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Abstract: Modeling several physical events leads to the
Bagley–Torvik equation (BTE). In this study, we have taken
into account the BTE, including the Caputo–Fabrizio and
Atangana–Baleanu derivatives. It becomes challenging to
find the analytical solution to these kinds of problems using
standard methods in many circumstances. Therefore, to
arrive at the required outcome, numerical techniques are
used. The Laplace transform is a promising method that has
been utilized in the literature to address a variety of issues
that come up when modeling real-world data. For compli-
cated functions, the Laplace transform approach can make
the analytical inversion of the Laplace transform excessively
laborious. As a result, numerical techniques are utilized to
invert the Laplace transform. The numerical inverse Laplace
transform is generally an ill-posed problem. Numerous
numerical techniques for inverting the Laplace transform
have been developed as a result of this challenge. In this

article, we use the Weeks method, which is one of the most
efficient numerical methods for inverting the Laplace trans-
form. In our proposed methodology, first the BTE is trans-
formed into an algebraic equation using Laplace transform.
Then the reduced equation solved the Laplace domain.
Finally, the Weeks method is used to convert the obtained
solution from the Laplace domain into the real domain.
Three test problems with Caputo–Fabrizio and Atangana–
Baleanu derivatives are considered to demonstrate the accu-
racy, effectiveness, and feasibility of the proposed numerical
method.

Keywords: Laplace transform, Bagley–Torvik equation, Caputo–
Fabrizio derivative, Atangana–Baleanu derivative, numer-
ical inversion, Weeks method, Laguerre polynomials

1 Introduction

A realistic modeling of a physical phenomenon, such as
viscoelasticity, heat conduction, electrode–electrolyte polari-
zation, electromagnetic waves, diffusion, and control theory,
can be successfully accomplished by employing fractional
calculus, which has caught the attention of a lot of investigators
across many disciplines of applied science and engineering
[1–4]. In this article, we consider the fractional Bagley–
Torvik equation (BTE), first appeared in an innovative work
[5]. Their workwas aboutmodeling the viscoelastic behavior of
geological strata, metals, and glasses using fractional differen-
tial equations, demonstrating that this approach is successful in
describing structures with both elastic and viscoelastic compo-
nents. BTE is an extremely important equation used to solve
many applied scientific and engineering problems. More spe-
cifically, BTE can be used to represent any linearly damped
fractional oscillator with damping term having fractional deri-
vative of order 3

2
. Particularly, the models of materials whose

damping varies on frequency can be predicted by an equation
with a 1

2
-order or 3

2
-order derivative. It may also model the

motion of a rigid plate submerged in a viscous fluid and a
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gas in a fluid, describing the motion of actual physical systems
[2]. Generalized form of the BTE is written as follows:
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with initial data
�� � � � � �( ) ( )= ′ = ∈0 , 0 , , .0 1 0 1

We will consider Eq. (1) for =β 2 and =γ .
1

2
In literature,

D
ξ

β and +
D

ξ

γ 1 fractional derivatives are used in Riemann–
Liouville and Liouville–Caputo sense due to their conve-
nient status. For example, Ji et al. [6] considered the BTE
equation in Liouville–Caputo sense and studied its numer-
ical solution using shifted Chebyshev operational matrix.
Ray and Bera [7] obtained the solution of BTE using Ado-
mian decomposition method. Jena and Chakraverty [8]
obtained the analytic solution of BTE using Sumudu trans-
formation. Çenesiz et al. [9] obtained the numerical solu-
tion of BTE using the generalized Taylor collocation method.
Mashayekhi and Razzaghi [10] studied the numerical solu-
tion of BTE using the hybrid functions approximation. They
also derived the error bounds for the presented method.
Gülsu et al. [11] utilized the Taylor matrix method for the
approximation of the solution of BTE. In the study by Yüzbaşı
[12], the numerical solution of BTE was obtained via the
Bessel collocation method. In the study by Pinar [13], the
authors obtained the analytic solution of BTE with conform-
able fractional derivative using the sine-Gordon expansion
method and the Bernouli equation method. Raja et al. [14]
studied the solution of BTE system arising in fluid dynamic
model via feed-forward fractional artificial neural networks
and sequential quadratic programming algorithm. However,
these derivatives contain singular kernels, and they face pro-
blems when trying to model nonlocal phenomenon.

