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Abstract: Spectral uncertainty is one of the most prominent
spectral characteristics of hyperspectral images. Compared to
the process of remote sensing hyperspectral imaging, hyper-
spectral imaging under land-based imaging conditions has the
characteristics of variable detection directions, random ima-
ging times, and complex environmental conditions, resulting in
increased spectral uncertainty of targets in land-based hyper-
spectral images. The spectral uncertainty of the target mainly
refers to the phenomenon of “Same spectral reflectance but
different objects” and “Same object but different spectral
reflectance” which poses significant difficulties for subsequent
hyperspectral image target detection and recognition. In order
to analyze the spectral uncertainty of hyperspectral images in
land-based applications and address the issue of spectral
uncertainty in similar targets, a spectral uncertainty evaluation
index based on standard deviation vector was proposed. For
the overall spectral separability between different types of
targets, a quantitative index based on Jaccard Distance (JD-
SSI) is proposed to measure the spectral separability of dif-
ferent kinds of targets. The experiment focused on grassland
and its four typical camouflage materials, analyzing the spec-
tral intra class differences and inter class separability of each
target with grassland. It is a fundamental work for studying the
spectral characteristics of land-based hyperspectral images,

providing a new approach for subsequent spectral band
extraction, hyperspectral image classification, and target
detection tasks.

Keywords: hyperspectral imaging, spectral uncertainty, camou-
flage materials, Jaccard distance, spectral separability

1 Introduction

The emergence of hyperspectral imaging technology fully
combines the spectrum of ground objects determined by
material composition with the spatial form reflecting the
structure of ground objects, that is, endowing each pixel
containing ground object targets with specific spectral
information [1–3]. The hyperspectral imaging technology
appeared in the early 1980s, and has received widespread
attention from scholars at home and abroad in the past few
decades [4–6]. It has been widely used in mineral research
[7], agriculture [8–11], environmental detection [12], and
other fields [13–16]. In recent years, with the rapid devel-
opment of ground unmanned platforms and drone tech-
nology, research on the characteristics and applications of
land-based hyperspectral images has emerged endlessly
[17–20]. There are significant differences between hyper-
spectral remote sensing imaging and land-based hyper-
spectral imaging in terms of imaging conditions, imaging
processes, analysis methods, etc. This also leads to different
characteristics and processing methods between land-based
hyperspectral images and hyperspectral remote sensing
images.

The factors that lead to the uncertainty of the target
spectrum can be mainly attributed to three aspects: the
properties and structure of the ground object itself, the
environmental conditions during the imaging process, and
the imaging parameters such as detection direction [21,22].
Land-based hyperspectral images have high spatial resolu-
tion and can distinguish more detailed structural information
of objects which increases the spectral uncertainty of the
target. In practical applications, the properties, morphology,

Jiale Zhao, Jiaju Ying, Qi Chen: Department of Electronic and Optical
Engineering, PLA Army Engineering University, Shijiazhuang 050000,
China



* Corresponding author: Bing Zhou, Department of Electronic and
Optical Engineering, PLA Army Engineering University, Shijiazhuang
050000, China, e-mail: bzhou2022@163.com

Guanglong Wang: Department of Missile Engineering, PLA Army
Engineering University, Shijiazhuang 050000, China

* Corresponding author: Jie Liu, Department of Electronic and Optical
Engineering, PLA Army Engineering University, Shijiazhuang 050000,
China, e-mail: yclj07@163.com

Runze Zhao: Department of Equipment Command and Management,
PLA Army Engineering University, Shijiazhuang 050000, China

Open Physics 2023; 21: 20230157

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/phys-2023-0157
mailto:bzhou2022@163.com
mailto:yclj07@163.com


and environmental conditions of the target are relatively
fixed. Therefore, imaging parameters such as detection direc-
tion conditions have a significant impact on the spectral char-
acteristics of the target [23,24]. Remote sensing imaging gen-
erally adopts a vertical detection method, and the detection
time is relatively fixed. However, the detection direction is
random and the imaging time is not fixed under land-based
imaging conditions. Therefore, the spectral uncertainty of
land-based hyperspectral images is enhanced.

