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Abstract: Every day of the week, wireless communication
is almost all around us. The Internet of Things (IoT) is a
standard protocol used to describe the rapidly advancing
technology in which almost every electronic device is or
may be connected to the Internet. These electronic gadgets
constantly provide data signals to the gateways, which
satellites such as those in Low Earth Orbit may transmit.
Because of these networks’ limited resources and the IoT,
these transactions must be completed with the least amount
of latency and data loss possible. We also analyze the per-
formance implications of implementing RF-based powering
for such a network. The techniques presented in this paper
may benefit the scientific community and industry in gen-
eral when it comes to the dynamic distributed parameter
allocation methodology for IoT network devices. We will
also discuss how research on animals and the natural envir-
onment has been impacted by IoT breakthroughs, in parti-
cular, animal sensors’ limits and incapacity to broadcast
from everywhere. Our analysis illustrates the most effective
data transmission technique and establishes the bounds of
these restrictions. Furthermore, the physics of the RF
channel plays a critical role in the uncertainty of the
channel as well as the amount of energy harvested. By
employing simulation based on the physics of the RF
channel, the article shows the performance of the system
considering both the uncertainty of data arrival as well as
the variability of the channel. The findings of the simula-
tion show that the devices consume less energy overall as
the signal-to-noise ratio rises. Furthermore, a timing factor
0f 10-15% is shown to be effective in maintaining a constant
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mean rate and increasing the energy efficiency of the
system.
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1 Introduction

Our civilization is changing quickly and continuously; thus,
it is crucial for technology to advance with little lag. Wi-Fi
6, 5G and 6G wireless networks, and Vehicle-to-Everything
Wireless are examples of emerging technological stan-
dards that depend on wireless communication and archi-
tecture designed for the Internet of Things (IoT). Not only
has technology altered how we go to the doctor or do our
schoolwork, but it has also aided in the greater under-
standing and global tracking of animals and other crea-
tures by scientists [1]. The Internet of Wildlife and Animals
is shedding new light on a number of previously unex-
plained or unreported phenomena, including why whales
return to certain oceans once a year, why sharks move
thousands of kilometres every year to isolated locations,
and many others. The sensors fitted to animals that can
follow their movements and behaviours while sending
important data to surrounding sensors, buoys, and gate-
ways enable this tracking technique [2]. A variety of satel-
lite orbit architectures have been developed in relation to
satellite communication technologies to support the devel-
opment of IoT. These collections of interconnected satel-
lites constitute satellite constellations that assist in offering
coverage in almost every region of the world [3]. Satellites
in geosynchronous equatorial orbits, or GEOs, are the
farthest from the planet and typically orbit in a direction
perpendicular to their spin. In general, GEO satellites orbit
the Earth for a whole day and are a little more than 20,000
miles from the surface. The Medium Earth Orbit satellite is
another one that revolves around the planet. In compar-
ison to GEO satellites, these spacecraft orbit at a signifi-
cantly lower altitude, typically between 3,000 and 8,000
miles above the planet [4]. When compared to GEO satel-
lites, the satellites’ close proximity to the Earth’s surface
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significantly lowers communication latency. It has been
observed that these satellites orbit the Earth in 5h, give
or take 3h. More than 1.5 gigabits of data may be sent per
second using GEO satellites [5]. However, Low Earth Orbit
(LEO) satellites are the ones that have recently drawn the
greatest interest. Many billionaires and private businesses
are vying for the top spot in creating technologies that will
allow us to use these satellites most effectively on a daily
basis. LEO satellites orbit the planet at a height of little
more than 1,000 ft. These satellites are the best option for
constructing quick communication lines with low latency
due to their location [6]. The shift and race to establish
wireless communication using LEO satellites is driven by
the need to reduce latency, reduce signal distortion, and
increase dependability. The monitoring of animals in the
water and on land has been the subject of several pro-
grammes and studies. The International Cooperation for
Animal Research Using Space initiative is one of the most
significant of these initiatives. A multinational group of
scientists are working on this research under the direction
of Martin Wikelski. The objective of the research is to
increase knowledge about how animals interact with one
another and their surroundings on Earth [7]. The tracking
equipment was placed on the International Space Station
in the summer of 2018 to assist with this effort. Although
the notion of employing satellites is not new, this thesis
seeks to develop it by providing techniques to increase
the model’s effectiveness [8]. RF channels propagate elec-
tromagnetic waves, particularly in the radio frequency
spectrum. Wireless communication systems require an
understanding of the physics of RF channels. RF channel
physics can be summarized as follows: Transmission of
electromagnetic waves occurs over RF channels, which
propagate through free space or other media. Wave pro-
pagation physics, including concepts like wavelength, fre-
quency, and wave polarization, play an important role.
Signal strength is reduced as electromagnetic waves travel
through a medium. Losses are determined by factors such
as distance, obstacles, and environmental characteristics
[9]. A signal with multiple paths to reach the receiver is
called multipath fading; this causes both constructive and
destructive interference. This phenomenon in RF channel
physics affects the quality of communication links. Electro-
magnetic waves reflect when they bounce off surfaces,
refract when they pass through different media, and dif-
fract when they bend around obstacles. These phenomena
complicate RF channel physics. When waves travel through
a medium, they undergo a Doppler shift due to relative
motion between transmitter and receiver. Communications
systems on mobile devices are particularly affected by this.
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Wireless communication systems, such as Wi-Fi, cellular
networks, and other wireless technologies, require an
understanding of RF channel physics. We consider these
factors when designing the simulation of the RF commu-
nication and energy harvesting aspects to make our paper
consider these physical phenomena [10]. The article is
organized in the following manner: Section 1 includes
an introduction, motivation, and purpose of the proposed
article, Section 2 represents related work, Section 3 is the
system model, and Sections 4 and 5 represent the simula-
tion results and conclusion.

1.1 Motivation

* The application of the IoT network for marine wildlife
surveillance is a compelling endeavor that combines cut-
ting-edge technology with environmental conservation.
It offers the opportunity to protect and monitor fragile
marine ecosystems, safeguard endangered species, and
contribute to scientific research. The sense of purpose in
preserving our oceans and the planet’s biodiversity is a
powerful motivator. Additionally, the challenge of devel-
oping innovative solutions in a dynamic and complex
marine environment is intellectually stimulating [11].
By working on this article, one can make a meaningful
difference in the world while pushing the boundaries of
IoT technology, making it a deeply rewarding and exciting
pursuit.