Caputo and Fabrizio in 2015 introduced a new fractional
differential operator based on the exponential kernel func-
tion known as Caputo–Fabrizio derivative (CFD) to over-
come the problem of the singular kernel function involved
in the Riemann–Liouville and Liouville–Caputo fractional
differential operators [16]. They demonstrated that CFD
was suitable for modeling some physical problems. Atan-
gana and Alqahtani [17] used the CFD for modeling the
ground water pollution. Hasan et al. [18] studied the numer-
ical solution of BTE under the CFD using a modified repro-
ducing kernel Hilbert space method. Al-Smadi et al. [19]
studied the solution of a nonlinear differential equation
with CFD using a reproducing kernel algorithm. Moore
et al. [20] developed a CFD model for HIV/AIDS epidemic.
They obtained the numerical solution of the proposedmodel
using a three step Adams–Bashforth predictor method. Joshi
et al. [21] framed a fractional order mathematical model in

the sense of CFD, to investigate the role of buffer and cal-
cium concentration on fibroblast cells. For more informa-
tion on CFD the readers can refer to the previous studies
[22–24]. However, some issues were also pointed out against
the considered derivatives, as the kernel in integral was
nonsingular but was not nonlocal.

To overcome these issues, Atangana and Baleanu [25]
proposed a new fractional operator based upon the Mittag–
Leffler function known as Atangana–Baleanu derivative
(ABD). Their operator includes a nonlocal and nonsingular
kernel with all the benefits of Riemann–Liouville, Liouville–
Caputo, and Caputo–Fabrizio operators. In addition to
these features, the derivative was found very useful in
thermal science material. Due to these powerful features,
researchers have applied it to many phenomena [26,27].
Atangana [28] applied the ABD to the nonlinear Fisher’s
reaction–diffusion equation and obtained the solution of
the modified equation using an iterative scheme. Gómez-
Aguilar et al. [29] applied the ABD to electromagnetic waves
in dielectric media. Ghanbari et al. [30] applied the ABD to
three species predator-prey model. They obtained the desired
solution using the product integration rule. Khan et al. [31]
studied some necessary and sufficient conditions for the exis-
tence of the solutions of differential equations with modified
ABD. Joshi et al. [32] proposed a nonsingular SIR model with
the Mittag–Leffler law. The author used the nonlinear Bed-
dington–DeAngelis infection rate and Holling type II treat-
ment rate. The qualitative properties of the SIR model and
the local and global stability of themodel were also discussed.
More information on the applications of ABD can be found in
previous studies [33–38].

The goal of this study is to use both the Caputo–
Fabrizio and ABDs with fractional order to extend the
BTE to the realm of fractional calculus. In this work, we
have used the Laplace transform method for this purpose.
However, using the Laplace transform some times makes
the analytic inversion very hard to compute for compli-
cated functions. The literature on the numerical inversion
of Laplace transform is extensive. Readers looking for a
survey on the comparison of numerical inverse Laplace
transform methods should begin with [39] and then pro-
ceed to the more recent work [40]. The numerical compar-
isons reported in these articles reveal supremacy of three
numerical methods: the Talbot’s method, the enhanced
trapezoidal rule, and the Weeks method. The latter method
is the subject of the current study, specifically the issue of
choosing the two free parameters that determine method’s
accuracy. The Weeks method holds one major advantage
over the Talbot’s method and the enhanced trapezoidal
rule: In particular, it assumes that a smooth function can
be well approximated by an expansion in terms of
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orthonormal Laguerre functions [41]. Laguerre functions
are used because the quadrature formulas involving them
are similar to the Laplace transform operator. In this
method, the unknown coefficients are evaluated once for
all for any given transformed function. It is highly efficient
for multiple evaluations in the time domain. Computing
the function at a new time with these other methods
requires essentially restarting the numerical inversion
procedure. Furthermore, it is equally applicable to real
and complex time-domain functions [42].

2 Basic definitions

Here, we present some important definitions related to
our work.

Definition 2.1. The Caputo derivative of a function �( )ξ

with fractional order �( ]∈ − ∈ +
γ l l l1, , is defined as fol-

lows [1]:
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Definition 2.2. Let � � ( )∈ >η δ δ η, , ,l ( ]∈ − ∈γ l l l1, ,

�+ and not necessarily differentiable, then the CFD with
base point η at point ( )∈ξ η δ, is defined as follows [25]:
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Definition 2.3. Let � � ( )∈ >η δ δ η, , ,l ( ]∈ − ∈γ l l l1, ,

�+, then the ABD with base point η at point ( )ξ η δ, is
defined as follows [25]:
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where ( )
( )

= ∑ =
∞

+E ξγ k

ξ

γk0 Γ 1

k

is Mittag–Leffler function and
� l is the lth-order Sobolev space on a domain �⊂Ω

defined as � � �( ) { ( ) ( ) }= ∈ ∈ ∀ ≤L L m lΩ Ω : Ω , .l m2 2

Definition 2.4. The Laplace transform of a piecewise con-
tinuous function �( )ξ for >ξ 0 is defined as follows [2]:

L � � �{ ( )} ( ) ( )( )∫= =
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where z is the Laplace parameter.

