
Research Article

A. Abbasi, W. Farooq, M. Gul, Manish Gupta, Dilsora Abduvalieva, Farwa Asmat*, and
Salman A. AlQahtani*

Non-similar modeling and numerical simulations
of microploar hybrid nanofluid adjacent to
isothermal sphere

https://doi.org/10.1515/phys-2023-0159
received September 03, 2023; accepted November 20, 2023

Abstract: In today’s era of rapid technological develop-
ment, there is an increasing requirement for high-func-
tioning investiture solutions, working liquids and materials
that can satisfy the benchmarks of energy efficacy.
Specifically, within the domain of heat transference-based
industries, an essential challenge is to fabricate a cooling
medium that can effectually cope with dissipation of sub-
stantial heat flux engendered by high-energy utilizations. At
present, nanoliquids are extensively deliberated as some of
the most promising aspirants for such effectual cooling med-
iums. The current investigation features hybrid nanoliquid
flow adjacent to magnetized non-isothermal incompressible
sphere. Rheological expressions representing micropolar
liquid are accounted for flow formulation. The rheological
analysis is developed using the boundary-layer concept.
Buoyancy impact is accounted for heat transference ana-
lysis. Nanoparticles with distinct shapes are considered.
The developed nonlinear systems are computed numerically
and non-similar simulations are performed.

Keywords: micropolar hybrid nanofluid isothermal sphere,
hybrid nanofluids, Keller box method, non-similarity
transformations

Nomenclature

a radius of sphere ( )m

Cf skin fraction
f similarity variable
Gr thermal Grashof number
g

1
gravitational acceleration ( )−

m s
2

j microinertia density
κ vortex viscosity ( )− −

kg m s
1 1

m shape factor
N̄ micro-rotation vector
Nu Nussle number
Pr Prandtl number
p̄ pressure
R micro-rotation parameter
( )r x̄ distance from axis of symmetry ( )m

Tw surface temperature
T̄ temperature ( )K

∞T ambient temperature
u u¯ , ¯1 2 axial and tangential velocity components ( )−

m s
1

u u,1 2 dimensionless velocity components ( )−
ms

1

V̄ velocity field

x y, dimensionless coordinates ( )m

αhnf thermal diffusivity
ψ stream function

ρ
hnf

density of hybrid nanofluid ( )−
kg m

3

θ dimensionless temperature
γ

hnf
gyro-viscosity of hybrid nanofluid

β
hnf

thermal expansion coefficient of hybrid nano-
fluid ( )−

K
1

μ
hnf

viscosity of hybrid nanofluid ( )− −
kg m s

1 1

ϕ ϕ,
1 2

solid volume frictions of nanoparticles

1 Introduction

Nanofluids (NFs) are delineated as the fraternization of
nanoparticles, characteristically at the nanometer scale
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into base liquids, e.g., engine oils, water (W), propylene
glycol and ethylene glycol. These nanoparticles possess
considerably augmented thermal conductivity in compar-
ison to the aforesaid base liquids. NFs (established by Choi
and Eastman [1]) exhibit excellent thermal attributes than
base liquids making them favorable for numerous thermal
utilizations. The formulation of NFs is feasible by amalga-
mating with distinct nanoparticles like ZnO₂, graphene
oxide, TiO₂, Mn₃O₄, Co₃O₄, ZrO₂, Fe₃O₄, Al₂O₃, Ni, CNTs,
SiO₂ and CuO. The magnetized NFs are elaborated through
thermal aspects and their ability to maintain flowability in
the existence of stronger magnetic field suggest a wide-
range diversity of possible utilizations like shock absor-
bers, gyrating shaft seals, electronic chilling, micro-fluidic
pumps, solar collectors, liquid crystal doping, magneto-caloric
pumps and bearing lubricants. The biomedical utilizations of
magnetized NFs encompass hyperthermia treatment, magne-
tically guided drug delivery, enhancing contrast in MRI-based
scans and seceding cells in bone narrowing samples septic with
ailments [2–4]. Researchers accounted various NFs models
[5–16] under multi-physical flow conditions and geometries.