Collaborating between science and technology is not a
new idea. Working together for decades, the specialists
in these two fields have produced outcomes that have
improved society’s quality of life and saved lives.
Developing, examining, and demonstrating methods
for optimizing power and energy parameters while
employing LEO satellites to monitor marine life is the
aim of this project. We shall utilize a two-tiered model
to illustrate our idea. Several factors will be considered
by our formulas in order to help generate a more accu-
rate optimization outcome [12]. Unlike most previous
works that focused on monitoring without taking into
account the size, functionality, and energy usage of the
IoT sensor and network, we optimize these criteria
while keeping in mind channel medium constraints,
energy harvesting constraints, and especially sensor
data transmission integrity. Our protocol ensures that
statistical sensor data loss is minimized while opti-
mizing IoT transmission power in a distributed manner,
despite constraints on the size of the queue (buffer) for
IoT equipment and the transmission channel [13].
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1.2 Purpose of this study

The oceans store around 96.5% of the water on Earth,
which covers about 71% of its surface. The ocean serves
as the foundation for all life on Earth and as the core of the
climate. It transfers warm water from the tropics to colder
regions and cool water from the poles to warmer regions
by absorbing the majority of the heat from the sun. In
doing so, the ocean disperses heat and evens out the
unequal distribution of solar energy that strikes Earth.
Temperatures at the poles would be considerably lower,
and temperatures in the tropics would be substantially
higher without the currents that circulate the warm and
cold seas [14]. The use of fossil fuels like natural gas, oil,
and coal has boosted atmospheric carbon dioxide levels by
30% since 1950, which has led to an average temperature
increase of 1.4°F throughout the course of the twentieth
century. The warming of the atmosphere, land, and seas
is brought on by the rise in carbon dioxide, which acts as a
blanket to trap the heat of the planet. Global warming is
the term for this. Even though 1.4 degrees may not seem
like much, picture your body temperature rising by that
amount. It would feel like the start of a fever. For our
planet, nothing is different. Similar to how humans favour
certain temperature ranges, many marine species do as
well [15]. The majority of marine creatures have demon-
strated the ability to adapt to the increasing ocean water
temperatures, but the food that seals, whales, dolphins,
and other species depend on is shifting owing to the
warming water. Because they are diving farther and
deeper into the ocean in search of cooler water, sea lions
are having difficulty locating their favorite fish, sardines,
and anchovies [16]. As a result of the greater distance, sea
lions must use more energy when hunting and traveling. In
recent years, California has seen record-high water tem-
peratures, which has led to thousands of ill sea lions
washing up on the shore after their moms abandoned their
young because they had to go farther and go food hunting.
Dolphin calves can’t hunt for food as deeply or as far,
which makes them unwell and unable to protect them-
selves. Our goal is to increase the availability and effective-
ness of animal tracking using satellite tags for marine
species. Having the capacity to follow smaller creatures like
sardines and anchovies enables us to understand where they
travel despite climatic change, which in turn enables us to
understand how and why animals move along the same
migration patterns as them for feeding, such as sea lions,
dolphins, and sharks. We may discover the animal’s preferred
habitats, breeding sites, and nursery grounds by employing
the trackers. Due to climate change and the warming of the
oceans, everything is constantly changing.
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2 Related work

In this section, we have described the related articles pub-
lished so far in scientific journals. It will make it easier for
readers to compare the work with earlier works and com-
prehend the context of the suggested study problem. The
ABCOA, flower pollination algorithm, firefly algorithm,
Krill herd algorithm, and genetic optimization algorithms
were tested on soil temperature, pest detection, aerial pes-
ticide and fertilizer spraying, water reservoir manage-
ment, renewable power integration, and path planning
for agricultural machinery. The results showed that the
BIAs can be useful in new ways. Because the bio-inspired
ANN algorithms used neural networks to simulate brain
functions, they performed better. On the other hand, the
GA algorithms were chosen due to their superior perfor-
mance in several applications such as machinery path opti-
mization, pesticide application, and crop planning models
[17]. The rigorous appraisal of scholarly research con-
cerning IoT in agriculture demonstrated that emerging
technologies such as artificial intelligence sensors, actua-
tors, uncrewed aerial vehicles, satellites, big data analytics,
intelligent machines, and radio-frequency identification
devices had multiple and practical areas of application in
smart greenhouses and precision agriculture. Theoretical
evidence shows the progress made in research and devel-
opment coupled with would catalyze the uptake of these
technologies. Commercial farms have demonstrated that it
was practical to improve crop yield and monitor growth
conditions (temperature, humidity, and nutritional con-
tent) [18]. Concern over climate change has led to an
increase in interest in marine environmental monitoring.
In the last few decades, numerous maritime environ-
mental monitoring systems have been developed using
cutting-edge information and communication technology.
The IoT is one tool that has proved crucial in this field. An
overview of the use of IoT in the realm of maritime envir-
onment monitoring is provided in this study. A brief over-
view of new technologies, such as sophisticated big data
analytics, and their uses in this field is given. It also covers
important research prospects and difficulties in this field,
such as the possible use of big data and the IoT in the
preservation of maritime environments [19]. This study
presents a thorough analysis of the most recent studies
that have been applied to the field of smart water pollution
monitoring systems. The study suggests an affordable and
effective IoT-based smart water quality monitoring system
that continuously analyzes the quality parameters. Three
water samples are used to evaluate the constructed model,
and the parameters are sent to the cloud server for addi-
tional processing [20]. The proposed system in this work is
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made up of multiple sensors that detect different charac-
teristics, such as the surrounding atmosphere’s tempera-
ture and humidity, the level of water in the tank, the
turbidity of the water, and the pH value. Additionally,
these sensors were interfaced with the Microcontroller
Unit, and additional processing was carried out on a per-
sonal computer. To monitor the water quality, the Think-
Speak program, which is based on the IoT, sends the
collected data to the cloud [21]. This viewpoint article out-
lines some of the difficulties in conducting long-term coastal
observations and offers suggestions for filling in current
gaps. We go over how cooperative robotics between
unmanned platforms plays a part in coastal regions and
how to take advantage of IoT technologies [22]. This project’s
main objective is to design and construct a wireless sensor
network system that will monitor bodies of water in order to
save underwater life. The primary cause of pollution in
aquatic environments is an overabundance of nitrogen and
phosphorus, which lowers oxygen levels and poses a serious
threat to marine life, including whales, sharks, and penguins.
Monitoring pollution is crucial to the preservation of marine
life. It is concluded that this technique is very helpful for fish
production and meeting future food demands if the right
management of rivers and ponds is completed with its assis-
tance [23]. A multitude of intelligent gadgets that can commu-
nicate with one another are connected through the IoT with
the least amount of human intervention possible. IoT is
quickly taking up in computer science fields. The cross-cut-
ting design of the diverse components and IoT systems
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involved in implementing such schemes, however, pre-
sents significant security challenges. The use of security
protocols, such as application security, authentication, encryp-
tion, and access networks, for IoT systems and their funda-
mental security flaws is ineffective. Using earlier research
on DL and ML, the authors attempted to create a review
of IoT dangers while researching machine learning
privacy and security concerns. There is a discussion of
fresh problems and ideas from ML and DL in IoT security.
In addition, recommendations for enhancing future tech-
nology are given, along with security issues, constraints,
and future directions [24]. This study investigates the dif-
ficulties and limitations that arise when the IoT serves as
the foundation for an over-the-horizon (OTH) marine sur-
veillance system. The communication infrastructure of
the service, which is based on high-frequency surface
wave radars, is a satellite communication network in hos-
tile settings. Currently, the entire IoT OTH maritime
surveillance network is situated in the Gulf of Guinea,
an unsuitable location for sensors and communications
because of its tropical climate. The authors of this study
have looked at how well the Gulf of Guinea’s services
work in a variety of weather scenarios [25].