Definition 2.5. If � [ ]∈ ∈l γ, 0, 1 , then the Laplace trans-
form of the CFD of a function �( )ξ is defined as follows
[25]:
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and if =l 1, then we have
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Definition 2.6. The Laplace transform of ABD of a function
�( )ξ is defined as follows [25]:
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3 Proposed scheme

This section covers the proposed numerical scheme for
modeling BTE with CFD and ABD. The method has three
major steps: (i) first, a BTE with CFD/ABD is considered and
transformed to an algebraic equation via the Laplace trans-
form; (ii) second, the reduced equation is solved in Laplace
transform domain; (iii) finally, the desired solution is retrieved
using numerical inverse Laplace transform method.

3.1 BTE with CFD

We consider BTE with CFD as follows:
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with initial conditions
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(11)

By taking the Laplace transform of Eq. (10), we obtain
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which implies
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By solving for� ( )z , we obtain
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3.2 BTE with ABD

We consider BTE with ABD as follows:
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By taking the Laplace transform of Eq. (15), we obtain
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Solving for� ( )z , we obtain

3.3 Inverse Laplace transform

By taking the inverse Laplace transform of (14) or (19),
we have
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The integral in Eq. (20) is known as Bromwich integral, σ0 is
the abscissa of convergence, and Θ is an appropriately
selected line joining − ∞σ i and + ∞σ i to restrict all the
singularities of the transform function� ( )z to the left of
Θ. The analytic computation of the integral in Eq. (20) can
be hard for complicated functions. Therefore, the research
community have developed various approaches for the
numerical approximation of the integral in Eq. (20). Each
individual approach has its own application and is suitable
for a specific problem. All the approaches are based on
approximations used to evaluate the integral given in Eq.
(20). In the current study, we use the Weeks method for the
numerical approximation of the integral in Eq. (20).

3.4 Weeks method

The Weeks method is one of the most effective numerical
strategies for inverting the Laplace transform, as long as
the two free parameters in the Laguerre expansion on
which it is based are chosen well. The Weeks technique
has one significant benefit over the enhanced trapezoidal
rule and Talbot’s method: it gives a function expansion,
notably the Laguerre series expansion. This indicates that
for each given � ( )z , the unknown coefficients in the
Laguerre series expansion may be determined once and
for all. In Weeks method, the Bromwich line is parameter-
ized as �= + ∈z σ iy y, to obtain the Fourier integral
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By using Eq. (22) in Eq. (21), we obtain
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We may use residues to evaluate the Fourier integral, and
for >ξ 0, one obtains
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where ( )L ξk is Laguerre polynomial of degree k , >σ σ0, σ0

is the abscissa of convergence, and �∈σ ς, are positive
parameters. The polynomials ( )L ξk are defined as follows:
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where ak denotes the coefficients in the Taylor series. See
(Figure 1):

�( ) ∣ ∣∑=
−

⎛
⎝ +

−
− ⎞

⎠ = <
=

∞

Q ω

ς

ω

σ

ς

ω

ς a ω ω R

2

1

2

1
, ,

k

k

k

0

(27)

where R denotes the radius of convergence of the
Maclaurin series (27). The coefficients ak are computed as
follows:
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The integral in Eq. (28) is the well-known Cauchy’s
formula, which can be approximated as follows:
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3.4.1 Error analysis of the method

This section is devoted to the error analysis. Weideman
[43] analyzed the error of the Weeks method. The following
observations were made during their study for the fol-
lowing expansion:
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Three main factors that contribute to error were identified:
• The first factor is truncating the series at M terms.
• The numerical computation of the coefficients is the
second factor.

• Third is the inversion of Laplace transform numerically.
Any inaccuracy in the evaluated coefficients increases
with rising ξ when >σ 0, which is how the error in
(30) may be seen.

To model these three factors of error, the real expansion is
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where ϖk denotes the relative error of the coefficients in
the floating-point representation, i.e., ( ) ( )= +fl a a ϖ˜ ˜ 1 .k k k

From Eqs (31) and (30), we have
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with the fact that ∣ ( ) ( )∣− ≤ςξ L ςξexp 2 1.k We can neglect the
( )D error in comparison with ( )T error and ( )C error [43].

