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Abstract: This research article analytically investigates a
soliton equation of high dimensions, particularly with
applications, and precisely in the fields of physical sciences
and engineering. The soliton equation of high dimensions,
particularly with applications, and precisely in the fields of
physical sciences along with engineering, is examined with
a view to securing various pertinent results of interest. For
the first time, the conserved currents of an integrodiffer-
ential equation (especially those of higher dimensions) are
calculated using a detailed optimal system of one-dimen-
sional subalgebras. Infinitesimal generators of diverse struc-
tures ascribed to Lie point symmetries of the understudy
model are first calculated via Lie group analysis technique.
Additionally, we construct various commutations along Lie-
adjoint representation tables connected to the nine-dimen-
sional Lie algebra achieved. Further to that, detailed and
comprehensive computation of the optimal system of one-
dimensional subalgebras linked to the algebra is also unveiled
for the under-investigated model. This, in consequence, engen-
ders the calculation of abundant conserved currents for the
soliton equation through Ibragimov’s conserved vector the-
orem by utilizing its formal Lagrangian. Later, the applications
of our results are highlighted.
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1 Introduction

Nonlinear equations with dispersive property picture a
class of mathematical equations refereed usually to as par-
tial differential equations (PDEs) [1-22]. These PDEs are key
in delineating a number of physical models inclusive of
waves residing in a shallow water channel, confinement
of Bose-Einstein condensate, light propagation in an optical
waveguide, and so forth.

Furthermore, it has been observed that these
equations simply put are non-solvable explicitly, yet math-
ematical techniques with analysis, together with computa-
tional capabilities, are divulging the means of engendering
these models as prognostic tools with a high level of
efficiency. This provides a rich phenomenon, for instance,
balancing nonlinearity alongside dispersion produces
coherent structures like vortices, and solitons — meta-
stable states that are long-lived, found out to be waves
localized and propagates with little or no disfigurement.
The applicability of such structures can be seen in optical
communication, within which solitons are engaged in con-
veying information. Additionally, these structures also
have physical interesting features as a result of their par-
ticle-like actions.

In the recent times, investigations have largely been
turned to nonlinear partial differential equations (NLNPDEs)
as well as exact travelling wave results associated with these
NLNPDEs. As a result, diverse complex physical happen-
stances are depicted via these NLNPDEs. A few of these
NLNPDEs including the Boussinesq-Burgers-type system

8 Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/phys-2023-0155
mailto:adeyemodaviz@gmail.com
mailto:Masood.Khalique@nwu.ac.za

2 —— Oke Davies Adeyemo and Chaudry Masood Khalique

recounting shallow water waves and also emerging near
ocean beaches and lakes were given attention in this article
[1]. Moreover, Adeyemo et al. [2] examined another general-
ized NLNPDEs called advection-diffusion equation with
power law nonlinearity in fluid mechanics. This generalized
equation characterized buoyancy-propelled plume move-
ment embedded in a medium that is bent on nature. Addi-
tionally, the vector bright solitons, alongside their various
interaction attributes related to the coupled Fokas-Lenells
system [3], was studied in the given reference. The femtose-
cond optical pulses embedded in a double-refractive optical
fiber, modeled into an NLNPDEs, were further investigated.
Recently, Adeyemo et al. [4] examined a (3+1)-D nonlinear
generalized type of potential Yu-Toda-Sasa—Fukuyama model
existent in Physics alongside Engineering. Besides, Du et al. [5]
investigated the modified as well as generalized Zakharov—
Kuznetsov model, delineating the ion-acoustic meandering
solitary waves resident in a magneto-plasma and possessive
of electron—positron—ion observable in the autochthonous
universe. This model was utilized in representing dust-mag-
neto-acoustic, and ion-acoustic, together with dust-ion-acoustic
waves in the laboratory dusty plasmas. Further to that, a
generalized structure of the Korteweg—de Vries—Zakharov—
Kuznetsov model was investigated by Khalique and Adeyemo
[6]. The dilution of warm isentropic fluid alongside cold static
framework species together with hot isothermal, applicable in
fluid dynamics was recounted via the use of the model. The list
continues unending, see more in previous studies [4,7-15].

Sophus Lie (1842-1899) with his quintessential work on
Lie Algebras [17-20] which is essentially a unified approach
for the treatment of a wide class of differential equations
(DEs). With the inspiration of Galois theory, Sophus Lie, a
Norwegian mathematician, established symmetry methods
and demonstrated that many of the known ad hoc methods
of integration of DEs could be obtained in a systematic
manner. The approach has evolved into a helpful tool for
solving DEs, classifying them, and preserving the solu-
tion set.

Furthermore, it has been observed that conservation
laws are established and entrenched natural laws that
have been studied by many researchers in various scientific
fields. Conservation laws that are commonly used in this
context include conservation of linear momentum in an
isolated system, conservation of electric charge, conserva-
tion of energy, conservation of mechanical energy in the
absence of dissipative forces, and many others. Conservation
laws are deliberated to be basic laws of nature, with extensive
application in physics and numerous other fields. Some of the
important criteria of conservation laws are as follows [21]:

a) the stability analysis and the global behavior of
solutions.
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b) the development of numerical methods and provide an
essential starting point for finding potential variables
and nonlocally related systems.

¢) the investigation of integrability and linearization mappings.

Securing soliton solutions to NLNPDEs, as a result of its
pertinence, is thus becoming a crucial point of interest and
active space of investigation to scientists. Consequently, in
a bid to gain the soliton solutions, travelling wave solu-
tions, and other interesting exact solutions to NLNPDEs,
sturdy approaches have been developed in the literature
by scientists. We have some of them as power series solu-
tion method [22], simplest equation method [23], Darboux
transformation [24], multiple exponential function method
[25], just to mention a few. Others include bifurcation tech-
nique [26], Painlevé expansion [27], homotopy perturbation
technique [28], tanh—coth approach [29], extended homoclinic
test approach [30], Cole-Hopf transformation technique [31],
Adomian decomposition approach [32], Backlund transforma-
tion [33], F-expansion technique [34], rational expansion tech-
nique [35], extended simplest equation approach [36],
Kudryashov’s technique [37], Hirota technique [38], Dar-
boux transformation [39], tanh-function technique [40],

[g
G
technique [42], generalized unified technique [43], exponential
function technique [44], and so on. Since the inception of
Kadomtsev and Petviashvili’s hierarchy of equations a little
more than half a century ago, dozens of research papers
have emerged, each exploring an aspect of this rich domain
of equations, see for example previous studies [45-51].

There have emerged NLNPDEs that have been solved by
using already arisen mathematical techniques. Nevertheless,
not all the emergent modeled equations are solvable.
Examination of analytic explicit outcomes to soliton equa-
tions is already in the limelight and as such highly sig-
nificant with influence in physics of mathematics among
others [9-11]. Such soliton model includes the 3D soliton-
modeled Jimbo-Miwa-type [52] given as

-expansion technique [41], sine-Gordon equation expansion

zqyt + 3G,y + 3Qqux = 3q, + ooy = 0, (11

investigated under the variable-dependent-Cole-Hopf trans-
formation that reads
u = 2(log,7)x, q = 2(log,w)y.