2.1 System model

The system model for the study being presented is shown
in Figure 1. Although it hasn’t been practiced for a very
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long time, animal tracking has advanced significantly in
recent years. In 1804, John Audubon adorned the birds in
a nest not far from his house with silver threads. One of the
earliest tests with “animal tracking” was carried out the
following spring when two of them returned with the line
still attached. Now that we have sensors that attach to
animals, we can follow their movements and determine
why they move in particular ways using GPS and satellite
technology [26]. They used LEO tags to follow the indivi-
dual manta rays in earlier research, similar to the Manta
Matcher trackers. The tag is set to expire after six months.
Then, in order to receive their data, the scientists must wait
for the tracker to wash ashore. The data are lost if the
tracker is lost at sea. In order to keep up with the manta
rays they are monitoring, they also memories their mark-
ings. The ability to follow manta rays is a terrific idea
because they are now listed as an endangered species
owing to climate change and poachers who go after them
for Chinese medicine. This thesis explains why it’s impor-
tant for us to be able to monitor an ecosystem that includes
all varieties of marine life, including creatures like the
manta ray [27]. Our sensors are unique because we are
embedding them into the Great Barrier Reef. We can
readily get them by boat, so they won’t need to wash ashore
and remain immobile. Additionally, we have set the sensors
up to download data to the gateway automatically.

In case the sensor requires assistance sending the data
to the gateway depicted in Figure 2a and b, we have addi-
tionally put booster buoys. With the sensors being sta-
tionary inside, the ecosystem we will not only be able to
monitor the ecosystem but also the habitat of many of the
marine life in the Great Barrier Reef.

M + N, where N is the number of direct IoT uplinks and
M is the number of IoT uplinks through boosters, is the
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total number of slots available to transmit in a frame at the
gateway. The boosters synchronize the two-time frames by
making M + N the total time slots as well. The neighbor-
hood IoTs will use N-A only to relay data to the booster.
Finally, the M time slots are utilized for the actual transfer
of the IoT data via the booster after A time slots are set
aside for the Booster to prioritize its data transfer. In
Figure 2, the two-tier approach that we will be employing
is depicted. There are a total of K sensor devices that can
broadcast data to the gateway directly, along with W
booster buoys. Only N devices, chosen from a possible
list of K, 10T sensors, and M devices, corresponding indirect
transmission via the W, Boosters by potentially L, IoT-
based sensors, may be scheduled to transmit at a period.
A transmission time of T/(N + M + 1) will be given to the
transmitting devices N and M since the 1 slot is set aside for
the scheduling decision. Figure 2 illustrates how the
remaining slots will be used for data transfer. A test signal
will be transmitted from the gateway to the sensors to
ascertain the signal strength corresponding to the channel,
where i can either correlate to the IoTs or the Boosters,
before the connection begins. A similar setup is also taken
into account for the booster. For sensors that can commu-
nicate directly to the gateway, the upper M slots will be set
aside. During this time period, sensors with weak signals
will be sent to the booster buoy. To allow for transmission
from these booster buoys, N slots will be set aside. The
neighborhood IoTs can transmit signals to the booster
buoys. It is thought that sending the full packet to the
satellite after these data have been received at the gateway
is outside the purview of the task. The IoT gadgets are
thought to be self-sufficient. Solar energy provides them
with their energy. Our gadgets’ cost is not significantly
increased by this energy gathering. We upgrade to take

_

A

(b)

Figure 2: Timeslots: (a) for gateway connectivity and (b) for booster connectivity.
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into account RF energy harvesting by IoT sensors in the
subsequent section. We just take into account one booster
buoy for the purpose of simplicity. si’! is a binary indicator
used to show whether the xth IoT device at the ith frame is
scheduled for transmission. Also [i] represents the frame.,
X € k,l,w =1, 1ie,either IoTs sending data direction or via
the boosters [28].

0; if not scheduled

slil = i
1; if scheduled

The total energy consumption will be the energy required
from the sensors, booster buoys, and booster-based sensors.
Energy consumption from each sensor to the gateway [29]:

Eisin = (s pf, ()
where p|' represents the power used by the kth sensor. The
energy consumption coming from each booster buoy can
be represented as follows:

booster _
E total -

{skilplihz, @)

where p&f] represents the power used by the wth booster
device. Energy consumption from each booster connected
sensor to its booster [30]:

EBen = (s/p/iie, ®)

where p, llrepresents the power used by the Ith sensor. All
of the above equations apply to the ith time frame. Total
energy consumption can be represented as [31]

— psen Bsen booster
Etotal - Etotal + Etotal + Etotal
Or,
K
Eotal = ZSIEI Jr + Z SWpLT + Zs ! fe “)
k=1 w=1

The total energy consumption is shown to be the sum-
mation of the energy of each of the sensors sent to either
the main gateway for the k devices or the booster buoys for
the w devices. This is added to the energy consumed by the
IoT which sends data via the booster route. The service rate
for each device to the gateway will represent the power,
and the channel condition is written as follows:

gipl", B = Blog,[1 + pln{"]; vk, i, 6)
g{pll, % = Blog,[1 + pl'nll}; vk, i, 6)
g{pl[i]’ hl[i]} = Blng[l + pl[i]hl[i]]; vk, i, 7

where B is the occupied channel bandwidth standardized
for the system. The queue will be continuously updated for
these devices as follows:

1 = max[Q[" - gipfl, hf'}sl'z, 0] + 6T, ®)
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The above represents the direct path sensor queue.

