model under the CFFFD, we have deduced
necessary and sufficient conditions for the existence theory
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Figure 7: Presentation of numerical solutions of S I R U, , , for different values of δ and κ.
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Figure 8: Presentation of numerical solution of B for different values of δ and κ .
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of solution using the fixed point theory due to Krasnoselskii
and Banach. In addition, for numerical simulation, we have
extended the Adam–Bashforth method and constructed a
numerical algorithm to present our results graphically. We
have presented the numerical results graphically for various
fractals and fractional orders. Moreover, the CPU time to
record the efficiency of the method has also been computed

and tabulated.We observed that the two-step Adams–Bashforth
approach has the ability to produce best numerical results for
fractals fractional problems. Moreover, the mentioned scheme
is also better in cost computation compared to other such type
numerical method. On the other hand, FFDs have significance
applications in the description of real-world problems. In the
future, the concept and methodology we have used can be
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Figure 9: Presentation of numerical solutions of S I R U, , , for different values of δ and κ.
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Figure 10: Presentation of numerical solution of B for different values of δ and κ .
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extended to more complex dynamical systems in physical as
well as biological sciences.
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