Additionally, mapping (1.1) and Hirota bilinear relation to

each other results in
(2DDy + DDy - 3D})w - w = 0. (1.2)

Thus, bilinear differential operators unveiled in (1.2), that
is, Dy, Dy : Q x Q — Q are computed as
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DyD{'[h(y, x)- s(y, X)]
_ [i _of(e o
gy oy’'Jlox ox’
x [h(y, XI5V, X y=y'x=x»
where m,n >0, h,s € Q: C* — C as well as C* standing

for differential functions space. Thus, we give Eq. (1.2)
regarding w as

m

(1.3)

Wlyxyy + 200y ~ 3WWz; — 3WxxyWy e
+ 3Wlyy = 20y — WypWy + 3w7 = 0. '

Furthermore, Asaad [52] engaged the Pfaffian technique to
achieve closed-form results to the soliton equation (1.4).
Next, the high dimensions soliton model divulged as

W, — QW + W — zlplpx)y + 2(111)(6;11}'),))( =0, (L5

where ¥ = ¥(t, x, y, z), was at first gleaned by Geng [53].
The author went ahead to decompose (1.5) via the infuse of
bi-dimensional Ablowitz—Kaup-Newell-Segur equations
into solvable ordinary differential equations system. Liu
and Zhang [54] examined (1.5) and thus gained mixed lump
strip results together with solitonic-lump outcomes satisfying
the equation through popular Hirota bilinear approach.
Besides, investigations on them reveal that solitonic lump
outcomes localized rationally in every observed direction
within the space. Not only that diverse copious solutions
that are periodic to the model (1.5) were secured under
three-wave solution approach alongside the Hirota bilinear
technique, see also the study of Liu et al. [55]. Geng and Ma
[56] engaged a non-linearized-Lax-pair-approach in fetching
geometric algebraic results of (1.5) explicitly and in Riemann
theta function structure. Moreover, the Wronskian approach
alongside Hirota technique was utilized to gain N-solitonic-
solutions of the equation by the authors. Based on Pfaffian
derivative relation, Jian-Ping and Xian-Guo [57] found Gram-
pian determinant solutions to (1.5). Meanwhile, on invoking
the bilinear Backlund transformation, more viable results of
the equation have been explicitly gained by Jian-Ping [58].
Additionally, Wang et al. [59] broke down (15) into three
integrable bi-dimensional models. They achieved this on the
basis of a quartet Lax pair condition. These three models are
as follows: nonlinear Schrodinger model, Lakshmanan-Por-
sezian—Daniel model, and complex modified Korteweg—de
Vries equation in dimensions that are dissimilar. General
rational Nth-order outcome given in a compact structure
way was achieved for (1.5) using the Darboux transformation
technique together with the limit approach. Not only that, in
the study of Wang and Wei [60], the decomposition technique
was invoked to secure solution regarding N -anti-dark soliton
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of the equation under contemplation on a finite background
via the application of the limit technique and the Darboux
transformation. Meanwhile, for the N-anti-dark soliton solu-
tion, the asymptotic analysis was furnished. Additionally,
the authors proved that elastic-nature collision existed
between multiple antidark solitonic outcome.

Hence, in our study, we seek to explicitly examine the
optimal solutions assented to the three-dimensional soliton
equation (1.5) via robust Lie group theoretic technique.
Consequently, the integral function emergent in (1.5) is first
eliminated via the representation v = [u,dx. Thus, (15)
alters the equation system that reads

Uy, = 2Ugy + 2UUy + 2Ullyy + 20Uy + 205l

=0’

~ g 6a)

Uy~ v =0, (1.6b)

denoted as HD-SOLeqn for short. We observed that recently
Khalique and Adeyemo [61,62] bought into play Lie-sym-
metric approach to gain various abundant invariant solu-
tions of system (1.6). In addition, copious solutions in terms
of closed-formed travelling waves of the under-study model
via the systematic polynomial complete discriminant along-
side elementary integral approaches. Meanwhile, homotopy
formula was employed in computing some conserved quan-
tities of (1.6).

Nonetheless, this study invokes the optimal Lie alge-
braic systematic approach to compute various vectors via a
nine-dimensional Lie subalgebras ascribed to (1.6) to gain
more extensive conserved quantities of the system with
various applications in sciences and engineering. We state
for the purpose of emphasis that this research engage a
detailed computation of one-dimensional optimal system
of Lie subalgebras, obtained from a nine-dimensional Lie
algebra, to generate abundant conservation laws to (1.6).
Moreover, for the first time, the significance of the asso-
ciated conserved quantities are highlighted within the
fields of physical sciences. All these attest to the fact that
the work is novel and original.

Now, we catalog the rest of the research article as fol-
lows. Section 2 supplies well-thought-out steps adhered-to in
calculating the Lie symmetries ascribed to the soliton equa-
tion. Moreover, one parametric transformation groups along-
side a Lie-sub-algebraic optimal system is computed for the
gained Lie algebra. In addition, Section 3 achieves conserved
current calculations for optimal system of Lie subalgebras
of solitonic system (1.6) in conjunction with the formal
Lagrangian using Ibragimov’s conserved quantities the-
orem after which conclusions are furnished.
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2 Lie algebra and optimal system of
the HD-SOLeqn (1.6)

Computations of Lie-point symmetries of HD-SOLeqn (1.6)
are first done from where optimal systems of sub-algebras
are contrived. In consequence, engagement of the gained
symmetries is taken into consideration to attain diverse
possible conserved quantities ascribed to system (1.6).

2.1 Conspectus of infinitesimal generators
of (1.6)

We suppose first that Lie transformation group of infinite-
simal generators be explicated in the following format:

t=t+ell(t,x,y,z,u,v) + 0(&?),

Z=z+ et x,y,2,u,v) + 0(),
X =x+ &t x,y,2z,u,v) + 0(e?), 21)
i=u+epl(t,x,y,z,u,v) + 0(e?),
y=y+edt x,y,z,uv) + 0(e?),

V=V + ep’(t, X,y,z,Uu,v) + 0(e?).
We now contemplate an infinitesimal dimensional Lie
algebra covered by vector fields

R N

4
X f6

t 2.2)

+ ¢1£ + ¢25

where coefficient functions &, £2, &3, &4, ¢!, ¢, depending
ont,x,y,z,u, and v. Hence, one examines an appurtenant
theorem:

Theorem 2.1. Suppose vector w is assumed to be the infinite-
simal generators ascribed to classical point symmetric group
of HD-SOLeqn (1.6), where &, i =1,2,3,4 alongside ¢' and
@?, regarded as smooth functions of variables t, x, y, z, u, and
v. Thus, one engenders results which are formatted as:

3
l=¢ + E(—Cz + cyt,

£= 200 + Cx + HICZ, 1)+ QO),

& =cy + H(2),
Et=c5 + gz,

6= (0 - cou + SHE) -

(2.3)

Q(t) - H(z, 1),

1 3
¢*= —EV(Cz +ey) + EHzl(Z, 0,
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where constants ¢, C,, C, C4 are arbitrary along with func-
tions H(z), H'(z, t), and Q(t) being observed to be, respec-
tively, depending on their respective arguments.

See the comprehensive proof of Theorem 2.1 in the
study of Khalique and Adeyemo [61].

Suppose one assumes in gained solution (2.3) that arbi-
trary Hl(z, t) = ¢5z + cgt + €7, H(z) = cgz + g, as well as
Q(t) = 0, we institute more symmetries of (1.6). Hence,
the arrival at the subsequent corollary:

Corollary 2.1. Lie algebra represented by g for infinitesimal sym-
metries ascribed to soliton system (1.6) given in three dimensions
consists of vector fields alongside their respective names, viz,

o . .
wy = ar time translation,

0 0
X - y— -2u— +

0
=3t— + vV_—,
W= ox ay ou ov

Scaling,
Y, aling

0 .
w3 = 7’ Z space translation,
Z

o] 0 o] o] 0
= —_— 4+ Y— _ = _ - ))—
wy = 3t ot X ox + 2z 32 2u 31 % Fw , Scaling,

0 0
ws = 2z— + 3—, Galilean boost, (2.4)
ox ov’
5} 0 .
We = ta o Galilean boost,

0 .
wq = P X space translation,
X

5} 0
Wg=2Z— + 36_11’ Galilean boost,

oy

0
Wq = @ Yy space translation.

Thus, HD-SOLeqn system (1.6) admits Lie algebra of nine
dimensions whose basis are formatted as {wy, wy, Ws, ...,Wo}.

One observes quickly here that the instituted infinite-
simal generators can be explicated as a linearly combined
vectors formatted as

w=awy + Wy + asws + aswy + asws

2.5
+ agWg + a;w; + agWwg + aqWy. 25)

The next phase of the research engenders the Lie transfor-
mation-groups connected to Lie-algebra g.