QY = max[QI! - g{plll, nlslilz, 0] + iqbl[i]T. )
=1
Where,
9" = gtp!", hsl', (92)
QF*Y = max[Q! - g{plt, h{hsl'z, 0] + /T, (10)

Egs. (9) and (10) describe queue updates at the booster
and IoTs that use the booster to send data, respectively. The
following equation may be used to reduce the energy con-
sumption problem for the sensors that can broadcast
directly to the gateway, booster buoy, and gateway:

K )
Z S;EI]PIEHT
k=1

w L
+ ) slipliz + Zs,[l]pl[i]rl.
w=1 =1

minf({p/", st'}, {plY, s, {p/", '} = min

(11a)

Such that mean rate stability is achieved for the queues
belonging directly to communication sensors, booster, and
indirectly to communicating sensors. Therefore, mean rate
stability applies to [32]

Q! VkEeK,Vi (11b)
QW vwe w,vi, (11c)

for the booster buoy and,
Q" vlelL,Vi (11d)

for the indirect communicating IoT. Furthermore, the indi-
cator variables have the following constraints:

K -
Y sl = N; Vi, (11e)
k=1
W -
> slil = M; vi, a1
w=1
si € {0, 1}; Vk € K, Vi, (11g)
sl e {0,1}; Yw € W, Vi, (11h)
pk[i] € Pom; Vk €K, Vi, (119)
pile “Par; YW € W, Vi, (115
pll e P; VI € L, Vi, (1K)

The design variables for the problem above (11a) are
plil, st plil, sfil plil, sfYl, plil. Egs. (11b)-(11d) are to maintain
the sensors, booster buoy, and IoT to booster queue so that
they remain stable. Eqs. (11e) and (11f) show that there are
only N and M number of devices that are scheduled within
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the timeframe. Eqgs. (11g) and (11h) represent the scheduling
being binary where 0 does not transmit and 1 transmits. Egs.
(111)-(11k) correspond to the power of the IoT sensor, the
booster buoy, and the power of IoT to booster.

2.2 Problem transformation

In this section, we will be using Lyapunov optimization on
the problem in (11a). We will again split this into a subpro-
blem representing the sensors and booster and the indirect
IoT system [28].

[il.[4) [i] l] + [i] [1
(ol sl ity fi ¢ Zs Pk TZS r ZS
k Py sw DL S

Operation is broken into the following two parts:

min Y st pmr, 12)

sl kex

s.t. (11b), (11e), (11g), (11j), (11k)
min s, pliz + 3 ", pliz, 13)

{plllsih leL

s.t. (11c), (11), (11h), (11j), and (11k)
The Lyapunov Function from the problem above for the
close sensor, booster buoy, and gateway will be listed as follows:

Z QI vi

XEX

Z[Q 2 (14)

The Lyapunov Drift for the devices is written as follows:
A £ B[O 210 ol v,

where x € {k, [, w = 1} By combining Eqs. (14) and (15), we
get the transformed objective for the direct IoTs asshown
in (16) and (17):

15)

MQH =5 Z E{(Q;™? ~ (@D @t

ke//

<L 3 1 + Gotpl!, hfhel'e + of'ry

ke//
- 20/ {pl", hsl'e - 6'T)
—Zg{p“’] nsleol'T - (03

< (g{p , st - o172 (16)
kln/
<y (g{p,;],h iz - oIy

kex
+0 i (9[1 T - g{ [i] h } [i]T)
k Py Sk

< Y {0ko'T - giplt, nihst'o)}

kex
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AQIN = [E{(QJ;'” - (Q? @iy

SE{(Q,,[J])Z + (g{pll, hlisliy? + S Of'ry?
- 20U tpl!, hisllz - Yol
-2g{pll, skl rolT - Q! l])z}
<2 g(g{pv[j], hiisliz - 5 ol

wWEW
1 - o, ~.an
2@ip sl - Y 01'ry + Qi ol

<2

wEW

- g{p!t, hli]}sv[é]f)]

< 3 @0l - gipl), nililiey

weEW

L
le[zg{p}“, hi'st'e) - gipy) h&ﬂ}s&ﬂr]
l

So, finally, the Lyapunov drift and penalty representa-
tion can be written as follows:

F(pl, st =A@ + Ve ¥ si'pfle
keK
< 7 o6 - gty sl
keEK
+ Vi Y siplile,
keEK

(18)

si™) = Al + vy Y sliplile

weEW

< Qv[vi]L[ Zg(pl[i]’ hl[i])sl[i],[

leL

/-Pl//l/({ p]/[vl]) SIEIE]}) {pl[i]a

19)
- gl hV[J])sV[J]T]
+Viw Y sliplile + v, Y sl'plie.
wewW leL
Eq. (19) can be reframed as

Fu(pll, plt sy < [QM[;][ Yy g(p/", h[hsfle

leL

- g(p, hihsliz| + vy Pl

stV Z sl[i]p
leL

l[i]»[ < Threshold. (20)

The optimization of the objective functions of Eqgs. (19)
and (20) can be rewritten as

minf, = Viepf! - Qg {pl!, i, s.t. 211))
Py (VAY)]

. (:V” k e %"
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of, __ ogl\mh

— = - . (22)
ap lEl] k apkz] k

From Eq. (21), we see the optimal setting of the directly
connected IoTs.