Nowadays, liquid flowing problems capturing non-
Newtonian rheology have procured substantial importance
and efficacy in addressing pragmatic challenges. Liquids fea-
turing non-Newtonian rheology are predominant in numerous
industries, encompassing chemicals, oil, petroleum and bio-
fluid mechanics. Such liquids, unlike Newtonian liquids,
possess distinguishing aspects, for example, microstruc-
tures, disclose behaviors implicating couple stresses,
angular momentum, and micro-inertia. For that reason,
the classical hydrodynamics relations are inadequate to
completely elaborate and comprehend the complications
unveiled by non-Newtonian liquids. Liquid crystals, animal
blood, muddy fluids, liquids subjected to additives, etc., are
such liquids that contain the aforesaid characteristics.
Kausar et al. [17] first reported micropolar liquid theory
based on microstructures. Analysis elaborated by Kausar
et al. [17] is accounted by various researchers subjected to
diverse mathematical assumptions. Patel et al. [18] mathema-
tical study of unsteady micropolar fluid flow due to non-
linear stretched sheet in the presence of magnetic field.
Time-dependent stretching flow featuring magnetized micro-
polar liquid under porosity, Robin conditions, Ohmic dissipa-
tion and chemical reaction is formulated by Thenmozhi et al.
[19]. Yadav et al. [20] scrutinized entropy generation analysis
in micropolar couple stress fluid's flow in an inclined porous
channel using Homotopy Analysis Method. Magyar et al. [21]
combined effect of heat generation or absorption and first-
order chemical reaction on micropolar fluid flows over a
uniformly stretched permeable surface. Mustafa et al. [22]
find non-similar solution for a power-law fluid flow over a
moving wedge.

Lie group analysis is the method which is used to find
the similarity variables that transform the partial differen-
tial equations for engineering boundary value problems to
ordinary differential equations. This method based on the
invariant conditions but these conditions do not possess by
some partial differential equations such as the governing
equations for the flow of non-Newtonian fluid past a
Wedge at an oblique angle [23], viscous dissipative flow
[24] etc., in these situations non-local similar or non-
similar solutions of the governing equations over can be
obtained. Chamkha et al. [25] applied local non-similarity
method to develop the equations for convective flow over c
cylinder. Kong and Liu [26], Lyu et al. [27] and Qiu et al. [28]
explored the applications of micro-spectroscopy under pres-
sure, characteristics of cavity dynamics and spatial confine-
ment in fiber-optic laser respectively. Qiu et al. [29] and Zhao
et al. [30] worked on chlorine emission characteristics on
cement pastes and sub-microscale uncertainty measure-
ment method using pattern recognition. Non-similar solu-
tions method have been used in recent years to discuss
flows, coupled heat and mass transfer in different geome-
tries under the various physical conditions [31–36]. Previous
literature [41–46] highlight some recent development in
fluid flow via various flow assumptions.

Thermal analysis of hybrid NFs due to their applica-
tions in paint industry, electronic chips and mechanical
engineering is an interesting topic and the only similar
solution to the governing equations for the flow of these
fluids are available in literature. Modeling and non-similar
solution for the governing equations for the flows of hybrid
NFs are interesting and challenging issues from a mathe-
matical point of view. The present exploration accounts for
dual convection importance in hybrid nanoliquid flow adja-
cent to magnetized non-isothermal incompressible sphere.
Micropolar liquid is considered to formulate the boundary
layer convective flow. The developed nonlinear systems are
computed numerically and non-similar simulations are per-
formed. The outcomes are graphically illustrated and sub-
sequently analyzed for interpretation.

2 Formulation of the problem

Consider the free convective transport of water-based
micropolar hybrid NF adjacent to non-isothermal sphere.
The magnetized flow of incompressible micropolar hybrid
NF over a sphere having radius a and heated to tempera-
ture Tw is considered as presented in Figure 1. The
temperature at free stream is considered to be ∞T . The x

coordinate is taken along the external of the sphere and y

coordinate is taken normal to the surface of sphere.
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Furthermore, the radiated space ( )r is chosen from sym-
metric axes to ( )=r x aasin / surface. The gravity acts in
downwards direction of the sphere. The flow region is under
the impact of strong transverse magnetic field

( )
→ =B B0, , 00 . By employing the conservation laws on
boundary conditions, the following boundary layer equa-
tions for the problem are follows as

The fundamental conservation laws under present
assumptions are [32,37] as follows:

( )∇ =V. ¯ 0,   continuity equation , (1)

( ) ( )

( )