Therefore, we refer to ( )T error and ( )C error . For ( )T error

and ( )C error , the upper bound were reported as follows [43]:
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which holds for ( )∈χ R1, . Therefore, we have the fol-
lowing error bound:

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

 e
-

L k(2
)

0
1
2
3
4
5
6

Figure 1: Laguerre polynomials of orders 0 through k .
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To have an optimal value of errorest, Weideman [43] pro-
posed two algorithms for obtaining the optimal values of σ

and ς. We have used Algorithm 1:

Algorithm 1: Algorithm for optimal values of ( )σ ς,

The algorithm requires �( )z , ξ , and M , and
[ ] [ ]×σ σ ς, 0,0 max max which are expected to have the best
values of σ and ς. The algorithm then operates as follows:

{ [ ]∣ ( ( )) }= ∈ =σ σ σ σ σ ς σ, error , minimum ,0 max est

where
( ) { [ ]∣ ( )( ) }= ∈ =ς σ ς ς T σ ς0, error , minimum .max

Table 1: The ( )AbS error , ( )RlE error , and errorest corresponding to Problem 1

M σ ς (( ))AbS error (( ))RlE error errorest

ABD CFD ABD CFD ABD CFD ABD CFD ABD CFD

0.1 2.6146 3.4347 1.8936 1.2117 ×1.7347 10‒18 ×1.7347 10‒18 ×1.1565 10‒16 ×1.1565 10‒16 ×4.8094 10‒16 ×1.5691 10‒16

0.2 3.3654 3.4708 1.1703 1.1481 ×6.9389 10‒18 ×6.9389 10‒18 ×1.1565 10‒16 ×1.1565 10‒16 ×2.2407 10‒16 ×2.1615 10‒16

0.3 2.6146 3.1652 1.8936 1.1481 ×2.7756 10‒17 ×2.7756 10‒17 ×2.0560 10‒16 ×2.0560 10‒16 ×8.1133 10‒16 ×3.2886 10‒16

0.4 2.6146 3.1652 1.8936 1.1481 ×5.5511 10‒17 ×2.7756 10‒17 ×2.3130 10‒16 ×1.1565 10‒16 ×1.0538 10‒15 ×4.5131 10‒16

0.5 2.7000 3.4708 3.3401 1.4116 ×1.1102 10‒16 ×5.5511 10‒17 ×2.9606 10‒16 ×1.4803 10‒16 ×1.5692 10‒15 ×6.2770 10‒16

0.6 2.7000 3.4511 3.3401 1.3399 ×1.1102 10‒16 ×1.1102 10‒16 ×2.0560 10‒16 ×2.0560 10‒16 ×2.0556 10‒15 ×8.1381 10‒16

0.7 2.7000 3.1472 3.3401 1.1703 ×1.1102 10‒16 ×1.1102 10‒16 ×1.5105 10‒16 ×1.5105 10‒16 ×2.6928 10‒15 ×1.1399 10‒15

0.8 2.7000 3.1472 3.3401 1.1703 ×3.3307 10‒16 ×3.3307 10‒16 ×3.4694 10‒16 ×3.4694 10‒16 ×3.5275 10‒15 ×1.5615 10‒15

0.9 2.7000 3.1472 3.3401 1.1703 ×2.2204 10‒16 ×2.2204 10‒16 ×1.8275 10‒16 ×1.8275 10‒16 ×4.6209 10‒15 ×2.1391 10‒15

1 3.2934 2.5881 1.1703 0.8872 ×2.2204 10‒16 ×2.2204 10‒16 ×1.4803 10‒16 ×1.4803 10‒16 ×3.2704 10‒15 ×2.2446 10‒15

Table 2: The ( )AbS error , ( )RlE error , and errorest corresponding to Problem 1

M σ ς (( ))AbS error (( ))RlE error errorest

ABD CFD ABD CFD ABD CFD ABD CFD ABD CFD

40 4.9699 4.2745 3.1153 2.4922 ×4.4409 10‒16 ×2.2204 10‒16 ×2.9606 10‒16 ×1.4803 10‒16 ×6.2431 10‒15 ×5.7162 10‒15

45 4.3000 2.5069 2.0592 1.8034 ×2.2204 10‒16 0 ×1.4803 10‒16 0 ×5.0408 10‒15 ×2.4480 10‒15

50 3.8254 2.4621 1.7308 1.1146 ×4.4409 10‒16 ×2.2204 10‒16 ×2.9606 10‒16 ×1.4803 10‒16 ×3.5918 10‒15 ×2.1400 10‒15

55 3.1754 2.5209 1.6716 1.1930 ×2.2204 10‒16 0 ×1.4803 10‒16 0 ×3.1507 10‒15 ×2.5050 10‒15

60 3.2776 3.3708 1.4373 1.2837 ×2.2204 10‒16 ×2.2204 10‒16 ×1.4803 10‒16 ×2.9606 10‒16 ×3.2848 10‒15 ×3.1068 10‒15