The common methods for evaluating spectral simi-
larity include spectral angle mapping (SAM) [25], similarity
evaluation based on Euclidean distance [26], and similarity
evaluation based on correlation coefficient (CC) [27]. When
studying the spectral similarity between objects, the above
methods generally choose the average value of the target
spectral curve to represent the spectral value of the target,
ignoring the intra class differences of the target [28–30]. As
the spectral uncertainty factors of targets in land-based
hyperspectral images increase, it is necessary to fully con-
sider the spectral uncertainty issues when measuring the
similarity between two objects. This study focuses on grass-
land and its camouflages, quantifying the spectral uncer-
tainty of targets and the spectral separability between two
targets which has significant practical significance.

2 Methods

2.1 Jaccard distance

Jaccard distance is an indicator used to measure the dif-
ference between two sets, which is a complement to the
Jaccard similarity coefficient [31]. The Jaccard similarity
coefficient, also known as the Jaccard Index, is an indicator
used to measure the similarity between two sets. Jaccard
similarity coefficient is mainly applied in paper duplication
checking systems, exam cheating prevention systems, and
other aspects [32,33].

The Jaccard coefficient is mainly used to calculate the simi-
larity between samples. The calculation method for Jaccard
similarity coefficient is: the ratio of sample intersection to
sample union, represented by J (A, B), as shown in formula (1).
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Similarly, Jaccard Distance is represented by dJ (A, B),
as shown in formula (2).
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2.2 Degree of spectral uncertainty of objects
and spectral separability index between
different objects of the same class

The spectral reflectance characteristics exhibited by objects
under different conditions are different, and the values of
spectral reflectance have a certain range of variation at
specific wavelengths. Assuming that the spectral range of
the imaging system is divided into N bands, and the reflec-
tivity at λi (I = 1…N) is Ri, which varies within the range of
[Rimin, Rimax] due to various uncertain factors. As shown in
Figure 1, Rimin represents the minimum value of reflectivity
under various changing conditions at point λi, Rimax repre-
sents the maximum value of reflectivity under the influence
of various changing conditions at point λi, and Riaver repre-
sents the average reflectance under the influence of various
changing conditions at point λi.

The spectral uncertainty of objects of the same cate-
gory can be represented by the spectral standard deviation
vector. The standard deviation of reflectivity at point λi
represents the degree of spectral uncertainty at point λi.
Assuming the number of samples to be tested is K, the K-th
sample is λ. If the reflectivity is Rik, then the spectral uncer-
tainty of the object can be determined by S(λi), as shown in
formula (3).
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Considering the spectral uncertainty of objects, in
order to measure the spectral separability between dif-
ferent types of objects, a quantitative indicator of spectral
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Figure 1: Schematic diagram of the variation range of object spectral
reflectance.
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separability based on the Jaccard Distance is proposed. Rik
A

represents the reflectance in the K-th sample of Class A at
point λi, R

max

A represents the maximum value of reflectance
of all samples of Class A at point λi and R

min

A represents the
minimum spectral reflectance of all samples of Class A.
Similarly, a physical quantity superscripted with B repre-
sents the reflectance of Class B. As shown in Figure 2, the
spectral curves of two types of objects (A and B) can be
mainly divided into three situations. Combined with the
definition of Jaccard distance, M(λi) can be used to repre-
sent the spectral separability at λi between A and B, as
shown in formula (4), where Eqs. ② and ③ represent
the intersection of spectral ranges.
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When the situation shown in box a occurs, A and B are
completely unclassifiable. In the case shown in box b, A
and B are completely classifiable. If the range of changes in
the spectral curves of two objects is as shown in box c, M
(λi) can be used to measure their specific separability.