B R T elp M} p i hl[l]} AL {PV[Vi]’ hA”[”i]}
oPllap!! v oPllap!! v oPlapll  (23)
+ Vi
st.V.2 80 p e < Threshold.
While the last part of Eq. (23) can separated as
ag(pl, b
i = - 2w Wil
min fo1 = Vi o9 o 249

The first part of Eq. (23) we use the gradient scaled 0-1
Knapsack to optimize the power levels for the indirect IoTs.
Thus, the problem becomes equivalent to solving the fol-
lowing gradient scaled 0-1 Knapsack:

Llogipl"nh| |
* lzl Coopll Ql's/| s.t. i Y plilt
i ! I€L

< Threshold.

(25)

Since the above-mentioned segments of Eq. (23) are
uncorrelated, the addition of their individual optimized

Table 1: Algorithm 1

Algorithm 1 - Power and scheduling process for the system

For each timeframe do
Phase 1: Power (at the individual device)
for all k € K do
Calculate (p{™ert for maximal fibased on Eq. (22)
end
forall /€L do
Calculate (p™)°P for maximal of the knapsack problem based on Eq. (25)
end
Phase 1: Scheduling (at the booster)
Sort in the booster in ascending order

Set (Slm)"pt =1 for the first N-A entries in the booster

Set (Slm)c’l" = 0 for the remaining of the L entries
Use the top M of the data received for relay transmission in Phase 2,
rest (N-A-M) data are stored in the booster queue
Phase 2: Scheduling (at the gateway)
Sort for transmission to the gateway
For the directly connected IoTs

Set (S,E”)OP‘ =1 for the first N selected entries
For the Booster buoy
Set (skihert(slihopt =1 for the first M selected entries of the relay

data of the booster buoy
End

DE GRUYTER

value results in the optimal value for Eq. (23). Algorithm 1
provides the process flow for the proposed algorithm is
given in Table 1.

2.3 Incorporation of RF energy

It is suggested to update the system design to include RF
power transmission. We also include a dual period approach,
whereby the first-time data transmission is accommodated
from close sensors (within the grey circle’s range in Figure 3),
and the second-time data transfer is accommodated from
distant sensors. Harvesting RF energy takes place throughout
both time windows. Following that, the dual period periodi-
city is repeated. Algorithm 2 is provided for the process of the
RF harvesting system, as indicated in Table 2.

3 Experimental results

A baseline demonstration will be built in this part to show
how much energy our architecture uses. In order to deter-
mine the most efficient use levels, we will review the simu-
lation findings for energy consumption, average packet
latency, and average buffer space. Memory typically costs
$0.02 per GB. We intend to place IoT devices with lots
of memory in busy regions. Less memory will be available
per device in less crowded places. Keeping energy usage
to a minimum would further reduce the price of our archi-
tecture; 100 W will be the maximum gateway power
transfer rate. There will only be ten power levels available
for the gateway and IoT devices to use. The device ratio
is another important metric used. The booster buoy ratio
in relation to all IoT devices will be shown by the device
ratio. The value has been set at 0.02, or 20%. For our simu-
lations, a timescale parameter of 5,000 will be used. In
the simulation, a random scheduling model [10] will
be used; in this model, devices only transmit packets
when their transmitting device’s buffer level is not empty.
Additionally, at the receiver where the signal was detected,
the signal received must meet a certain signal intensity
threshold value. Table 1 displays the simulation’s inputs.
Table 1 illustrates the presentation. For every power setting,
the energy usage is shown in joules. The first five power
settings have little energy use, as seen in the graph. At power
level 7, there is a significant increase. The energy consump-
tion increases after the rise and peaks at slightly under 2 J.
Our initial assessment indicates that when the rate ratio and
average buffer space rise, so does the quantity of energy
used. We provide a table of the simulations we carry out,
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Figure 3: Dual period system diagram.
Table 2: Algorithm Table 3: Simulation parameters
Algorithm 2 Parameters Value
for each timeframe do Max distance from IoT to gateway 2 km
Phase 1: Power Allocation Max distance from IoT to buoy 3 km
for all k € ¢ zone 1 do Distance from galaxy to satellite 800 km
if timeframe even use zone 1 devices Tier1 path loss 4
if timeframe odd use zone 2 devices Tier2 path loss 2.5
(if multiple zones used) Noise variance -174 dBm/Hz
Calculate(p/h o0« Detection Threshold at gateway -7 dB
Timeframe length 10 ms

Evaluate f;
s btained val fr i X Power 790 mwW

tore obtained value of f] in matrix Number of IoT device 250
end for . Device ratio 0.2
Phase 2: Scheduling Length of a packet 168 bits

Sort X in ascending order
i

Set s,£]= 1 for first N entries in X

Set si'= 0 for the rest of the entries in X
Phase 3: Device Queue Update
Update QIEi]Vk € A zonel

Update QIEi]Vk € A" zone2

Update ElM*Yvk € ¢ zone 1

Update EIMvk € 7 zone 2

to represent different series of experimentations, as shown
in Table 3.

The characteristics in Table 4 are used in the baseline
demonstration below. For each power level, the energy
consumption is shown in joules in Figure 4. The first five
power settings have little energy use, as seen in the graph.
At power level 7, there is a significant increase. The energy

consumption increases after the rise and peaks at slightly
under 2 J. Our initial assessment indicates that when the
rate ratio and average buffer space increase, so does the
quantity of energy used.

3.1 Simulation I

Two factors were changed in this simulation to examine
how our data would change. The quantity of traffic on the
network grew along with the growth in IoT devices from
250 to 500. These adjustments were made to take into
account the fact that a significant portion of the marine
creatures being monitored by our equipment are tagged.
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Table 4: Experimentation scenarios

DE GRUYTER

Simulation Monitoring region Traffic level Motivation Energy consumption
I Large High Marine life near shipping channels High

II Large Low Marine life around coral reef Medium

111 Small High Sea turtles nesting eggs Medium to High

v Small Low Marine life in Cold Water Low

Energy Consumption (joules)

6 7 8 9 10

Power Level

Figure 4: The energy consumption for different power levels.

The data that differ from our baseline example is shown in
detail in Figure 5. The energy usage is significantly greater
than our baseline figure due to the rise in IoT devices.
Energy usage increases when the average buffer level rises.

3.2 Simulation II

We changed the same two parameters from simulation I to
simulation II; 500 IoT devices are present. However, there
is less load on the network now. The disparity between the
data readings from our baseline demonstration and our
first simulation is shown in detail in Figure 6. The average
buffer levels are stable and much lower than in simulation
I as a result of the drop in network traffic.