= −∇ + + ∇ + ∇ ×

+

V
V N

F

ρ

t

p μ κ κ

D ¯

D¯

¯ ¯ ¯ ¯ ¯ ¯

¯,   linear momentum equation ,

hnf hnf

2

(2)

( ) (

)

= ∇ + ∇ × −
N

N V Nρ j

t

γ κ

D ¯

D¯

¯ ¯ ¯ ¯ 2 ¯ ,   micro

rotation equation ,

hnf hnf

2

(3)

( )= ∇
T

t

α T

D ¯

D¯

¯,   energy equation ,hnf

2 (4)

where == (( ))V , ,u u¯ ¯ 01 2 is the velocity of hybrid NF, T̄ is the
temperature of hybrid NF, p̄ is the pressure, N̄ is the micro-
rotation vector and κ is the vortex viscosity. Furthermore,
ρ

hnf
is the density of hybrid NF, μ

hnf
is the viscosity of

hybrid NF and αhnf is the thermal diffusivity of hybrid NF.
Also, j stands for microinertia per unit mass and ××=F J B¯ ¯ ¯

and ( ) ( )− ⎛
⎝

⎞
⎠∞g ρβ T T¯ sin

x

a1 hnf

¯ , where g stands for gravita-

tional acceleration and β
hnf

stands for the thermal expansion
coefficient of hybrid NF. By using basic equation of magneto
hydrodynamics ××J B¯ ¯ ( )= − −σ B u σ B u¯ , ¯ , 0hnf 0

2

1 hnf 0

2

2 , in which
σhnf is the electric conductivity of hybrid NF.

Under the Boussinesq boundary layer approximations,
the governing equations are as follows [32]:

( ) ( )∂
∂

+
∂

∂
=

ru

x

ru

y

¯

¯

¯

¯

0,
1 2 (5)

( )

( ) ( )

⎜ ⎟
⎛
⎝

∂
∂

+
∂
∂

⎞
⎠

= +
∂
∂

+
∂
∂

−

+ − ⎛
⎝

⎞
⎠∞

ρ u

u

x

u

u

y

μ κ

u

y

κ

N

y

σ B u

g ρβ T T

x

a

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯ sin
¯

,

hnf 1

1

2

1

hnf

2

1

2

hnf 0

2

1

1 hnf

(6)

⎜ ⎟ ⎜ ⎟
⎛
⎝

∂
∂

+
∂
∂

⎞
⎠

=
∂
∂

− ⎛
⎝
∂
∂

+ ⎞
⎠

ρ j u

N

x

u

N

y

γ

N

y

κ

u

y

N¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

2 ¯ ,
hnf 1 2 hnf

2

2

1 (7)

∂
∂

+
∂
∂

=
∂
∂

u

T

x

u

T

y

α

T

y
¯

¯

¯

¯

¯

¯

¯

¯

,1 2 hnf

2

2
(8)

where ū1 is the velocity component along -x̄ axis and ū2 is the

velocity component along -ȳ axis and = ⎛
⎝ + ⎞

⎠γ μ j
κ

hnf hnf 2
stands

for the vortex viscosity of hybrid NF. The appropriate conditions
for theflowand heat transfer for theflowoverfixed solid sphere
are given in Table 1.

= = =
∂
∂

= =u u N

u

y

T T y¯ ¯ 0, ¯

1

2

¯

¯

, ¯ on ¯ 0,w1 2

1 (9)

= = → ∞∞u T T y¯ 0, ¯ on ¯ .1
(10)

In which, ϕ
1
represents the solid volume fraction of

Fe O3 4 nanoparticles and ϕ
2
denotes the solid volume frac-

tion of CoFe O2 4 nanoparticles. The subscript f stands for
the properties of base fluid which is water ( )H O2 and s1

denotes the properties of Fe O3 4 and s2 of CoFe O2 4. Also,m is

Figure 1: Geometry of the problem.