2.2 One-parameter Lie group
transformation of (2.4)

On involving the Lie equations in previous studies [17,63]
alongside the related initial conditions in the calculation of
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one parameteric transformation group ascribed to the
gained generators (2.4). Thus, we institute a theorem given
shortly:

Theorem 2.2. Suppose that transformation group GX(t, x,
y,z,u,v), i=1,2,3,..,9 of one parameter is engendered
by infinitesimal generators wy, Wy, Ws ..., Wy in (2.4), thus,
for each generator, we secure accordingly

G: (£,%,9,Z,i,V) — (t+¢&X,Y,2,u,v),

G:: (E,X,y,Z,1,7V) — (te%, xe, ye %, z, ue %, vet),
G: (I,%9,Z,0,7) — (t,X,y,Z + & U, V),

Gt: (,X,y,Z,0,0) — (te*, xet, y, ze%, ue %, ve™®),
G : (5,%,y,Z,0,V) — (t,x + 262,y,Z,u, v + 3¢),
Gé: (6,%,V,Z,0,7) — (t,x + €t,y,z,u - € V),

G: (£,%,y,Z,0,V) — (t,x + &Y,2,u,V),

GE: (£,%,9,Z,U,V) — (t,X,y + 26z, Z,u + 3¢, V),

G : (6,%9V,Z,0,7)— (t, X,y + & Z,u,V),

with € € R admired as the parametric group.

We direct the reader to the designated references with
a view to gaining a much better under-standing of the
ascribed proof of Theorem 2.2. Now, by extension, the sub-
sequent theorem suffices, that is:

Theorem 2.3. If u = h(t, x, y, z) alongside v = g(t, x,y, z)
fulfills HD-SOLeqn (1.6), so are the functions explicated as

w=h(t-¢xYy,z),v=gt-¢&Xx,Y,2),
Uy = ue*h(te™%, xe, ye*, z),

vy = ve~ig(te 3, xe¢, ye¥, z),

us=h(t, x,y,z - €),vs = g(t,x,y,z - €),
Uy = ue*h(te™%, xe¢, y, ze %),

vy = vetg(te ¥, xe™, y, ze™%),

us = h(t,x - 2¢z,y, z),

vs = g(t,x — 2¢ez,y,z) - 3¢,

ug=h(t,x - et,y,z) +¢,

ve=g(t,x — €t,y, z),

u; = h(t,x - &,y, z),

v, =g(t,x-¢gY,2),

ug=h(t,x,y - 2¢z,z) - 3¢,

vg = g(t, x,y — 2¢z, z),

Ug=h(t,x,y - ¢&2) +¢,

vg=g(t, X,y - & 2),

with ui(t,x,y,z) = G- h(t,x,y,2), Yi=1,2,..,9, where
&> 11is conjectured as any real-positive number.
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2.3 Optimal system of Lie subalgebras
of (1.6)

This section tends to utilize the accessible chance of a sym-
metry group in the computation of one-dimensional Lie
optimal system ascribed to Lie subalgebra [17,64] concerning
(1.6). Therefore, deciding on subgroups of a symmetry group
allows one to gain various kinds of solutions with a well-
standardized approach which is stressed. The piece of work
involved in sub-algebraic classification that is single-dimen-
sional is a connective factor compared to the signalized one
with orbit codification of the Lie adjoint-representation [17].
Now, an subalgebraic optimal set is achieved through the
choice of single representative of any given equivalent sub-
algebraic class. Additionally, it is possible to decipher the
involved issue in orbit classification via the engagement of
a Lie algebra general member. Thereafter, simplification is
done via diverse transformations of adjoint. So, grounded on
a well-known algorithm outlined by Hu et al. [64], we institute
an optimal system of one dimension for HD-SOLeqn (1.6).
Now, we seek first the principal invariant function associated
with (1.6), next, we calculate the transformation matrix and
on the final analysis, classification of the Lie algebraic finite
dimension [17,64] is computed for (1.6) under consideration.

2.3.1 Principal invariants of System (1.6)

In achieving the one dimensional sub-algebra optimal
system of Lie algebra g associated with R?, it is obligatory
to construct the basic invariant in order to aid the selection
of representative elements. The table of commutation rela-
tions, explicated in Table 1, unveils various combinations
of relations ascribed to Lie brackets concerning g. The
(i;)th entry of Table 1 is then computed via Lie bracket
occasioned by [w;, wj] = ww; — wiw;.

We observe that Table 1 is skew symmetric having got
zero diagonal elements. The real function @ is taken as the
invariant and it satisfies the relation ®(w) = ®(Ad,(w)) for

all w € g alongside any subgroup g. Thus, we let w = Z,-g=1
as well as g = e’(v = Z?=1b]-w]-), where for g, we have
Adexpeny(w) = e ®we

=w - gv,w] + %82[\/, v, w]] - ...

= (qwy +--+agwy) — 8[b1W1 (2.6)
+ -+ bowy, awy + -+ agws] + O(e?)
= (wy + - +agwg) — (Zqwy + -+ +LgWy)

+0(g%),
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Table 1: Lie algebra commutator table for HD-SOLeqn (1.6)
[w;, w;] wq W ws wy Ws Ws wy wg Wy
wq 0 3w, 0 3w, 0 wy 0 0 0
wy -3w, 0 0 0 —Ws 2Wg -wy 2Wg 2Wq
ws 0 0 0 2ws 2w5 0 0 2wy 0
Wy -3w, 0 -2Ws3 0 Ws 2Wg Wy 2Wg 0
Ws 0 Ws —2W7 —Ws 0 0 0 0 0
We " —2wg 0 —2wg 0 0 0 0 0
wy 0 wy 0 wy 0 0 0 0 0
Wg 0 —2wyg —2Wy —2wyg 0 0 0 0 0
Wy 0 —2Wy 0 0 0 0 0 0 0
. . oy ; ; oo 0
with func'tlon Z,. Liay, ....,(19, by, ...,bg) secured via basic ~2a, =0, (@ + ay) > =0,
computations with the aid of Table 1. In consequence, we oay oa;
. 0P 0P
have the values of £; as (@ - a) > - 20,22 = 0
6a5 6a7
Y ==3mb,y — 3abs + 3azb1 + 3asby, oD oD
L, =0, L3 = —-2asby + 2a4bs, Bay + 3(14)% asa =0,
L4 =0, X5 = @mbs — asbs — ash; + asby, alcp 76¢>
Y6 = —2aobg — 2a4bg + 2agby + 2agbs, (—2a; - 2a4)7— - 2a35— =0,
@.7) oag o0dy
Y7 = —-mbg + ayb; — 2asbs + azb; + 2asbs + aghy P oD
(—2a; - 2a9)— - m7— =0,
- a7b2 - (17b4, aae 6a7 (2 9)
Yg = —2a,bg — 2a4bg + 2agh, + 2aghy, 0P 0P oo '
2a, + 25— + 2a3— =0,
Y9 = —2abg — 2asbg + 2aghs + 2aqb,. dag oa; ddy
. . . 0o 0o 0P
Now, for any b;, where 1 < j < 9, it is required that we have =3a;— - as— + 2a6—
aa1 6a5 6a6
0P 0P 0o 0o 0o oo 0P 0P
Yi— + Ly — + X3 — + Iy — + Yy - a;— +2ag— + 2a9— =0,
oqy oay oas oay oas 28 oa; dag 0ay
0P 0P 0P 0P ’ 0P 0P 0P
+ YT t X+l — +tLg— = -3a;— - 23— + 45—
oag oa; odag 0dy 18611 30&3 Saas
. . . 0o 0o 0P
Thus, by equating the coefficients of all same powers of B} in + ZaGa - a7a— + 2a86— = 0.
. . . a a a
(2.8), one achieves the needed nine DEs with regards to real- 6 7 8
valued function invariant ®(ay, a,, as, a4, as, ag, a;, ag, ag) as
Table 2: Adjoint representation table of Lie algebra for HD-SOLeqn (1.6)
Adg w1 Wy w3 Wy Ws Wg wy wg Wy
wq wq QO w3 wy — 3eWq Ws Q12 Wy Wg Wy
wy ey, Wy w3 Wy ef2ws e~2e2yg e‘aw e~Ze2yg e~2e2yy
ws wy wp w3 Wy — 263W3 Q1o W wy (on Wy
Wy e, W, eXy, wy e~ Ews e %y e, e~ 24 Wy
Ws wq Q, Qg Wy + EsWs W5 Wg wy Wg Wy
W Q3 Q, ws Wy + 2€6Wg ws W wy wg Wy
Wy wy (0 ws Wy — EWy Ws We W wg Wy
Wg wq QG Qg wy + ZESWS Ws Weg wy Wg Wy
Wy wy Q, w3 wy W W wy Wy Wy

Qo =Wy = 3wy, Q= w; —&Ws, Q3 =w;+ gWs,

Qq = W3 + 285Wg, Q1y = W5 — 283W7, Qyy = Wg — 265Wo, Qpy = We — EW7.