3 Experiments

3.1 Experimental design and data
acquisition

The ideal scenario for studying the spectral uncertainty of
an object is to have a spectral reflectance database of the
target object under any conditions that meet the applica-
tion requirements. However, it is impossible to measure the
spectral reflectance of the target in all cases for research in
practical applications. Sampling and statistical methods are
often used to obtain information. In the experiment, an
imaging spectrometer was used to capture hyperspectral
images. In order to obtain more representative sample spec-
tral reflectance, it is planned to conduct multiple experi-
ments at different detection orientations, scene conditions,
and target shapes to obtain the spectral reflectance of the
target. As shown in Figure 3, set the target position at the
center and keep the light source (referred to as the sun) at 0°
azimuth angle. The red dot represents the detection angle
information selected for the experiment, and its polar coor-
dinate value represents the relative azimuth angle between
the light source and the detector. The vertical axis coordi-
nate value represents the detection altitude angle.

Using a field imaging spectrometer to measure the direc-
tional spectral reflectance of ground objects, a band interval
of 4 nm was set, and 89 band images were obtained within
the spectral range of 449–801 nm. Each image recorded
the radiance values of the ground objects at different wave-
lengths. Polytetrafluoroethylene (PTFE) is used as a standard
whiteboard, and the directional reflection characteristics
of PTFE materials are relatively uniform and can be

ec
n

at celfe
R

Wavelength/nm

RA
max

RA
min

RB
max

RB
min

B
A

a b c

a Two curves are completely 

unclassifiable

b Two curves are completely 

classifiable

c Intersection of two curves

Figure 2: Three different situations of the spectral reflectivity range of two types of objects.
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approximated as Lambertian bodies in the range of 400–2,500nm.
The measured features include four common types of grass-
land camouflage clothing, represented by A, B, C, and D, as
shown in Figure 4.

3.2 Spectral reflectance of grassland and its
four camouflage materials

Experiments were completed using an imaging spectro-
meter under eight different conditions, and eight sets of

land-based hyperspectral images were obtained. The pixel
area containing the target was sampled, and 100 spectral
reflectance curves of various tested targets were obtained
from each set of data for further research. The spectral
reflectance was measured using formula (5) [34].

= ×R λ
L λ

L λ
ρ.

o

p

( )
( )

( )
(5)

where R(λ) represents the spectral reflectance of an object, Lo
(λ) represents the radiance value of an object, and Lp(λ) repre-
sents the radiance value of the standard plate, ρ represents
the reflectivity of the standard plate, which is generally a
constant, taken as 0.98. The measured grassland and camou-
flage materials A, B, C, and D under different conditions are
shown in Figures 5–9.

Based on the above experimental results, extracting
the extreme values of spectral reflectance under all condi-
tions can obtain the range of spectral reflectance changes
for this type of object. The spectral reflectance variation
range of the grassland is shown in Figure 10, and the spec-
tral reflectance variation range of camouflage A, B, C, and
D is shown in Figure 11. The red line represents the upper
limit of reflectivity, while the black line represents the
lower limit of reflectivity.

Figure 4: The experimental area and four different camouflage materials A, B, C, and D.
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Figure 3: Schematic diagram of measurement conditions.
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3.3 Quantitative analysis of spectral
uncertainty of grassland and its four
types of camouflage objects

After the above analysis, the spectral reflectance range of
each object can be obtained. In order to study the intra-

class uncertainty of the object, the standard deviation
vector is used to measure the degree of dispersion of spec-
tral reflectance changes. By substituting the reflectance of
the object to be measured in formula (3), the standard
deviation vectors of various target spectral reflectance
can be obtained, as shown in Figure 12.
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Figure 5: Spectral reflectance of grassland under eight experimental conditions.
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Figure 6: Spectral reflectance of A under eight experimental conditions.
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From Figure 12, it can be seen that the standard deviation
vectors of several objects have similar changing trends.
Among them, the standard deviation vectors of the spectral
reflectance of object B and grassland are the most similar,
while the standard deviation vectors of A, C, and D are rela-
tively close, but there are significant differences between
them and grassland. All the standard deviation vectors of

the five targets have minimum values near 550, 650, and
750 nm, indicating that the spectral reflectance of grassland
and its camouflages fluctuates less and is relatively stable
near these three wavelengths.