65 3.1652 2.4074 1.0677 0.8610 ×2.2204 10‒16 ×2.2204 10‒16 ×1.4803 10‒16 ×1.4803 10‒16 ×2.9024 10‒15 ×2.3612 10‒15

70 3.1950 3.1931 1.0031 1.3932 ×2.2204 10‒16 0 ×1.4803 10‒16 0 ×2.9266 10‒15 ×3.1576 10‒15

75 2.8348 2.6966 1.0677 0.8610 ×4.4409 10‒16 ×2.2204 10‒16 ×2.9606 10‒16 ×1.4803 10‒16 ×3.7614 10‒15 ×2.5670 10‒15

80 3.5043 2.3172 0.9581 0.8166 ×2.2204 10‒16 ×2.2204 10‒16 ×1.4803 10‒16 ×1.4803 10‒16 ×3.3670 10‒15 ×2.3426 10‒15

85 3.7103 2.7967 1.0677 0.7618 ×2.2204 10‒16 0 ×1.4803 10‒16 0 ×3.4057 10‒15 ×2.5169 10‒15
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Figure 2: Exact solution vs Weeks solution of problem 1.
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4 Applications

This section illustrates the effectiveness of the Weeks
method discussed earlier for the solution of BTE with
CFD and ABD. Three numerical examples are used to sup-
port the proposed scheme. For all the numerical experi-
ments, the fractional derivative +

D
ξ

γ 1 in (1) is considered in
CFD and ABD sense with < ≤γ0 1, and the fractional

derivative D
ξ

β is considered in Caputo’s sense with =β 2.

The computational results demonstrate the accuracy and

convergence of the proposed method. The absolute error
( ( ))AbS error and the relative error ( ( ))RlE error are used to
measure the numerical error. The two error norms are
defined as follows:

� �( ) ∣ ( ) ( )∣= −ξ ξAbS error ,Aprrox

and

� �

�
( )

( ) ( )

( )
=

−ξ ξ

ξ

RlE error .
Aprrox
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Figure 3: (a) The ( )AbS error , the ( )RlE error , and the errorest versus ξ using =M 65 with ABD corresponding to problem 1. (b) The ( )AbS error , the
( )RlE error , and the errorest versus ξ using =M 65 with CFD corresponding to problem 1.
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Figure 4: (a) The ( )AbS error , the ( )RlE error , and the errorest versus M at =ξ 1 with ABD corresponding to problem 1. (b) The ( )AbS error , the
( )RlE error , and the errorest versus M at =ξ 1 with CFD corresponding to problem 1.
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The forcing term ( )f ξ and the initial boundary data are
calculated using the exact solution for each example.

Problem 1

The first problem is solved using the Weeks method in ABD

and CFD sense with exact solution �( ) =ξ γξ
2. In Table 1

the ( )AbS error , the ( )RlE error , and the errorest for different
values of ξ with =M 65 corresponding to Problem 1 are
shown. Table 2 shows the ( )AbS error , the ( )RlE error , and
the errorest for different values of M at =ξ 1 corresponding
to Problem 1. Figure 2 shows the plots of exact solution and
Weeks solution. A comparison between the ( )AbS error , the

( )RlE error , and the errorest of the proposed numerical
scheme for problem 1 with ABD and CFD for different

Table 3: The ( )AbS error , ( )RlE error , and errorest corresponding to Problem 2

ξ σ ς (( ))AbS error (( ))RlE error errorest

ABD CFD ABD CFD ABD CFD ABD CFD ABD CFD

0.1 3.3575 2.8414 1.0950 0.9623 ×8.8818 10‒16 ×8.8818 10‒16 ×2.0837 10‒16 ×2.0837 10‒16 ×3.3116 10‒15 ×3.6615 10‒15

0.2 3.2764 2.7190 1.4466 1.2817 ×8.8818 10‒16 ×8.8818 10‒16 ×1.9101 10‒16 ×1.9101 10‒16 ×4.6647 10‒15 ×4.7458 10‒15

0.3 3.1784 2.6885 1.0017 1.2230 ×8.8818 10‒16 ×8.8818 10‒16 ×1.7631 10‒16 ×1.7631 10‒16 ×6.1218 10‒15 ×6.0351 10‒15

0.4 3.2631 3.0666 1.0950 0.9623 ×1.7764 10‒15 ×2.6645 10‒15 ×3.2744 10‒16 ×4.9116 10‒16 ×8.3950 10‒15 ×8.0995 10‒15