Qy = wy + 2egws,

Q5 = Wz — Wy,

Qg = Wy + 28gWg, Q; = Wy + 260y, Qg = W3 + 2€5w7,



DE GRUYTER

On solving the system of equations displayed in (2.9),
one secures the value of invariant ®(ay, ay, as, as, as, as,
az, ag, g) = G(ay, a,), which we call the principal invariant
function of Lie algebra g associated with R®. In this case,
function G is an arbitrary function depending on a; and a.
In consequence, HD-SOLeqn (1.6) has only two basic invar-
iants representing the killing form as depicted by Olver [17].

2.3.2 Adjoint transformation matrix of (1.6)

Let g be the symmetry Lie algebra having basis {w, wy, ws, ...,Wq}
of Section 2.1 and also identifying with R® as a vector space
imploring the map w; — e; with {ey, ey, es, ...,eq} regarded as
the standard basis of R®. Suppose g = exp(gwy) for real con-
stants g, i =1,2,3,..., 9, by reconing Table 2 and calculating
the exponential of matrices Ad(w;), we gain adjoint matrix
representations of Ad(w;). For instance, from Table 2, whose
(i;))th entry is Adexpew,(Wj), we use the relation

Adexp(£1w1)W = alAdexp(£1W1)W1 + aZAdexp(e1w1)W2
+oeeet aQAdexp(£1w1)W9
= (a1 — 361y — 381a4)Wq + Wy + -+ AsWs
~ &AgWg + -+ AgWo,
= (@, Gy, @3, A4, As, g, A7, Ag, A9)- Af

(W1, Wy, W, Wy, Ws, W, Wy, Ws, Wo)T,

whereby we have Af to be

1 00000 O OO
-3 10000 0 00O

0 01000 O OO
-3 00100 0 00O
AfF=| 0 00010 0 00O
0 00001-500

0 0000O0O 1 OO

0 000O0O0CO0O 1O

0 000O0O0O O O1

Therefore, by adopting the same process, one secures
the other eight adjoint transformation matrices as

e 000 0 0 0 O 0
0 1000 O 0 O 0
0 0100 O 0 O 0
0 0010 0 0 O 0
Aza=0000e82000 0’
0 000 0 e2 0 0 0
0 000 O 0 €2 0 0
0 0000 0 0 e? 0
0 0000 0 0 0 e

A7

>

™

1l
&Y
coocoocooco o ¥
£

m 1} O OO O O OO O
O OO OO O O© O

O OO OO OO0 O

O OO O O OO kO

OO OO © OO = O

OO OO0 OO O© =

Application of conserved quantities

|
N = oo
&

o oo o o

®
» oo
£

ccocoo o006 = o cCcoococo o o O co oo oo

OO O OO OO ~, O

cCcCoococo o, o o OO O OO O =, OO0

O OO OO O OO

coococooro oo
coococo o oo Soococo o oo cocoococorooo

OO O OO mO OO

O OO0 O R OO0 OO

o O O o

o O ©o o

oSO ook, OO O O

OO OOk OO OO

O OOk, O OO0 OO
O OO R, O O O OO

O OOk O OO OO

o O O O

o O o

—2&

O O =

o o

o OOHooqu[\s’

SO RR OO OO O

O R OO O OO oo

O OO o oo

Q
£

O, OO0 OO © O [ e = == ==

O, OO0 O OO © O

_ OO0 00O O O oo

_ OO OO0 OO0 © O

_ OO0 00O OO0 oo

_ O OO0 OO0 o oo

—_— 7
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1000000 O O
010000023 0
0010000 0 2
000100025 0
A§=0000100 0 Of
0000010 O O
0000O0OO0OC1T O O
0000O0O0O0 1T O
0000O0O0OO0O0 1
10000000 O
0100000 0 2&
00100000 O
00010000 O
A§=100001000 Of
00000100 O
0000O0O01TO0 O
0000O0OO0OO0OT1 O
0000O0O0O0OO0 1

In consequence,
formation matrix as

we secure the general adjoint trans-

e3etla 0 0 0

AS 1 0 0 -&

0 0 e¥ 0 0

Af 0 —2e%ig 1 g

A = 0 0 0 0 e &
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

where Aj = -3ge32*3a Af = -3ged2*3a AL = -3g
gge3err3 — g, AE = —Agese® — 3gggednt — g,

2.3.3 Adjoint transformation equation and Lie
subalgebras of (1.6)

Here, the adjoint transformation equation associated with
parameters aj, ay, as, ..., aq iS presented as

(dlx dZ) d3: &41 dSs dG: &7: &8: d9)

(2.10)
= (al, az, a3, Ay, As, Ag, A7, Ag, ag)AS’

where Af is the global adjoint matrix. One can assert here,
that v = Yo, dw; as well as w = Y;_,aw; coincide under the
adjoint action. So, the involved adjoint equations associated
with (1.6) with regards to system (2.10) are computed as

DE GRUYTER

@ = @e’ert3e — 3ayertdag — 3q e%rt g,

{y = ay,

{3 = aze%1 — 2a,0%g;,

{4y =ay,

A5 = A58 — @yEs + A4Es,

g = Age 2627284 + 2,86 + 20486,

d7 - a7egz+g4 _ a5€82+€481 _ 2a5eSZ+€483 + 2(13@28485(2'11)
+ qedrt3gg — ay(3e¥rIugigg + &)
— au(derges + 3e3e+Seagigs + &),

g = age 22721 + 2a,85 + 201,485,

g = age 282 — 2age2f2g; + 2azeergg
- 4ame¥igeg + 2058

Remark 2.1. It is noteworthy to state clearly here that the
existence of solution of system (2.10) with regards to real
constants g, i =1,2,3,..,9 implies that the selected ele-
ment that occasions the solution is an optimal system
and so it is germane.

0 e¥ert3ag, 0 0
2€g AL 2e8 2¢9
0 2@28485 0 2628488
266 AL 26 —4deXageg
0 —2ef2teagy 0 0 ,
e—252—2£4 _ e52+£481 0 0
0 ecztes 0 0
0 0 e 22 Do 202g,
0 0 0 e

Next, we begin the optimal system computations
proper in the subsequent part of the study by first contem-
plating the invariants earlier secured on the basis of its
sign as presented in the algorithm adopted [64] in two
stages asa; = 1, a4 = 1, and aa, = 0.

Casel.a;=1,a,=1

We choose in this situation, the representative element
v=w;+w. On inserting the parametric values
a; =0, i=1,3,5,..,9 alongside @; = 1, i = 2, 4 into adjoint
system (2.11), we achieve the solution

1 1
&= gab &= Eagw & = _Zaﬁe 2ezres),

£ = —= aguesr* + %‘1788”4, (212)

12

1 1 1
€ = —4a8e‘2(82+54), & = Eage‘ZEzag - Eage‘kz.
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Case 2. wya, = 0

This case occasions three scenarios a, =0, as # 0;
a; # 0,a4 = 0; and a; = 0, ay = 0. Thus, without loss of gen-
erality, we contemplate a, = a; =1 and investigate those
cases shortly.