In order to study the spectral separability between
different types of targets, the method proposed by for-
mula (4) was used to calculate the spectral separability
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Figure 7: Spectral reflectance of B under eight experimental conditions.
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Figure 8: Spectral reflectance of C under eight experimental conditions.
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indicators of grassland and four types of camouflage
objects A, B, C, and D. The results are shown in Figures 13–16.
The larger the spectral separability index, the greater
the spectral difference between the two objects in the
corresponding band. The smaller the spectral separ-
ability index, the greater the spectral similarity and dif-
ficulty in distinguishing between the two objects in the
corresponding band.

From the perspective of spectral uncertainty, it can be
found that the spectrum of object A differs significantly

from that of grassland before 650 nm, but the spectral simi-
larity increases after 650 nm. The spectral reflectance of
object B and grassland is generally similar, but there is a
significant difference after 700 nm. The C object does not
have a completely distinguishable band from the grass-
land, and the spectral distinguishability remains at a low
level, which has a good effect in practical camouflage appli-
cations. Objects D and A have similar characteristics, the
spectral similarity between object D and grassland is rela-
tively high after 650 nm.

3.4 Study on spectral similarity between
grassland and four typical camouflage
objects

This article uses SAM, standard deviation method (StDev),
and spectral correlation coefficient method (SCC) as com-
parative methods [35]. The formulas for the three methods
are given in in formulas (6)–(8) The two spectral reflection
vectors are X and Y.
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where θ is the generalized included angle of two variables.
The smaller the value of θ is, the higher the similarity of
spectral curve shape is, and better the camouflage effect is.
n represents the spectral dimension.
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Figure 10: Spectral reflectance variation range of grassland.
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Figure 9: Spectral reflectance of D under eight experimental conditions.

Spectral uncertainty analysis of grassland and its camouflage materials  7



∑=
−

−
=

S
n

x y
1

1

,

i

n

i i
1

2( ) (7)

where S is the generalized included angle of two variables.
The smaller the value of S is, the higher the numerical
similarity of the spectral curve is, and the better the
camouflage effect is. n represents the spectral dimension.

=
∑ − −

∑ − × −
=

=

r
x x y y

x x y y
.

i
n

i i

i
n

i i

1

1

2 2

( )( )

( ) ( )
(8)

The CC of two variables X and Y is often expressed by r .
The greater the correlation r , the stronger the correlation.

Calculating the spectral similarity between two objects
requires the use of two representative spectral curves.
Usually, the average reflectance of the target spectrum
within a uniform area is chosen to represent the target
spectrum. Land-based hyperspectral images enhance the
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Figure 11: Spectral reflectance variation range of four types of camouflage materials A, B, C, and D.
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Figure 12: Standard deviation vectors of spectral reflectance for various
targets.
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Figure 13: JD-SSI values between grassland and A.
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Figure 15: JD-SSI values between grassland and C.
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Figure 14: JD-SSI values between grassland and B.
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uncertainty of the target spectrum to a certain extent,
which makes traditional spectral similarity calculation
methods problematic. The purpose of spectral band selec-
tion is to remove redundant bands and screen out the most
discriminative bands. In other words, selecting a certain
number of spectral bands reduces the intra-class distance
and increases the inter-class distance of the spectrum.
According to the above analysis, the spectral standard devia-
tions of grasslands and their camouflages have minimal
values at 550, 650, and 750 nm, resulting in small intra class
distances. Therefore, the focus is on analyzing these wave-
length ranges. The spectral similarity between the grassland
and various camouflages is shown in Table 1.

SAM, StDev, and JD-SSI all have higher values indi-
cating greater spectral separability and lower spectral
similarity. The larger the numerical value of SCC, the
higher the spectral similarity and the poorer the spectral
separability. In Table 1, the similarity extremum values
for different types of camouflage in the four similarity
evaluation methods in the range of 449–801 nm were
marked in bold and the bands with the most separability
for each method were also marked.

Overall, the spectral similarity between grassland and
objects A and B is poor, while the spectral similarity
between grassland and objects C and D is high, indicating
that the spectral camouflage effect of objects C and D is
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Figure 16: JDSSI values between grassland and D.