0.5 3.2631 2.9472 1.0950 1.0843 ×8.8818 10‒16 ×2.6645 10‒15 ×1.5280 10‒16 ×4.5841 10‒16 ×1.1634 10‒14 ×1.0483 10‒14

0.6 3.2631 2.9472 1.0950 1.0843 ×1.7764 10‒15 ×2.6645 10‒15 ×2.8651 10‒16 ×4.2976 10‒16 ×1.6123 10‒14 ×1.4076 10‒14

0.7 3.3116 2.9472 1.5047 1.0843 ×8.8818 10‒16 ×1.7764 10‒15 ×1.3483 10‒16 ×2.6966 10‒16 ×2.4405 10‒14 ×1.8901 10‒14

0.8 3.3116 2.9472 1.5047 1.0843 ×2.6645 10‒15 ×3.5527 10‒15 ×3.8201 10‒16 ×5.0935 10‒16 ×3.3985 10‒14 ×2.5379 10‒14

0.9 3.2631 2.9472 1.0950 1.0843 ×1.7764 10‒15 ×5.3291 10‒15 ×2.4127 10‒16 ×7.2381 10‒16 ×4.2914 10‒14 ×3.4078 10‒14

1 3.2631 2.9472 1.0950 1.0843 ×2.6645 10‒15 ×6.2172 10‒15 ×3.4381 10‒16 ×8.0223 10‒16 ×5.9472 10‒14 ×4.5758 10‒14

Table 4: The ( )AbS error , ( )RlE error , and errorest corresponding to Problem 2

M σ ς (( ))AbS error (( ))RlE error errorest

ABD CFD ABD CFD ABD CFD ABD CFD ABD CFD

40 3.3361 2.1992 1.8698 1.4711 ×8.8818 10‒16 ×8.8818 10‒16 ×1.1460 10‒16 ×1.1460 10‒16 ×6.5568 10‒14 ×2.2671 10‒14

45 3.2776 2.2218 1.4159 0.9623 ×2.6645 10‒15 ×2.6645 10‒15 ×3.4381 10‒16 ×3.4381 10‒16 ×5.7867 10‒14 ×2.2004 10‒14

50 3.5237 2.2910 1.3375 1.2817 ×2.6645 10‒15 ×1.7764 10‒15 ×3.4381 10‒16 ×2.2921 10‒16 ×7.6392 10‒14 ×2.3616 10‒14

55 3.7631 2.7798 1.6532 1.5258 ×7.9936 10‒15 ×8.8818 10‒16 ×1.0314 10‒15 ×1.1460 10‒16 ×8.8526 10‒14 ×3.5755 10‒14

60 3.8559 2.7416 1.3935 1.1284 ×3.5527 10‒15 ×3.5527 10‒15 ×4.5841 10‒16 ×4.5841 10‒16 ×1.0943 10‒13 ×3.9962 10‒14

65 3.7631 2.8375 1.1383 0.8898 ×3.5527 10‒15 ×8.8818 10‒16 ×4.5841 10‒16 ×1.1460 10‒16 ×8.8963 10‒14 ×4.1297 10‒14

70 3.7116 2.8292 1.2984 0.7921 ×8.8818 10‒16 ×2.6645 10‒15 ×1.1460 10‒16 ×3.4381 10‒16 ×9.1073 10‒14 ×4.3553 10‒14

75 3.7854 2.8163 1.1004 0.9332 ×5.3291 10‒15 ×8.8818 10‒16 ×6.8762 10‒16 ×1.1460 10‒16 ×9.6980 10‒14 ×4.2486 10‒14

80 3.7244 2.7791 1.7039 0.7101 ×1.7764 10‒15 ×8.8818 10‒16 ×2.2921 10‒16 ×1.1460 10‒16 ×1.0826 10‒13 ×3.8936 10‒14

85 3.7146 2.6875 1.2202 0.7411 ×5.3291 10‒15 ×2.6645 10‒15 ×6.8762 10‒16 ×3.4381 10‒16 ×9.4354 10‒14 ×3.9239 10‒14
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Figure 5: Exact solution vs Weeks solution of problem 2.
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values of ξ with =M 65 is shown in Figure 3(a) and (b),
respectively. Similarly, the comparison between the ( )AbS error ,
the ( )RlE error , and the errorest of the proposed numerical
scheme for problem 1 with ABD and CFD for different values
of M at =ξ 1 using the proposed method is shown in Figure
4(a) and (b), respectively. The results demonstrates the effi-
ciency of the method for BTE with two different fractional
derivatives.