3.3 Simulation III

We changed the same two parameters from our first simu-
lation to our third simulation. The network’s traffic grew
while the number of IoT devices was reduced from 500 to
50. The disparity between the data readings from our

baseline demonstration and earlier models is shown in
detail in Figure 7. This simulation uses a little bit more
energy than our reference reading. This simulation shows
that the volume of traffic also has a significant impact on
energy consumption levels. With an average packet delay
of about one millisecond, there is hardly any latency.

3.4 Simulation IV

The identical settings that were changed before were used
for our most recent simulation. The quantity of traffic on
the network was reduced, and the number of IoT devices
was reduced from 500 to 50. The disparity between the
data readings from our baseline demonstration and earlier
models is shown in detail in Figure 8. All three of our
graphs are altered when one of the two parameters is
decreased. The average buffer space level is about the
same as it was in our second experiment during the period
of lower network traffic. The amount of buffer space is still
about eight packets.

The cases that were simulated were actual ones where
IoT monitoring would be useful. It is also important
to evaluate the IoT devicess memory and storage
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requirements as well as their price and quantity. For each the outcomes of the two instances of RF energy harvesting
of the simulations that were run, suggestions and future integration for IoT devices. We describe the two situations
projections are shown in Table 5. Additionally, we provide in more detail and offer the outcomes.
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Table 5: Simulation expectations

Recommended IoT device

Energy consumption

Traffic level Motivation

Monitoring region

Simulation

Expensive, fault-tolerant, low quantity of device

High

Marine life near Shipping channels

Marine life around coral reef

Sea turtles nesting eggs
Marine life in Cold Water

High
Low

Large

Inexpensive, memory/storage intensive, high quantity of device

Expensive, fault-tolerant, high quantity of device

Medium

Large
Small

I

Medium to high

Low

High
Low

I

v

Inexpensive, large amount of memory, high quantity of device

Small
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3.5 RF energy harvesting IoT Case I

For each interval, we use 400 devices with 100 transmitting
slots. In Case 1, all devices are qualified to transmit; 500
periods with _m equal to 5, 10, 15, 20, 25, and 30% are run
through this. Using even costs for data and energy as well
as greater and lower costs for data to energy, the program
is conducted as given in Figure 9. Average buffer length,
under conditions of equal costs for data transmission and
energy consumption in an IoT network, refers to the
typical amount of data waiting to be sent from devices to
a central hub or the cloud. It represents a balance between
data accumulation and energy expenditure, ensuring the
network’s efficiency and sustainability. In this scenario, the
network aims to maintain an equilibrium, minimizing the
time data spends in device buffers while avoiding exces-
sive energy usage. Achieving an optimal average buffer
length is essential for preserving device battery life and
maintaining data flow, ultimately maximizing the net-
work’s performance and resource utilization.

In Figure 10, we employ 400 devices with 100 transmit-
ting slots for every interval. Every device is eligible to
transmit in Case I. This is done for 500 periods with _m
equal to 5, 10, 15, 20, 25, and 30%. The average number of
scheduled requests, with uniform costs for data and
energy, refers to the expected frequency at which IoT
devices in a network request scheduling for data trans-
mission to a central hub. In this context, data and energy
are equally valued, and devices seek an optimal balance.
Maintaining a manageable average number of requests is
crucial for minimizing network congestion and conser-
ving device energy. It ensures that devices efficiently
and fairly access the network while avoiding unnecessary
overhead. Striking this balance is essential for achieving
efficient data transmission, preserving energy resources,
and promoting equitable communication within the IoT
ecosystem.

In Figure 11, we analyze the energy consumption for
_mequal to 5, 10, 15, 20, 25, and 30%. In an IoT system, total
energy consumption is the total amount of energy used by
all devices for network operations and data transmission,
assuming that data and energy costs are equal. The objec-
tive in this case is to strike a balance between the energy
costs and the advantages of data transfer. The network can
guarantee sustainability and longer device battery life
while ensuring effective data transfer by optimizing total
energy consumption. Reaching this balance reduces need-
less energy waste, making the IoT infrastructure more
economical and ecologically benign. Achieving optimal
equilibrium in overall energy usage is crucial for the net-
work’s sustainability and effectiveness in the long run.
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Average Buffer Length vs SNR with Even Energy and Data Costs
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Figure 9: Average buffer length with even costs for data and energy.
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Figure 10: Average number of schedule requests with even costs for data and energy.
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Figure 11: Total energy consumption with even costs for data and energy.

In Figure 12, we estimate the energy consumption of
scheduled devices vs signal-to-noise Ratio (SNR) for _m
equal to 5, 10, 15, 20, 25, and 30%. The total energy con-
sumption of scheduled devices vs SNR in the context of
even energy and data costs in an IoT network represents
an important trade-off. As SNR increases, devices require
less energy to transmit data reliably, but scheduling deci-
sions may become more complex. Scheduled devices aim to
minimize energy consumption, as each transmission con-
sumes power, while SNR reflects the quality of the commu-
nication channel. Balancing these factors optimally is
essential. Devices with good SNR can transmit with lower
energy consumption, but effective scheduling of all devices
is necessary to maintain network performance and energy
efficiency. Striking this balance ensures reliable data trans-
mission with minimal energy usage, maximizing the overall
network’s efficiency and effectiveness.

In Figure 13, we estimate the performance of buffer
length vs SNR for _m equal to 5, 10, 15, 20, 25, and 30%. The
performance of buffer length vs SNR for different percen-
tages of available memory (_m) in an IoT network reveals
crucial insights. As _m increases from 5% to 30%, the net-
work’s buffer capacity expands. With higher SNR, data
transmission becomes more reliable, and devices with
larger buffer lengths can capitalize on better channel

conditions. This relationship highlights the trade-off
between buffer size and SNR. Smaller buffers may experi-
ence more data loss in low SNR scenarios, while larger
buffers can absorb and transmit more data. Optimal per-
formance lies in adapting buffer length based on SNR and
the specific memory resources available, ensuring efficient
data transmission while minimizing potential data loss.