Table 1: Comparison of similarity evaluation methods

Object Method 449–801 nm (1–89) 449–497 nm (1–13) 501–597 nm (14–38) 601–697 nm (39–63) 701–801 nm (64–89)

Grassland and A SAM 0.3807 0.0233 0.0572 0.2204 0.1329
StDev 0.1309 0.1563 0.1541 0.1381 0.0864
SCC 0.9657 0.9901 0.9658 0.8817 0.8685
JD-SSI 0.6539 0.7502 0.8186 0.7908 0.3156

Grassland and B SAM 0.2909 0.0108 0.0246 0.0311 0.2060
StDev 0.1354 0.0274 0.0106 0.0133 0.2528
SCC 0.5939 0.9981 0.9935 0.9873 0.3573
JD-SSI 0.2749 0.1953 0.0835 0.1025 0.6644

Grassland and C SAM 0.1054 0.0408 0.0946 0.1718 0.0411
StDev 0.0611 0.0636 0.0755 0.0572 0.0509
SCC 0.9692 0.9916 0.9634 0.7983 0.9252
JD-SSI 0.3111 0.2920 0.3912 0.2959 0.2583

Grassland and D SAM 0.3152 0.0631 0.0698 0.4016 0.0276
StDev 0.1300 0.1699 0.1557 0.1288 0.0802
SCC 0.9562 0.9736 0.9467 0.8012 0.9303
JD-SSI 0.6111 0.7796 0.8375 0.6925 0.2310
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better. From the perspective of different algorithms in
449–801 nm: Object C has the best camouflage effect while
object A has the worst under the SAM algorithm. Object C
has the best camouflage effect while object B has the worst
under the StDev algorithm. Object C has the best camou-
flage effect while object B has the worst under the SCC
algorithm. Object B has the best camouflage effect while
object A has the worst under the JD-SSI algorithm. When
evaluating the similarity between grassland and three
objects A, C, and D in different bands, the four similarity
evaluation methods used reached inconsistent conclusions.
This is because these similarity evaluation indicators eval-
uated the spectral separability of the two objects from
different perspectives, and the ground object targets in
different bands are likely to exhibit this characteristic. In
comparison, the four evaluation indicators unanimously
determine that the spectral separability between grassland and
object B is strong at 701–801nm, indicating that 701–801nm is
one of the most effective bands for distinguishing grassland and
object B.

4 Conclusion and discussion

Spectral uncertainty is one of the key difficulties faced by
hyperspectral image processing. Many researchers are
committed to reducing the impact of spectral uncertainty
on hyperspectral image classification and object detection.
Land-based hyperspectral images have many distinct charac-
teristics compared to hyperspectral remote sensing images,
especially in terms of spectral uncertainty. There are many
methods to reduce the impact of spectral uncertainty, such as
early spectral correction, later spectral dimensionality reduc-
tion, model optimization, etc. This study takes grassland and
its camouflages as examples and proposes a method based
on Jaccard Distance to measure the spectral separability
between objects. Experiments have shown that this method
can study spectral similarity from the perspective of distance
between sample classes, providing a new approach for spec-
tral band extraction. However, there may be several areas for
improvement throughout the entire process from the pro-
posal to application of thismethod: (1) The number and repre-
sentativeness of target spectral samples need to be improved,
and how to select more typical target spectra during the
sampling process is the key to data preparation. In the future,
unmanned aerial vehicle hyperspectral real-time imaging
equipment can be used to measure more hyperspectral
images under different imaging conditions, making the pro-
posedmethodmore convincing. (2) More comprehensive con-
sideration of the intra-class dispersion index and inter-class
separability index of the target class. Through the above

experiments, it can be found that the situation where the
intra-class dispersion index of a single target is smaller and
the inter-class separability index between different targets is
larger is more conducive to distinguishing two objects.
Therefore, in order to find effective bands to distinguish
between two types of objects, it is necessary to comprehen-
sively consider these two indicators and weigh them. (3) The
purpose of band extraction is to select the bands with the
most separability between targets while reducing spectral
dimensionality. A simple similarity evaluation method has
significant limitations. Therefore, establishing a method that
comprehensively considers various separability evaluation
indicators is of great significance.
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