Problem 2

The second problem is solved using the Weeks method with
ABD and CFD and exact solution �( ) ( )= + − +ξ γ γ ξ1 13 .
In Table 3, the ( )AbS error , the ( )RlE error , and the errorest of
the proposed method for different values of ξ with =M 65

corresponding to Problem 2 are presented. Table 4 shows the
the ( )AbS error , the ( )RlE error , and the errorest obtained
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Figure 6: (a) The ( )AbS error , the ( )RlE error , and the errorest versus ξ using =M 65 with ABD corresponding to problem 2. (b) The ( )AbS error , the
( )RlE error , and the errorest versus ξ using =M 65 with CFD corresponding to problem 2.
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Figure 7: (a) The ( )AbS error , the ( )RlE error , and the errorest versus M at =ξ 1 with ABD corresponding to problem 2. (b) The ( )AbS error , the
( )RlE error , and the errorest versus M at =ξ 1 with CFD corresponding to problem 2.
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using the proposed method for different values of M at =ξ 1

corresponding to Problem 2. Figure 5(a) shows the plots
of exact solution and Weeks solution. A comparison between
the ( )AbS error , the ( )RlE error , and the errorest of the pro-
posed numerical scheme for problem 1 with ABD and CFD

for different values of ξ with =M 65 is shown in Figure 6(a)
and (b), respectively. Similarly, the comparison between
the ( )AbS error , the ( )RlE error , and the errorest of the pro-
posed method for problem 1 with ABD and CFD for different
values of M at =ξ 1 using the proposed numerical scheme
is shown in Figure 7(a) and (b), respectively. An excellent
agreement between the theoretical and computed error is
observed. In this case also, we see that the proposed numer-
ical scheme has efficiently approximated the solution of BTE
in both cases.

Table 5: The ( )AbS error , ( )RlE error , and errorest corresponding to Problem 3

ξ σ ς (( ))AbS error (( ))RlE error errorest

ABD CFD ABD CFD ABD CFD ABD CFD ABD CFD

0.1 3.4836 3.2814 1.1134 1.2312 ×2.7756 10‒17 ×5.5511 10‒17 ×1.2336 10‒16 ×2.4672 10‒16 ×3.5605 10‒16 ×4.1059 10‒16

0.2 3.5572 3.3504 1.2628 1.3932 ×5.5511 10‒17 ×1.1102 10‒16 ×1.2336 10‒16 ×2.4672 10‒16 ×5.5464 10‒16 ×5.9594 10‒16

0.3 2.8325 3.1001 0.9141 1.2111 ×2.2204 10‒16 ×1.1102 10‒16 ×3.2895 10‒16 ×1.6448 10‒16 ×8.6165 10‒16 ×8.2063 10‒16

0.4 2.8325 3.3397 0.9141 1.1870 ×1.1102 10‒16 ×2.2204 10‒16 ×1.2336 10‒16 ×2.4672 10‒16 ×1.1438 10‒15 ×1.0626 10‒15

0.5 2.8180 2.3605 0.9564 0.7803 ×2.2204 10‒16 ×2.2204 10‒16 ×1.9737 10‒16 ×1.9737 10‒16 ×1.6122 10‒15 ×1.2562 10‒15

0.6 2.4168 2.8056 0.9299 1.2600 ×4.4409 10‒16 ×2.2204 10‒16 ×3.2895 10‒16 ×1.6448 10‒16 ×1.9765 10‒15 ×1.9023 10‒15

0.7 2.8325 3.2416 0.9141 1.0171 ×2.2204 10‒16 ×2.2204 10‒16 ×1.4098 10‒16 ×1.4098 10‒16 ×2.6754 10‒15 ×2.8818 10‒15

0.8 2.8180 3.2416 0.9564 1.0171 ×4.4409 10‒16 ×2.2204 10‒16 ×2.4672 10‒16 ×1.2336 10‒16 ×3.7548 10‒15 ×3.9851 10‒15

0.9 2.8180 2.8348 0.9564 1.0144 ×4.4409 10‒16 ×4.4409 10‒16 ×2.1930 10‒16 ×2.1930 10‒16 ×4.9771 10‒15 ×4.5504 10‒15

1 2.4229 2.8348 0.7804 1.0144 ×4.4409 10‒16 ×4.4409 10‒16 ×1.9737 10‒16 ×1.9737 10‒16 ×4.7645 10‒15 ×6.0418 10‒15

Table 6: The ( )AbS error , ( )RlE error , and errorest corresponding to Problem 3

M σ ς (( ))AbS error (( ))RlE error errorest

ABD CFD ABD CFD ABD CFD ABD CFD ABD CFD

40 2.7218 2.4075 1.8961 1.1591 ×4.4409 10‒16 ×4.4409 10‒16 ×1.9737 10‒16 ×1.9737 10‒16 ×6.7274 10‒15 ×4.4139 10‒15