The average number of schedule requests vs SNR in
the context of lower energy costs for data transmission
than for data processing and storage (_m ranging from 5
to 30%) reveals an intriguing dynamic as given in Figure 14.
Lower energy costs for data favor more frequent schedule
requests, as devices seek to transmit data more often. A
higher SNR allows for more reliable data transmission,
reducing the urgency of scheduling. As _m increases,
devices with more available memory may request sche-
dules more frequently. The key is finding a balance that
optimizes scheduling efficiency while considering the
energy trade-offs, SNR conditions, and the specific memory
constraints of the IoT network.

A crucial trade-off in IoT networks is between total
energy consumption and SNR as given in Figure 15, parti-
cularly when data transmission has lower energy costs (_m
ranging from 5 to 30%) than data processing and storage.
Devices are incentivized to communicate more frequently
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Figure 12: Total energy consumption of scheduled devices vs SNR with even energy and data cost.
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Figure 14: Average number of schedule requests vs SNR with lower energy costs than data.
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when data transmission energy prices decrease. Data
transmission becomes more energy-efficient with a greater
SNR. Devices with higher memory capacities can afford to
buffer data as _m grows, perhaps leading to fewer, more
energy-efficient transfers. This equation must be balanced
in order to decrease total energy consumption and provide
reliable data communication in the IoT ecosystem. Lower
data energy costs must be assessed against SNR conditions
and memory limits.

Figure 16 indicates the total energy consumption of
scheduled devices, in the context of lower energy costs
for data transmission than for data processing and storage
(Um varying from 5 to 30%), representing an intricate rela-
tionship. As _m increases, devices with more available
memory can afford larger buffers, allowing them to sche-
dule transmissions less frequently. With lower energy costs
for data, devices may favor more frequent scheduling.
Moreover, the SNR influences the energy efficiency of
scheduled data transmissions. The optimal balance is
achieved by considering _m, SNR conditions, and energy
trade-offs. Reducing data transmission costs while efficiently
utilizing device memory is vital to minimize energy consump-
tion while ensuring reliable data transfer in IoT networks.

The average buffer length versus SNR in the context of
higher energy costs for data processing and storage com-
pared to data transmission (_m ranging from 5 to 30%)
reflects an intriguing interplay as demonstrated in Figure

DE GRUYTER

17. In situations with elevated energy costs for data hand-
ling, devices may prefer to keep smaller buffers to reduce
data storage and processing. A higher SNR allows for more
reliable data transmission, influencing the necessary buffer
size. As _m increases, devices with more memory capacity
can maintain larger buffers. Achieving the optimal average
buffer length entails striking a balance between SNR, energy
trade-offs, and memory constraints, ensuring efficient data
processing while minimizing energy consumption in the IoT
network.

Figure 18 represents a complex link when examining
the average number of scheduling requests vs SNR in the
setting of higher energy expenditures for data processing
and storage than for data transmission (_m changing from
5 to 30%). Devices are encouraged to avoid scheduling
requests due to the higher energy costs associated with
data processing, particularly in low SNR conditions where
data dependability is impaired. Devices with higher memory
resources can afford to buffer data and make fewer sche-
duling requests as _m rises. It is crucial to strike the ideal
balance between the quantity of scheduling requests and
SNR levels. This allows for different memory limits in the
IoT ecosystem while guaranteeing effective data manage-
ment, reducing energy consumption, and maintaining net-
work speed.

Figure 19 estimates the total energy consumption with
respect to SNR. Considering SNR and higher energy costs

0.8~

Total Energy Consumption of Scheduled Devices

0.7~

Total Energy Consumption of Scheduled Devices vs SNR with Lower Energy to Data Costs
T

m=5%

m=10%
m=15%
m=20%
m=25%
m=30%

0.6

SNR

Figure 16: Total energy consumption of scheduled devices versus with lower energy costs than data.
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Figure 18: Average number of schedule requests vs SNR with higher energy costs than data.



20 —— Arun Kumar et al. DE GRUYTER
Total Energy Consumption vs SNR with Higher Energy to Data Costs
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Figure 19: Total energy consumption with higher energy costs than data.
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Figure 20: Total energy consumption of scheduled devices with higher energy costs than data.

for data processing than for data transmission, total energy
consumption is a measurement of the overall energy used
in an IoT network. The energy balance changes when _m
fluctuates between 5 and 30%. Higher data processing costs

drive more efficient scheduling and data management stra-
tegies to save energy. A higher SNR maximizes energy
economy and implies more reliable data transmission. In
order to get the ideal balance, energy consumption must be
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adjusted to SNR levels, memory constraints, and the number
of devices that can transmit data at the same time. By doing
this, the IoT network’s energy resources are preserved, and
reliable and efficient data transmission is ensured.

Figure 20 estimates the total energy consumption of
scheduled devices with higher energy costs for data pro-
cessing and storage compared to data transmission sig-
nifies the overall power expenditure required to manage
and transmit data in an IoT network. In this scenario,
devices aim to conserve energy, often by buffering data
to reduce the frequency of data transmissions. This approach
lowers the energy cost associated with transmission but
increases the energy consumed for data management.
Striking a balance between these two energy components
is critical to optimize overall energy consumption. By effi-
ciently managing data, scheduling transmissions, and
minimizing energy-intensive processes, the network can
maintain data reliability while conserving power, enhan-
cing the sustainability and longevity of the IoT ecosystem.

3.6 RF energy harvesting IoT Case II

Next, we employ 400 devices once more, but only 100 of
them can send data at a time. In this scenario, only nearby
devices can broadcast during odd periods, whereas distant
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devices can only send during even periods. Throughout, RF
harvesting may be placed; 500 periods with _m equal to 5,
10, 15, 20, 25, and 30% are run through this. Using even costs
for data and energy as well as greater and lower costs for
data to energy, the program is conducted. The data may be
found in the following Figures 21-28.

In Figure 22, we use 400 devices again, but only 100 of
them have data-sending capability. In this case, faraway
devices can only send during even time intervals, whereas
nearby devices can only broadcast during odd time per-
iods. RF harvesting may occur throughout. This is done for
500 periods where _m is 5, 10, 15, 20, 25, and 30%. The
program is run using even costs for energy and data, as
well as higher and lower costs for data and energy. The
frequency at which IoT devices look for scheduling for data
transmission is reflected in the average number of sched-
uled requests, with equal expenses for data and energy.
Devices try to balance energy savings and effective data
transmission in this case of equal data and energy expenses,
maximizing network performance.