Table 1: Thermo-physical properties of hybrid NF [37,38]

Viscosity
( ) ( )

=μ

μ

ϕ ϕhnf 1 ‒ 1 ‒

f

1

2.5

2

2.5

Density ( )( )= + +ρ ϕ ϕ ρ ϕ ρ ϕ ρ1 ‒ 1 ‒
hnf 1 2 f 1 s 2 s1 2

Heat capacity ( ) ( )( )( ) ( ) ( )= + +ρC ϕ ϕ ρC ϕ ρC ϕ ρC1 ‒ 1 ‒p hnf 1 2 p f 1 p s 2 p s1 2

Specific heat ( ) ( )( )( ) ( ) ( )= + +ρβ ϕ ϕ ρβ ϕ ρβ ϕ ρβ1 ‒ 1 ‒ s shnf 1 2 f 1 21 2

Thermal conductivity ( ) ( ) ( )

( ) ( )
=

+
+ +

K

K

K m K m ϕ K K

K m K ϕ K K

‒ 1 ‒ ‒ 1 ‒

‒ 1 ‒

hnf

bf

s2 bf 2 bf s2

s2 bf 2 bf s2

, where
( ) ( ) ( )

( ) ( )
=

+
+ +

K

K

K m K m ϕ K K

K m K ϕ K K

‒ 1 ‒ ‒ 1 ‒

‒ 1 ‒

bf

f

s1 f 1 f s1

s1 f 1 f s1

Electric conductivity ( )

( )
=

+
+ +

σ

σ

σ σ ϕ σ σ

σ σ ϕ σ σ

2 ‒ 2 ‒

2 ‒

hnf

bf

s1 bf 2 bf s1

s1 bf 2 bf s1

, where
( )

( )
=

+
+ +σ σ

σ σ ϕ σ σ

σ σ ϕ σ σ
bf

2 ‒ 2 ‒

2 ‒
f

s2 f 1 f s2

s2 f 1 f s2
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the shape factor, the numerical values of different shapes
of nanoparticles is presented in Tables 2 and 3.

The flow and heat transfer Eqs. (5)–(8) with its
boundary conditions (9) and (10) by employing the dimen-
sionless variables are given below as:

⎟

⎜ ⎟

⎜ ⎟ ⎜

= = = ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

=
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−
= ⎛

⎝
⎞
⎠

−

−

∞

−

x

x

a

y

y

a

u

a

ν

u

u

a

ν

u θ

T T
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N

a

ν

N

¯
, Gr

¯
, Gr ¯ ,

Gr ¯ ,

¯

, Gr ¯ ,

1

4 1

bf

1

2 1

2

bf

1

4 2

w

w

2

bf

3

4

(11)

where Gr represent the thermal Grashof number
and u u θ, ,1 2 , N , y represent the dimensionless coordi-
nates, velocities, temperature and micro-rotation respec-
tively. The microinertia density is = −

j a Gr .
2 1/2 After using

the above variables, the governing equations takes the form

( ) ( )∂
∂

+
∂

∂
=

ru

x

ru

y

0,
1 2 (12)
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∂
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∂

=
⎛
⎝

+
⎞
⎠
∂
∂

+
∂
∂

+

−

u

u

x

u

u

y

ρ
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μ

μ
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u

y

R

ρ

ρ

N

y
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ρβ

ρ

ρ

θ x

ρ

ρ

σ

σ

u

sin
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1

1

2
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hnf

hnf

bf

2

1

2

bf
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hnf

bf

bf

hnf

bf

hnf
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bf

2

1

(13)

⎜ ⎟

⎜ ⎟

∂
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⎠
∂
∂

− ⎛
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∂
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⎠

u

N

x

u

N

y

ρ
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μ

μ
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y

R

ρ

ρ

u

y

N

2

2 ,

1 2

bf

hnf

hnf

bf

2

2

bf

hnf

1

(14)

∂
∂

+
∂
∂

=
∂
∂

u

θ

x

u

θ

y

α

α

θ

y¯

1

Pr

,1 2

hnf

bf

2

2
(15)

where
( )

⎛
⎝ = = = ⎞

⎠R , Ha , Pr
κ

μ

σ

ρ

ν

αGr

B a

bf

f
0

2 2

f

1/2

bf

bf

are dimensionless

micro-rotation parameter, Hartman number and Prandtl
number. The dimensionless boundary conditions can be
expressed as follows:

= = =
∂
∂

= =u u N

u

y

θ y0,

1

2

, 1 on 0,1 2

1 (16)

= = → ∞u θ y0, 0 on ,1 (17)

The stream function ( ) ( )=ψ xr x f x y, is related to
velocity components such that ( )= ∂ ∂u r ψ y1/ /1 and =u2

( )− ∂ ∂r ψ x1/ / and dependent variables ( )=θ θ x y, and
( )=N xg x y, to reduce the number of dependent variables

in the governing equations; the governing equations are as
follows:

( )

( )

+
‴ + ⎛

⎝ + ⎞
⎠ ″ + ′

− ′ + − ′ = ⎛
⎝ ′

∂ ′
∂

− ″
∂
∂

⎞
⎠

A R

A

f

x

x

x ff

R

A

g

f

A

A

θ

x

x

A

A

f x f

f

x

f

f

x

1

sin

cos

sin

Ha ,

2

1 1

2 3

1

4

1

2

(18)

( )

⎛
⎝ + ⎞

⎠
″ + ⎛

⎝ + ⎞
⎠ ′ − ′

− + ″ = ⎛
⎝ ′

∂
∂

−
∂
∂

′⎞⎠

A

A

g

x

x

x fg gf

R

A

g f x f

g

x

f

x

g

1

sin

cos

2 ,

R

2
2

1

1

(19)

″ + ⎛
⎝ + ⎞

⎠ ′ = ⎛
⎝ ′

∂
∂

−
∂
∂

′⎞⎠
α

α

θ

x

x

x fθ x f

θ

x

f

x

θ

1

Pr

1

sin

cos ,
hnf

bf

(20)

where =A ,

ρ

ρ
1

hnf

f

=A ,

μ

μ
2

hnf

bf

( )

( )
=A ,

ρβ

ρβ
3

hnf

bf

=A
σ

σ
4

hnf

bf

and

=A
α

α
5

hnf

bf

.
After using the stream function and dependent vari-

ables, the relevant boundary conditions takes the form

= = ′ = =
′ = = → ∞

f f θ y

f θ y

0 , 1 at 0,

0, 0 at .

(21)

The dimensionless mathematical expression for skin
friction and Nusselt number are as follows:

Table 2: Numerical values of shape factor for different shapes of
nanoparticles [39]

Different shapes of nanoparticles Numerical values

Bricks 3.7

Cylinders 4.9

Platelets 5.7
Blades 8.6

Table 3: Properties of nanoparticles and the base fluid [40]

Properties Density (( ))ρ Specific heat (( ))Cp Thermal conductivity (( ))K Thermal expansion
coefficient ××β 10‒5

Electric
conductivity (( ))σ

H O2 997.0 4,179 0.6071 210 ×5.5 10
‒7

Fe O3 4 5,180 670 9.7 1.3 ×0.74 10
6

CoFe O2 4 4,907 700 3.7 1.3 ×1.1 10
7
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( )= ⎛
⎝ + ⎞

⎠ ″ =
C

A

R

x f

1

2 Gr 2

,

f

y
3/4

2 0
(22)

( )= − ′ =
K

K

θ

Nu

Gr

.y

hnf

bf

0
4

(23)

3 Solution methodology

Many numerical methods are proposed and implemented
by mathematicians and scientists for boundary layer flows.
Keller box method has advantages over these methods due
to second order accuracy and easy in programming. The
governing Eqs. (18)–(20) subject to boundary conditions
(21) are simulated for involved dependent variables by
using Keller box method. The numerical scheme is applied
in four steps.

Step 1: First, we reduce the governing equations into a
system of first order equation by considering

′ = ′ = ′ = = ′ =f U P V g W θ S θ t, , , , , we have

( )
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in which prime is derivative of dependent variables with
respect to y, The boundary conditions take the form

= = = =
= = → ∞

f U S y

U S y

0 , 1 at 0,

0, 0 at .

(27)

Step 2: The derivatives of dependent quantities are
approximated by central difference and rest of dependent
variables by taking mean values, the system of governing
equation can be written as follows:
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(34)

Step 3: In this step, obtained system of non-linear Eqs.
(32)–(34) is linearized by using following iterations for
unknowns:

= + = + = +

= + = + = +

δf f δf δU U δU δV V δV

δg g δg δW W δW δS S δS

, , ,

, , .

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

(35)

After ignoring ( )O δ
2 terms, the resulting linearized

algebraic equations are as follows:
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Step 4: The Eqs. (36)–(42) are decomposed by block
elimination method having block tridiagonal structure.
Usually, the tridiagonal structure of block matrices having
the order of ×7 7 are computed for the unknowns with
forward and backward sweeps. The whole process is
implemented in computational software MATLAB.