45 2.8798 2.7267 1.4047 1.3932 ×8.8818 10‒16 ×4.4409 10‒16 ×3.9475 10‒16 ×1.9737 10‒16 ×6.2411 10‒15 ×5.3304 10‒15

50 2.9416 2.6065 1.5047 1.0828 ×4.4409 10‒16 ×4.4409 10‒16 ×1.9737 10‒16 ×1.9737 10‒16 ×6.4160 10‒15 ×4.7877 10‒15

55 2.7754 3.0227 1.5047 1.1244 ×4.4409 10‒16 ×4.4409 10‒16 ×1.9737 10‒16 ×1.9737 10‒16 ×7.1677 10‒15 ×6.1922 10‒15

60 2.9242 3.4810 1.0137 1.3214 ×4.4409 10‒16 ×4.4409 10‒16 ×1.9737 10‒16 ×1.9737 10‒16 ×6.7855 10‒15 ×8.4881 10‒15

65 3.1167 3.0459 1.2628 1.3932 ×4.4409 10‒16 ×4.4409 10‒16 ×1.9737 10‒16 ×1.9737 10‒16 ×7.5523 10‒15 ×6.8758 10‒15

70 3.1341 3.1361 0.9299 1.0091 ×8.8818 10‒16 ×8.8818 10‒16 ×3.9475 10‒16 ×3.9475 10‒16 ×6.9303 10‒15 ×6.5436 10‒15

75 3.1167 2.8493 0.9299 0.8020 ×4.4409 10‒16 ×4.4409 10‒16 ×1.9737 10‒16 ×1.9737 10‒16 ×6.4809 10‒15 ×5.2802 10‒15

80 3.2249 3.2820 0.9299 0.8604 ×8.8818 10‒16 ×1.3323 10‒15 ×3.9475 10‒16 ×5.9212 10‒16 ×7.5662 10‒15 ×8.3731 10‒15

85 2.9590 3.1725 0.9299 0.8851 ×4.4409 10‒16 ×1.7764 10‒15 ×1.9737 10‒16 ×7.8949 10‒16 ×6.7840 10‒15 ×7.2423 10‒15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

 S
ol

ut
io

n

Weeks Solution
Exact Solution

Figure 8: Exact solution vs Weeks solution of problem 3.
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Problem 3

The third problem is solved using the Weeks method with
ABD and CFD and exact solution �( ) =ξ γ ξ

2 . In Table 5, the
( )AbS error , the ( )RlE error , and the errorest of the proposed

method for different values of ξ with =M 65 corresponding
to Problem 2 are presented. Table 6 shows the the ( )AbS error ,
the ( )RlE error , and the errorest obtained using the proposed
method for different values of M at =ξ 1 corresponding to
Problem 2. Figure 8(a) shows the plots of exact solution and

Weeks solution. A comparison between the ( )AbS error , the
( )RlE error , and the errorest of the proposed numerical scheme

for problem 1 with ABD andCFD for different values of ξ with
=M 65 is shown in Figure 9(a) and (b), respectively. Similarly,

the comparison between the ( )AbS error , the ( )RlE error , and
the errorest of the proposed numerical scheme for problem 1
with ABD and CFD for different values of M at =ξ 1 using the
proposed numerical scheme is shown in Figure 10(a) and (b),
respectively. We can see that for this problem also, the method
has produced very accurate and stable results.
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Figure 9: (a) The ( )AbS error , the ( )RlE error , and the errorest versus ξ using =M 65 with ABD corresponding to problem 3. (b) The ( )AbS error , the
( )RlE error , and the errorest versus ξ using =M 65 with CFD corresponding to problem 3.
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Figure 10: (a) The ( )AbS error , the ( )RlE error , and the errorest versus M at =ξ 1 with ABD corresponding to problem 3. (b) The ( )AbS error , the
( )RlE error , and the errorest versus M at =ξ 1 with CFD corresponding to problem 3.
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5 Conclusion

The considered scheme has been applied for nonlocal and
nonsingular fractional-order problems involving CFD and
ABD. The proposed scheme has the ability to avoid discre-
tization and complex calculation to approximate various
problems of fractional orders. The computational cost is
low as compared to other numerical or analytic methods
for the considered problems. Our conclusion from this
study is that: (i) This method provides a stable and accurate
approach to the numerical calculation of the solutions to
the considered BTEs, (ii) the method is highly sensitive to a
proper choice for the two free parameters in the Laguerre
expansion, and (iii) The proposed scheme is very easy to
implement. In the future work, our aim is to use the pro-
posed scheme coupled with some spatial discretization
methods for numerical modeling of time-fractional PDEs.
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