Case21.a;,=0,a,=1

We select in this subcase, the representative element v = wj.
On invoking the parameters @; = 0, i = 1,2, 3,5,..., 9 together
with @ = 1, i = 4 into adjoint system (2.11), we gain the result

1
& §a1:
Qg
&=
2ag
g=In||-—— ||+ &
&; ] ’
2 (2.13)
AeEs
Eg=——
2a2e%:’
&= {e’2a5(magas + 3asay — 3asag)},
3esag
(18852
& =",
2a2e%’

Case2.2.a;,=1,a,=0

We choose the representative element v = w,. Substituting
the parametric values @; =0, i =1,3,4,5,..,9 as well as
d; =1, i =2 into adjoint system (2.11), we secure the outcome

1
& 5611,
& =In|—| + &,
age?
& = ,
2a2ele
5 (2.14)
1
& = ——{e*as(mas + 6ases - 3a;)},
385
age?
Eg=—
2a2e%2’

-2¢. 1 —2¢&
€9 = AgE3e 2 — Eage 2,

Case 2.3.a;,=0,a4=0

Here, we insert a; = 0 and a4 = 0 into equation PDE
system (2.9), solve the resultant equations, and thereby secure
a new invariant with regards toa;, i = 1,3,5,...,9 as

a3a5 2 2

Jagiat, agijai|.  (2.15)
% 6V 4 > gy a4
In consequence, we treat this invariants accordingly in the
succeeding part of this work by contemplating three basic
cases where the invariants are 0, -1, and 1 [64].

(D(al’ as, as, ds, az, As, a9) =

Application of conserved quantities == 9

Case 23.1. 9 =1, a5l =1, asy/a} = 0.

In this situation, we have aja = ag*/>. Hence, by
taking ag = 0, a¢; # 0, precisely a; > 0, we select the represen-
tative element v = w3 + ws — wg. As a result, we implore the
parametric values @; =0, i =2,4,..,9, =1, i=13,5
with ag = -1 in adjoint system (2.11) and so gain the solution

1

1l
|
—

=]

&

1
& = ln(as) + - ln

1 /1
Bl el
a |
2a1a5833 — - a1a73 — = 2m& - 81],
£ 1aa Qg3
8 = o Masas a1 .

Case 2.3.2. 2 =1, agla? = 0, agifa? = 1.

Now, just as earher demonstrated, here, we also have
-3/2

(2.16)

a33a = ag”'* and by assuming thatag = 0, a; # 0, we choose
the representative element v = w3 + ws — wg. Thus, we
insert the parameters @ = 0, i = 2,4, 6, 7,9 together with
a;=1, i=1,3,5,and ag = -1 into adjoint system (2.11) and
obtain the outcome

& 1ln 11
= — —_—3 —
2 2 as \ 4y ’

&, =In(as) + —ln

1 /1]
3_)
86—2(153_83 a73— —285,
& 1(1 !
= ——(c3| —
8 2 > a

Case 2.3.3. 2 = 0, agi/af = 1,aifaf = 1

In third subcase of Case 2.3., we note that ag = ag and
by supposing that as = 0, a; = a3 # 0, we select the repre-
sentative element v = wg + wg. Therefore, by engaging
the parametric values @; = 0, i = 2,4,5, 7,9 together with
a;=1, i=1,3,6,8 in adjoint system (2.11), we secure

(2.17)

a1Qy

] + 2&].
aq

1
&=y In(asas),

1
& = —(2a3ageg + ay),
3 2a8( 3U8CY 9)

1 1 (2.18)
2 as
1 1/3 1 1/3
& = Ag./asag a—] & — a7 azag a—] - 26&s.
3 3
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asas

Case 2.34. % =1, agy/a} =1, a5i/af =1

This scenario presents a; = asas and also gives ag = as.
Thus, we choose the representative element v = w; +
w3 + ws. On inserting the parameters & =0, i=2,4,7,9
along with @; =1, i=1,3,5,6,8 into adjoint system (2.11),
we achieve the solution

1 [ 1
&=—In
2" | asad

’

1,,
&= ~03a509 + A3€g,

2
1
aal |

2a3ades + 2adades -

(2.19)

& =1In(as) + ln

1
_ 45 2.2
&= a3a3{a3a5a9 - asaia; + &}.

345

Case 2.3.5. a3a5 = -1, ai/a? = -1, agyfa? = -

Here,a, = —a3a5 andsofora; = a3 > 0,as = ag =ag < 0,
we choose the representative element v = wy + ws — ws.
On substituting the parametric values @; = 0, i = 2,4,7,9,
a =1 1=13witha=-1, i=5,6,8 into adjoint system
(2.11), we obtain the result

1 asg
&=—In[-—|,
ta [asz]

1 ag
&=—|2 |-— & + ag|,
3 Zag[\ az”® 9’
_Gs
a?|
= ——[asag 81 + a5 a9 - asa;ag

+ 2ag€5 — 2a388’.

& =In(-as) + — ln (2.20)

Furthermore, for a; = a5 > 0, a3 = ag = ag < 0, we select the
representative element v = wy; — ws + ws. Thus, invoking the
relevant parameters of @;, i =1,...,9 into system (2.11), we
obtain

&= In|-——
272 aal|

1,
€= 75 0305A9 ~ AsEs,
2.21)
1 1
& =1In(as) + - In|-——]|,
2 azas
1 45 3.3 3.3 2.2
& = —3 310303509 + 20305€5 + 2050563 + A3A5a7 + €1}
a

345

DE GRUYTER

Remark 2.2. We note that other possible representatives from
Case 2.34. and Case 2.3.5. have been obtained earlier thereby
contributing no additional subalgebra to the optimal system.

asﬂs

Case 2.3.6. .— =0, ag\/a =0, ag} a1 0

In this 31tuat10n, we take a3 = ag=ag =0 witha; # 0
and substitute it back into PDE system (2.9). Hence, we
secure another new invariant dependent on (ay, as, a;, ao)
given as ®(ay, as, a;, as) = G(as, aq, 3/a;). Thus, we explore
the invariant to further scale down vector (2.5) shortly,
bearing in mind the approach engaged in the study of
Hu et al. [64] as demonstrated earlier.

Case 2.3.6.1.a; 2 0,a5#0,a9 0

Now, we contemplate a; > 0, as > 0, and ay > 0. Then,
we select the optimal representative v = wy + ws + wg. Sub-
stituting values of parameters, viz, @; = 0, i = 2,3,4,6,..., 8
alongside @; = 1, i = 1,5, 9 into system (2.11) gives the outcome

6= Ll
276 wad)

1 o a

7

&=—mqa g + , (2.22)
STt 1a§] 2as

1. [ad
&=—In|—

Conversely, we consider a; < 0, as < 0, and ag < 0. So, we
choose the optimal representative v = -w; — ws — wy. On
invoking parameters @; =0, i =2,3,4,6,..,8 alongside
a; = -1, i =1,5,9into adjoint Eq. (2.11), we have the result as

PR
‘76 aas
2/3
1 a;
~aa — (2.23)
2 1a§] 2as
1. [ad
=~ In|=>|.

Moreover, contemplating a; > 0, as > 0 with aq < 0 which
gives representative v = wy + ws — wg and also a; < 0, as < 0
with aq > 0 that secures representative v = —w; — ws + wq
and solving system (2.11) using appropriate values of
a;, 1=1,2,3,...,9 gives the same solution as earlier obtained.
Furthermore, for a; > 0, as < 0 with ag < 0 whose representa-
tiveisv =w; — ws — wg aswell as a; < 0, a5 > 0 withaq > 0
which gives representative v = —w; + ws + wy together with
a;>0,a5<0 with ag> 0 that occasions representative
- w5 + Wy, we solve system (2.11). On imploring ade-
1,2,3,...,9, one obtains

V=WmW
quate values @;, i =
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1 1
& =—In|- s
‘76 aas
2/3
1 ar
& = —mas|— , (2.24)
T2 1a53] 2as
1 ad
& =—In|-—
4 6 aq

Next, we contemplate the case asas3/a; = 0 whereby
various other possibilities are explored.