4 Results and discussion

This section presents the impact of micro-rotation para-
meter R and the magnetic parameter Ha on the different
flow features for both traditional NF Fe O /H O3 4 2 based NF
and hybrid NF. Figure 2 demonstrates the impact of micro-
rotation parameter R on the axial velocity for both types of
NFs under consideration. For traditional Fe O /H O3 4 2 NF, the
solid volume fraction of Fe O3 4 nanoparticles is considered
to be about 10% while in case of hybrid NF, the solid
volume of fraction of both types of nanoparticles Fe O3 4

and CoFe O2 4 is considered to be 10 and 20% approximately.
The response of axial velocity ′f near the surface of the
sphere and in the free stream region is opposite for enlar-
ging the micro-rotation of microstructure in the traditional
NF and hybrid NF. The axial velocity rises near the surface
of the sphere with the increase in the micro-rotation factor,
while it decreases in the free stream region. The velocity
has small magnitude for traditional NF while the boost in
the velocity is noticed for the case of hybrid NF. It is an
important fact that micro-rotation plays a key role in con-
trolling the movement of the fluid near the surface and this

feature is negligible in the free stream region. Figure 3 is
plotted to analyze the response of magnetic parameter Ha

on the axial velocity ′f for both types of NFs. The velocity
profile shows a decreasing trend for the increasing values
of magnetic parameter for both types of NFs. It is noted
that the magnetic force acts as a resistive force on the
transport of both types of ferromagnetic nanoparticles
adjacent to the surface of the sphere. The effects of mag-
netic parameter are dismissed in the free stream region.
Furthermore, the velocity of the hybrid NF is squeezed in
the free stream region and due to both types of ferromag-
netic nanoparticles, this response is dominant. Figure 4
demonstrates the impact of axial-coordinate on the axial
velocity of traditional Fe O /H O3 4 2 NF and hybrid NF over the
surface of solid sphere. It is also observed that the axial
velocity of hybrid NF and traditional NF reduces near the
surface of the sphere while rises in the rest region.

The rotational velocity of hybrid NF and traditional
Fe O /H O3 4 2 NF is reported in Figure 5 for various values
of micro-rotation parameter. It is noted that the rise in
micro-rotation parameter rises the rotational velocity of
both types of NFs. The rotational velocity is minimum in
magnitude in the absence of microstructure in the

Figure 2: Impact of R on axial velocity f′ with M = 1.0, x = 0.1, Pr = 6.2 and
m = 8.6.

Figure 3: Impact of M on axial velocity f′ with R = x = 0.1, Pr = 6.2 and
m = 8.6.

Figure 4: Impact of x on axial velocity f′ with R = M = 1.0, Pr = 6.2 and
m = 8.6.
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traditional NF as well as hybrid NF. The impact of magnetic
parameter M on the rotational velocity is reported in
Figure 6 for both the types of NFs. The rotational velocity
increases near the surface of the sphere at small scale and
after this, the increase in the rotational velocity is noticed.
Figure 7 demonstrates the impact of x-coordinate on the
rotational velocity. The analysis is presented for both tra-
ditional NF and hybrid NF and it is noted that near the
surface of the sphere, the velocity declines as axial-coordi-
nate moves towards π . The temperature profile is an
increasing function of micro-rotation parameter R for
Fe O /H O3 4 2 based NF as well as hybrid NF as shown in
Figure 8. The micro-rotation plays a key role in the rise
in the temperature of NFs. Actually, due to the rise in the
microstructure rotation in NFs, the thermal characteristics
of the NFs also rises which rises the internal kinetic energy
of the base fluid. As a result, the rise in the temperature of
the hybrid NF at large scale is noticed with the micro-rota-
tion of microstructure. In Figure 9, the effects of magnetic
parameter Ha on the temperature profile are illustrated
for both types of NFs under consideration. It is observed
that the rise in the magnetic force cause remarkable

resistance to the flow and as a result, the collusion between
the nanoparticles in the liquid rises. Due to this reason, the
internal kinetic energy of NFs rises which boosts the tem-
perature of NFs. In Figure 10, the temperature profile is
plotted against x-coordinate for traditional NF and hybrid
NF over an isothermal surface of the sphere. It is noticed
that as we move from 0 to π , the temperature of both types
of NF rises over the surface of sphere. Figure 11 is plotted to
explore the impact of different shapes of nanoparticles on

Figure 5: Impact of R on rotational velocity g with M = 1.0, x = 0.1, Pr = 6.2
and m = 8.6.