For 400 devices again, but only 100 of them have data-
sending capability, the performance of total energy con-
sumption vs SNR is given in Figure 23. In the context of
uniform costs for data and energy, when only a limited
number of devices can transmit data simultaneously (_m
ranging from 5 to 30%), this reflects the cumulative energy

Average Buffer Length vs SNR with Even Energy and Data Costs
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Average Number of Schedule Requests vs SNR with Even Energy and Data Costs
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Figure 22: Average number of schedule requests with even costs for data and energy.
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Figure 23: Total energy consumption with even costs for data and energy.
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utilized for data transfer. As _m increases, more devices
can transmit concurrently, potentially reducing the time
data spends in buffers. This can lead to more efficient
energy utilization but also a higher potential for network
congestion. Striking the right balance is crucial; it involves
optimizing data transmission while considering energy
trade-offs, the number of devices transmitting simulta-
neously, and network performance to ensure efficient
and reliable operation in IoT systems.

Given a limited number of concurrent device transmis-
sions (_m between 5 and 30%) and lower energy costs for
data processing and storage, the total energy consumption
of scheduled devices relative to SNR that represents the
energy used for data management and transmission is
represented in Figure 24. It is imperative to maximize sche-
duling because there are not as many devices broadcasting
at once. Devices are encouraged to transmit more fre-
quently by lower data transmission costs, while effective
data transfer is encouraged by better SNR. Finding the
ideal balance in IoT networks with limited simultaneous
transmission capacity requires adjusting scheduling, taking
SNR conditions into account, and making energy trade-offs
in order to provide dependable data transmission while
preserving energy resources.

Figure 25 indicates the average buffer length indicates
the normal amount of data that is waiting to be transmitted
IoT devices, given the greater energy costs associated with
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data management as opposed to data transmission and
the limited number of concurrent device transmissions
(_m ranging from 5 to 30%). Maintaining a balanced buffer
length is essential when there are fewer devices transmit-
ting simultaneously. Smaller buffer sizes may be encour-
aged by higher data management expenses to lower
processing requirements. In order to provide effective
data processing and dependable communication within
the IoT network, achieving an ideal buffer length requires
careful consideration of energy trade-offs, memory lim-
itations, and the number of devices capable of simulta-
neous data transmission.

The average schedule request count in relation to SNR
in a case, where data processing energy costs are higher
than data transmission energy costs and only a small
number of concurrent device transmissions (_m ranging
from 5 to 30%) are supported, emphasizes how difficult it
is to schedule in IoTs networks is shown in Figure 26. When
fewer devices are transmitting simultaneously, effective
scheduling is required. Devices might make more thoughtful
scheduling requests if data processing costs are higher. Data
transmission that uses less energy is encouraged by a
greater SNR. In order to ensure reliable communication
while preserving energy resources in constrained concur-
rent transmission situations, scheduling must be adjusted
to SNR conditions, energy trade-offs, and the number of
devices capable of simultaneous data transmission.
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Figure 24: Total energy consumption of scheduled devices vs SNR with lower energy costs than data.
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Average Buffer Length vs SNR with Higher Energy to Data Costs
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Figure 25: Average buffer length with higher energy costs than data.
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Figure 27: Total energy consumption vs SNR with higher energy costs than data.
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Figure 28: Total energy consumption of scheduled devices vs SNR with higher energy costs than data.

The total amount of energy used for managing and
sending data is shown by the total amount of energy
used when processing and storing data costs more than
sending data, and there are a limited number of device

transmissions at the same time (_m ranging from 5 to
30%), indicated in Figure 27. A reduced number of trans-
mitting devices requires optimized energy consumption.
Through effective scheduling, the network seeks to reduce
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energy usage in light of increased data processing costs.
Higher SNR values result in data transport that uses less
energy. In order to ensure dependable data communica-
tion while preserving energy resources in IoT networks
with limited concurrent transmission capabilities, the ideal
balance must be struck between energy consumption and
SNR conditions, energy trade-offs, the number of devices
capable of simultaneous data transmission, and memory
constraints.

Figure 28 gives the total energy consumption of sched-
uled devices concerning SNR, while accounting for ele-
vated energy costs for data processing compared to data
transmission and limited concurrent device transmissions
(_m from 5 to 30%), representing the energy expended for
data management and transmission. With fewer devices
able to transmit concurrently, efficient scheduling is cru-
cial. High data processing costs encourage devices to sche-
dule judiciously, especially in low SNR conditions. Finding
the optimal balance involves adapting scheduling to SNR
conditions, energy trade-offs, memory constraints, and the
number of devices capable of simultaneous data transmis-
sion. This ensures reliable data communication while con-
serving energy resources in IoT networks with constrained
concurrent transmission capacity.

4 Conclusions

The energy harvesting statistics show that the average
buffer duration and the average number of planned
requests rise together with the proportion of power har-
vesting timeslots. No matter how much energy or data
costs or how many devices are used, this is true across
all of the experiments. Although there is minimal differ-
ence between power harvesting when _m is between 15
and 20% and when it is between 25 and 30%, when we
execute this in instance II, we start to witness an overlap
of buffer lengths. When we look at how much energy the
systems use, we can see that as the SNR rises, less energy
overall is used by the devices. In every instance, we
observe that all energy consumption grows as the _m
does. This is because IoT devices use more energy in an
effort to queue up data transmissions for the dwindling
number of data transfer slots. In general, a timing factor
of 10-20% is good for keeping the mean rate steady and
boosting the system’s energy efficiency. It also needs to be
emphasized that the RF physics of the channel creates sig-
nificant uncertainty in both the communication strength of
the channel and the RF energy harvesting performed by
the system. By using RF physics-based simulations of the
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channel, we study the variability of the system and present
parameters and settings that optimize the performance of
the system in such an uncertain physical state. Future
work in the application of IoT networks for marine wildlife
surveillance holds significant promise. Efforts should focus
on the development of more advanced and energy-efficient
sensors for enhanced data collection, improving real-time
data processing and analysis capabilities, and the integra-
tion of artificial intelligence for species recognition and
behavior monitoring. Additionally, expanding the scope
to cover a broader range of marine ecosystems and species
is vital. Collaboration with environmental organizations
and authorities is essential to ensure the adoption and
deployment of these systems for conservation and ecolo-
gical research. Furthermore, addressing the environ-
mental impact of 10T devices in marine environments
and data security concerns will be critical in future
endeavors.
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