Case 2.3.6.2.a1=0,a5s # 0,a9 # 0

Here, we examine the case a; > 0 and aq > 0. Therefore,
we select the representative element v = ws + wy. In addition,
for a; < 0 and ag > 0 whose representative is v = —ws + Wy,
we substitute appropriate values of a;, i=1,2,3,..,9 in
adjoint system (2.11) as earlier manifested and gain

1
8=5 In(ay),

a
&=

= 2ay’ (2.25)

1
&y = E 111(6152(19).

Moreover, we study the case when as < 0 and ag < 0. We
choose the representative element v = -ws — wq. Besides,
for as> 0 and aq < 0 whose representative element is
vV =w; - Wy, We insert adequate parametric values of
a, 1=1,2,3,..,9 into adjoint system (2.11) as exercised
before and obtain

1 1
£2=—Eln —a—g,

a
83=2—a5 (2.26)
s4=—11n—L as <0

2 aZas|

Case 2.3.6.3.a5=0,a; # 0,a9 # 0

Reckoning a; > 0 and ag > 0 with a; = 0, we select
the representative element v = wy + wy. Not only that on
making adequate choice of q;, i=1,2,3,...,9 and substi-
tuting same in adjoint system (2.11), we secure the solution

1 1 1 1
£2=—1n[—]——1n ,

3 a1 3 al a93
1 1 2.27)
&=—=1In s
3 n ‘193
7 2
=-——(aqi/ai).
5 oy/af

Besides, for a; < 0 and aq < 0 alongside as = 0, we choose
the representative element v =-w; — wy. On invoking

Application of conserved quantities = 11

adequate parametric values of a;, i =1, 2, 3,..., 9 in adjoint
system (2.11) as revealed earlier, one obtains

Y Y | S

273 a) 3 Mmag./—aqg ||
1 1 (2.28)
:—1 —

& 3 i (11(191/—(19]

ay
&= ——((ma9)*/3(-as)%).
AQaq

Considering a; < 0 and ag > 0 with as = 0, we select the
representative element v = -w; + wy. Invoking adequate
choice of @;, i=1,2,3,..,9 in adjoint system (2.11), we
secure the solution

1 [1] 1 1
&=—1In|-—| - =In|- ,

3 a1 3 al a93

1 1 (2.29)
&=—In|-——|,

3 a/ag

a
5= o (fad).

In the same vein, for @; > 0 and aq < 0 alongside as = 0,
we choose the representative element v = w; - wg. On
invoking adequate parametric values of a;, i =1,2,3,...,9
in adjoint system (2.11) as revealed earlier, one obtains

1 1 1 1
&= —ln[—] - glnl—

3 a; 109,/ — A9 ’
1 1 (2.30)
==In|-——|, .
& 3 n Q1Ag9./— Qg ]

a7 2/3 3
&= -(ma —-a9)°).
6 alag( (am1a9)*'*(-ag)”)

Case 2.3.64.a9=0,a;, # 0,a5 2 0

Regarding the case of @; > 0 and as > 0 together with
aq = 0, we select representative element v = w; + ws. In
addition, for aq; < 0, a5 < 0 as well as ay = 0, we choose
representative element v = —-w; — ws. On inserting rele-
vant values of q;, i =1,2,3,...,9 in adjoint system (2.11),
we achieve the result

6= Lol
76 |aad)
2/3
1 1 ar
o= tgad | e+ E 2.31)
3 2 1U5! alasg] 6 2 5
1. [ad
& =—In[—|.
4 6 aq

On the contrary, if we reckon a; > 0, a; < 0 as well as
ay = 0, we choose representative element v = w; — ws.
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Besides, for a; <0, as; > 0 as well as aqg = 0, we choose
representative element v = -w; + ws. On invoking perti-
nent values of q;, i=1,2,3,...,9 in adjoint system (2.11),
we secure the outcome

£ -lln -
‘76 wad|
2/3

1 1 ar
£ = —auael - £ + —L (2.32)
3 2 1U5 ala53] 2 5

1 al
&=—In[-—
4 6 a,

Remark 2.3. It is noteworthy to state that some of the
representative elements obtained with both positive and
negative signs are equivalent. For instance, w; + ws + wy
and -w; — ws — wyg are equivalent. The study reveals that
their solutions ((2.22) and (2.23)) are exactly the same.
Moreover, we observe the same occurrence for represen-
tative elements wy + ws and —w; — ws.

Finally, in view of the detailed calculations and ana-
lysis presented alongside remarks (2.2) and (2.3), we reduce
the list of the representatives slightly by admitting that the
discrete symmetry (¢, x, y, z, u) — (-t, —x, -y, -z, u) not in
the connected component of the identity of the full sym-
metry group maps wy + ws + wg t0 Wi — Ws — Wy, W5 + Wy
to —ws + Wg, Wy + Wg t0 Wy — Wy, and wy + ws to wy — ws,
and so on, thereby minimizing the number of inequivalent
subalgebras [17]. Thus, we arrive at the theorem.

Theorem 2.4. The optimal system of one-dimensional Lie
subalgebra of HD-SOLeqn (1.6) comprises the list: w, + wy;
Wy; Wo; W3 + W5 = We; We + Wg; W3 + W5 — Wg; Wi + W3 + Ws;
W1+ Ws + Wo; W5 + Wo; Wi + Wo; W1 + W5, W1 — W5 + Wa.

We note that various invariant solutions associated
with the subalgebras presented in Theorem 2.4 have been
copiously explored [61,62]. Thus, we compute the conserved
vectors related to the vectors in the subsequent part of the
research paper.

3 Conserved currents of system
(1.6) with applications
This part of the article reveals the calculation of conserved

vectors related to (1.6) by invoking the Ibragimov’s the-
orem [65,66] for determining conserved quantities. Hence,

DE GRUYTER

some salient information are divulged in order to under-
stand the technique.

3.1 Preliminaries

A new theorem in [65] was introduced by Ibragimov for
the computations of conserved vectors associated with a
given DE. In addition, availability of classical Lagrangian is
not demanded for the theorem to function. Ibragimov’s tech-
nique suggests fundamentally that infinitesimal generators are
uniquely associated with their conserved current. Further-
more, the concept stands on theavailability of adjoint equation
related to nonlinear DEs. Thus, a detailed outline of the the-
orem is furnished shortly.
Formal Lagrangian and adjoint equation

Theorem 3.1. [65] The system of adjoint relations given as

8(9Pg5) .
sy
o=1 ..,a,Q=(Q, ..,Q0),

Eg(, ¥, Q, ..., W), Q) = (3.1)

which exists for a known system of a sets of relations pre-
sented as

EU(X, y, lIJ(l)’ ...,lp(s)) =0, o=1,..,qa, 3.2)

where Q = Q(x) with k independent together with a depen-
dent variables accordingly explicated as x = (x!, X%, ...,x¥)
and ¥ = (P, W2, ..., 99, alongside the variational deriva-
tive designated as Euler-Lagrange operator, expressed for

each o, by the formal sum defined as

§ 0 -
§%9 0w ;(—1)% P
(3.3)
2 i

597 , )

i, o0, Is

yK)

owns the symmetries inherited by set of relations (3.2). The
complete derivative D; explicates as
0

)
Di=— + J9
boaxt ' ogo

+ II!;]’
(34)

X

tee,i=1,.,K jJ=1, ., K

0wy
Noteworthy, it is to declare that suppose set of rela-
tions (3.2) admit a point transformation group, having a

generator convey as
] 0
R=EE— + @° y

Yot 5

§=80x, ), 9% = 0°(x, ®),

(3.5
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then the system of adjoint relations (3.1) admit the operator
(3.5) whose extension to a variable Q7 is given by

.0 0
= fl— g o— 36
S Eaxl+(paq,a+(p*aga (3.6)
with coefficient ¢ = ¢7(x, ¥, Q, ...) defined as
of = —[A§QF + QID(&Y)], (3.7

which is selected approximately and the included variable
Q7 = Q°(x). A§ is achievable by the formula:

AgEp = X(Eq). (3.8)
Hence, the formal Lagrangian is explicated as
L =Q%,(x, ¥, Yy, ..., ¥s), (3.9)
with the adjoint relation to (3.2) stated as
B, ¥, Q, ..., Qs) =0, (3.10)

together with criteria (3.1) holding.