Figure 6: Impact ofM on rotational velocity g with R = x = 0.1, Pr = 6.2 and
m = 8.6.

Figure 7: Impact of x on rotational velocity g with R =M = 1.0, Pr = 6.2 and
m = 8.6.

Figure 8: Impact of R on temperature θ with M = 1.0, x = 0.1, Pr = 6.2 and
m = 8.6.

Figure 9: Impact of M on temperature θ with R = x = 0.1, Pr = 6.2 and
m = 8.6.
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the temperature of hybrid NF in the presence and absence
of micro elements. It is noted that temperature is small
in magnitude for bricks and large in magnitude for
blade-shaped nanoparticles. Furthermore, the micro-rota-
tion of the structure also enhances the temperature of
hybrid NF.

Figure 12 shows the impact of micro-rotation para-
meter R on the skin friction of traditional NF and hybrid
NF. It is noted that skin friction rises with the increase in

the micro-rotation in both types of NFs. For smaller values
of micro rotation, i.e., ≤R 1, the decrease in the skin fric-
tion is noticed for ≤x 2 and increases for the rest region.
While on the other hand the skin friction is an increasing
function of micro-rotation for ≥R 1 along the whole x-coor-
dinate. The impact of magnetic parameter on the skin fric-
tion is illustrated in Figure 13 for both types of NFs. It is
noted that the rise in the magnetic force reduces the skin
friction along the surface of sphere in the whole cross-

Figure 10: Impact of x on temperature θ with R = M = 1.0, Pr = 6.2 and
m = 8.6.

Figure 11: Impact of m on temperature θ with R = M = 1.0, Pr = 6.2 and
x = 0.1.

Figure 12: Impact of R on skin friction with M = 0.5, Pr = 6.2 and m = 8.6.

Figure 13: Impact of M on skin friction with R = 1.0, Pr = 6.2 and m = 8.6.

Figure 14: Impact of R on Nusselt number with M = 0.5, Pr = 6.2 and
m = 8.6.

Figure 15: Impact of M on Nusselt number with R = 1.0, Pr = 6.2 and
m = 8.6.
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section. The resistance to the flow allows the decrease in the
magnitude of the shear stress on the surface of the sphere.
Furthermore, for hybrid NF, the magnitude of shear stress is
large at the surface of the sphere as compared to Fe O /H O3 4 2

NF. The response of Nusselt number against the micro rota-
tion is plotted in Figure 14. It is noted that the rise in micro
rotation parameter R reduces the Nusselt number and
the decline is Nusselt number is minimum near the origin
and as away from origin this trend is reversed. The
responding magnitude of Nusselt number is large in case
of hybrid NF as compared to Fe O /H O3 4 2 NF. The impact of
magnetic parameter Ha on the Nusselt number is depicted
in Figure 15 for hybrid NF as well as traditional NF. The
response of Nusselt number is also decreasing against mag-
netic parameter for both types of NFs under consideration.
The impact of different shapes of nanoparticles on the Nus-
selt number is displayed in Figure 16. It is noted that the
Nusselt number is small in magnitude for brick-shaped
nanoparticles while large in magnitude for blade-shaped
nanoparticles (Table 4).

To validate, the numerical values of Nusselt number
are compared with the existing results for viscous fluid
reported by Lone et al. [37] and it is found in good
agreement.

5 Conclusions

• Both micro-rotation parameter and magnetic parameter
reduces the axial velocity hybrid NF as well as traditional
NF on the surface of the sphere.

• The axial velocity as well as tangential velocity is large in
case of hybrid NF.

• The micro-rotation parameter rises the rotational velo-
city of both fluids near the surface of sphere.

• Both micro-rotation parameter and magnetic parameter
rises the temperature of NFs.

• The temperature of hybrid NF is large as compared to the
traditional NF.

• The skin friction is a decreasing function of magnetic
field, while it is an increasing function of micro-rotation.

• Both skin friction and Nusselt number are large for
hybrid nanoparticles as compared to Fe O /H O3 4 2 NF.

• The Nusselt number is a decreasing function of micro-
rotation parameter and magnetic parameter.

• Both temperature and Nusselt number of hybrid NF satisfy
the following order for different shapes of nanoparticles:

bricks < cylinders < platelets < blades.
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