Theorem 3.2. Every nonlocal symmetry (3.5), Lie-Bdcklund,
as well as Lie point, admitted by the system of (3.2) produce
a conserved current for relations (3.2) alongside the adjoint
(3.10), with the conserved current T = (T%, ...,T*) having
components T' and decided by

o oL oL oL
Ti=§l/f +1I° - Di—— + DD + e
S P Towg ~ 7K awg, ]
oL oL (311
+ D;(II° -D :
(1T vy TFowd
oL
+ D;D(I19) + Lj, k=1, ..,K,
Tok Ok J

whereI1° is the involved Lie characteristic function is engen-
dered as

I° = g% - fjlpf,’,
g=1,.,a,j=1, ..,k

(3.12)

Remark 3.1. We assert here that a given system of (3.2) is
said to be self-adjoint if after replacing Q@ = ¥ in the system of
adjoint relations (3.10) gives that same system. A more detailed
knowledge about the proof and various other copious informa-
tion on the results made available here, can be accessed by the
reader in the studies of Ibragimov [65,66].

3.2 Derivation of conservation laws via
Ibragimov’s theorem

We give the Ibragimov’s conservation theorem [65] in this
part of the article to find the conserved vectors of the

Application of conserved quantities = 13

HD-SOLeqn (1.6). Utilizing the highlighted information ear-
lier presented, one achieves the theorem:

Theorem 3.3. The HD-SOLeqn (1.6) as well as its adjoint
equation is accordingly explicated as

Gy = 3lyz = 2Ugy + 2UyUy + 2Ullyy + 20Uy + 2Vxlly — Uyyyy,

Gy = Uy — Vy,
.= _ - (313
Ga1 =3p, - zpty + 2P + Zupxy +2p,v - 4y = Doy = 0,

Gay =G, = 2D Uy = 0,
with a second-order formal Lagrangian given as
L = pQuyv + 2ty — 2Ug + 2UVy + 2l + i%uxz)(3 ”
+ q(uy - W) - PyxUiy- .

Obviously, one can frankly state that from the adjoint
relation (3.13) and remark (3.1), HD-SOLeqn (1.6) is not self-
adjoint. By applying of the earlier highlighted facts in
Theorem 3.2, we calculate the conserved currents asso-
ciated with the 12 elements of the achieved optimal system
of one-dimensional subalgebras as well as other Lie point
symmetries attained for (1.6). These conserved currents are

T{ = 2uW P + 2Uyy pV + 2UUy P + 3Uy P
+ 2y PU = UpyP + Uy = W = PyUs ~ Py,

T = 2p,uv — 2Vl p — 2Ug pV + pyut
3
— Ulyp — Eutzp ~ Uy puU + Viq — Plixxy
1 1 3
- Eufpxxy + prxufy * Pl + Epzut’
T = PUM ~ Udlyp =~ U PU + U D — Ueq

1
- prxxut + prxulx ~ Dl

TZ-E u—gu ;
1 Zth szp’

T} = Uy, = Pz,
Ty = 2puzv — 2uxV,p — 2Uy, pv

3
+ pyuzu — wyu;p - Euzzp — Uy pu + v q

1
- Eulpxxy + sz”xy

1 3
+ prxuyl - pquXy + Epzul’
Ty = pusu — Wi, p - U, pu
1
T U P — U ~ PUz — prxxul + prxuxz’
3
T7 = 2u VP + 2U PV + 2Ully p + Euxzp
+ 2Uyy pU — 2Ugy P + Uyq — VG

3
~ Py prul;
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T§ = 2yu, py — 2up, — Xuxp,, — 3tu;p,, + 3tquy, — 2ypuy,
+ 6tpuyly — 3tqvy + 6tpUVy + Pl + XPlyy
+ 6tpullyy — 3tuyy p,, + 6tPVLy — 3tpuyy,

T3 = 2pu* + 3p,u — 2puyu = 2yp iyl

+ 2ypuyyU + 4vp,u + XpyUU + XplgU = Py U+ 3tp, Ul

= 3tpuyu + 2ypu; — qv - 3pu, + Xqu, - 3yp,u,

3
- 2yquy + 3ypuy, — 4yvuy, p, — 4pviy, + Expzux + Xpuyly

3
+ 4ypvyly + 2Xvp, Uy + Expuxz + 4ypully, + P, Uy
9 1
- zypxyux)’ T YUy Py t Etpzut + EX“Xnyx
1
+ YUy Py ~ Exux Py t 2YDyloy ~ XDylhoy ~ 3ty Dy
3
- 3tpuyu, + 6tvp,u; - Etpxxyu, + 3tqve — 6tpu,v:
9 3
- Etputz - 2Xpuyy, + Etpxxuly + 3ty Py, — 6PV,

Ty = 2pu? - 2qu - 2yuy pu = Spu U + Xp, U = 2yplyu
= XPUxxU = Py U = 2pU + 3tp, Ut = 3tpUipl

- Xpu? - xquy — 2ypuyly + 2yqvy

= dypu vy — 6ypuy, + %uxpxx + Yy Dyy — APV

1 1
+ Expxxuxx + YUy Py ~ Exuxpxxx + Zyuypt ~ XUy Py

3
+ 5pu; — 3tqu; — 3tpusu; - Etpxxxut - 3tpu,

3
+ 2YPUyy + XPUy + Etpxxutx + 3tpuy,

3 9
T{ = 3up, - 3yuyp, + 2 XU Dy + Etu, D,
9 3 9
- Epux + 3ypuxy - Expuxx - Etputx;

T = 2puy — 2up,, — 2zup, — Xup, — 3tucp, + 3tqu,
+ 2ZPUy; + XPlyy + 6tpULy — 3tqVy + 6IPLUVy + 9tPUy,
+ 6tpullyy — 3tlyy Py, + 6PVUy — 3tpUy,

Ty = 2p,u? + 3p,u + 22U, p,u — 4puyli — 2zpuy,u
+ 4Vp U+ Xp UM + XPUgll — Py U+ 3t UL — 3tpUylU
+ qv - 6pu; + 3zp,u, + 2zqv, — 3zpu,, + Xqu,

3
= 2zpuzuy + 4zvu, p, — 8pvuy + Expzux = 4zpv,uy

3
+XpUylly + 2XVP, Uy + ExpuxZ = 4ZpVly, + Py + 22D, Uyy

1 1

+ UyPy, + ZUy P, + Exuxy Pex = ZUz Py Exux Py
9

= 22P,Uyyy = XPUxxy — Sllyy D, + Etpzu[ - 3tpuyu,

3 9
+ 6tvp, u; — Etpxxyut + 3tqv; — 6tpu,v; - Etputz

3
= 2xpuyy + Etpxxufy + 3ty Py, — 6tPVULy,

DE GRUYTER

T} = 2p u? - 2qu + 2ZU, p,u — 5Pl + XP, Uyl
= 2Zpuy,U — XpUy U = P, U — 2p,u + 3tp Ul — 3tpUnl

3
- xpu? - 2zqu, - xquy — 2zpu,u, + Eux P

1
EX Ux Dyxx

1
+ ZU Py + Expxxuxx T ZUzDyyx ~
3
- 2ZU,p, — XUy p, + 5pu; — 3tqu; — 3tpuyut; — Etpxxxut

3
= 3tpUs + 2zpuy; + XpUy + Etpxxutx + 3tpuy,

9 3
T{ = 2zquy, + 4zpuu, + 3up, + 3zu,p, - Epux + EXqux

= 22qvy + 4zpUyVy + 3ZpUy, + 4ZPUllyy — 2ZUyy P,
3 9 9
- Expuxx + 4zpviy, + Etl’x“t - 4zpuy, - Etputx;

T§ = 22Uy p — 22p, Uy,

T = 4zpuv + 3ucp + 2zp,uu

1
+ 2ZUyUy P + 3ZUy, P + 22Uy, pU — Ezuxxxy p

1
= 4zuyp - 2zuyq + 3q + EZp""qu
3
+ ZU Py - Ezux Py ~ ZPy oy
1
- Ezpyuxxx + 3zp,uy,
1
Ty = 2zp wut - 2zulp — 2zu pu + 2 Plboooc P

1
+ 2ZU P + 2ZUxq — 2ZD,Uy Eszxxux

1
+ Eszxuxx - Eszuxxx,

T5 = 3zp Uy — 3ZUx p;
Té = tuxyp - tpyuX - py:
T¢ = 2tpu,v + pyu - uyp + tpyuxu + tlly p

3 1
+ Etuxzp + tlyy pu - Ztuxxxyp = 2tuyp

1 1
+2pv - tuyq + thxx“xy + Etuxx Dy

1 1
4tuxp)gy - Etpxuxxy - thyuxxx

3 3 3
+ Etpzux - prxy + Epz,
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Ty = pu - tufp + tp Ul — tuy pu

1 1
+ Ztuxxxxp tluxp + g+ q - thxxxux
1 1 1
- p U + thxxuxx - thxuxxx D prxx’
7 3 3 3 .
Tg = Etpxux - Etuxxp + pr,

T} = yD = Dyl

3
T = 2p, v + ueltyp + pyu + Euxzp + Uy pu

1 1
- Zuxxxyp — 2Uyp ~Uyq t+ prxuky

1 3
+ Euxxpxy - Zuxpxxy - pruxxy - Zpyuxxx + Epzux,

Y _ 2 1
T7 = plxlt — UyD — U pU + Zuxxxxp
1
T U D + Uq — Pl — prxxux
+ prxuxx - pruxxx,

3 3
;= prux - Euxxp;

Tg = -2zuyp,, + 3p, + 2zpuyy,
T3 = 3zp,uy - 2zpuj + 2zup U, + 42vp, Uy
3 9
- Eszxyuy - Epz - 3up, - 2zqvy
- 3zpuy, - 2zpully, — 6Vp, — 4zpvyliy

1
= 4zpvity + Zp,lhy — ZD Uy + 22Uy P

1
+ prxy - Ezpyuxxy + Ezpuxwyy

T = 2zv,q - 3q - 3up, + 2zuuy,p, + 3puy + 2zpuyy

1
+ 4zpuy vy + 6zply, + 2zputlyy, + Ezuxy Pix
1 1 3
+ AZpVllyy — Epruxxy - Ezuypxxx + prxx
3
- Ezpuxxxy = 27Uy p, + 3p, — 2ZpuUyy,

9
T§ = 3zuyp, - pr - 3zpuyy;

T§ = uyyp = Py,
Ty = 2p, UV = 2UVyp = 2y, pV - u§p + iyl
3 3 3
T WP T Wy PUT S lhogyP = VG T Uy Py
1 1
T 5Pyl T 5 Pilbyy F Py T Py * 5Py
T = 2u W p + 2Uyy pv + Pyl + Uy p + Uy, P

3
+ Uy pU = 7 ooy P ~ Uy P + W — Py

1 1 1
- pruxw + prxuxy - prxxu)”

Application of conserved quantities === 15

Ty = ;pxuy B %uwp;
Tfo = 2yuyp, - 4up, - 22U, p, ~ 2Xt P,
- 6tucp, + 2puy + 6tquy, + 2zpuy,
- 2ypuy, + 12tpuyu, — 6tquy + 12tpuyvy
+ 18tpuy, + 2Xpuyy + 12tpuuy,
= 6ty p,, + 12tpvily — 6tpuyy,

Tio = 4p,u® + 6p,u + 2zu, p,u — 6puyu

= 2yp,uyu — 2zpuy,u + 2ypuy,u + 8vp,u

+ 2Xpy U + 2XpUyU = 2P, U + 6T, Ul

~ 6tpuyu + 2ypu; — 9pu, + 3zp,u,

+ 22qv, = 3zpu,, + 2xquy — 3yp, U,

- 2zpuzuy — 2yqvy + 3ypuy, + 4zvu,p,

= dyvuy p, - 12pvuy + 3xp, Uy — 4zpv,ly

+ 2Xpuyliy + 4ypuylly + XVp, Uy + 3XPly,

= 4zpVily, + 4YpVlly + 2P, Uy + 22D, Uy — 2D, Uy
* Uy Dy + ZUyz Dy ~ YUy Dy + XUy Py

= ZUzPyyy + YUy Py ~ XUy Py, ~ 22D, Uy + 2VP, Uy
= 2Xp Uxyy — Bty p; + 9tp,uU; — 6tpuyU;

+ 6tqv + 12tvp, u; - 3tpxxyu[ - 12tpu, v,

= 9tpuy, = 4xpuyy + 3tp,,Upy + 6ty Py, — 12tpViyy,

T = 4p,u? - 4qu + 2zu,pu — 2yu,p,u - 10puu
+ 2XP, Ul = 2ZPU U = 2yPUyyUl = 2XPUxy UL
= 2D, U — ApU + Bt Ut — 6tpunu — 2xpu’
— 22qu, — 2Xquy — 2Zpuzly — 2ypuyliy
+ 2yqvy — 4ypuyvy — 6yply, + 3uyp,,
+ ZUg Dyy t YUy Dy ~ 4YPVlx + XDy Ux
= ZUz Py t YUy Dy ~ XU Dyyy ~ Zzulpt
+ 2yuUy p, = 2xuy p, + 10pu, — 6tqu, — 6tpuy i,
= 3tp,,Ue — 6tpUe + 2zpuUy, + 2ypuy,
+ 2XpUyy + 3tp,, Uy + 6tPUy,

Tj = 2zquy, - 3yp,u, + 4zpuuy, + 6up, + 3zu,p,
= 9puy + 3xp,uy — 2zqVy + 4zpuyvy + 3zply,
+ 3yplly + 4zpully, — 2ZUyy P, — 3XPlyy + 4ZPVlyy
+ 9tp, Uy — 4zpuyy — Pl

Th = quy + 2pulty = 22P e = QU + 2PUVy
+ 3Py, + 2zpUyy + 2pUlly — U

+ 2PVl — Uy Dyx — DUy,
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Tj = 2zuyq + vq — 3q + 3puy + 3zp,uy
+ 2ZUp, Uy + 2ZpUylly, + 4ZVD, Uy

+ 3ZpUy; + 2ZpUllyy + ZUyy Py, — ZUx Py
3
- 2pruxxy — Uyl t+ Epzut + upyut
1
— puyliy + 2vp,u; — prxyut = 2puyv;
3 1
- Eputz - 4zpuy — puuy + prx”ly
+ Uy Py — ZPVUg,

Tyl = —2zpu? - 2zquy + 2zup Uy — 2P, Uy
= 2ZpUy — PUlly — 2ZPUlly + ZD, Uxx

1
~ que T up U - prxxul ~ Dt
1
+ 2Zpusy — pully, + prxutx + DUy,
; 3 3
Tf = 3zp, Uy — 3zpuyy + prut - Eputx;
Tltz = tuXpy - uZpy - zzuxpy + py
+ ply, = tPlyy, + 2Zplyy,

3
Ty = vq ~ twyq + 221G — 3 ~ 5P,

3 3
+ Epzul - Epuzz ~upy, + uuzp, + puy
3
— puuy, + 2vi, p, + 3ply — El‘qux
+ 3zp, Uy — 2pvlly - tup,uy + Zzupyux
= 2vp, — tpuyly + 2zpuyly, — 2tvp, Uy

3
+ 4zvp Uy - Etpuxz + 3zpuy, — 2pviy,

1
— tpUllyy + 2ZpUlly, + P, Uy + 2 Wzl

1
- _tqupxx + ZuX)’pxx -

2 Euszxy + Etuxpxxy

1
- Zuxpxxy + prxy - pquXy + tpquXy

= 22p,Uyyy + 2tpUyy — 4ZpUy — PU,Uy,
Ty =t 2 _ 2 _ -
T2 = tPUy — 2Zpuy + tquy — 2Zquy — pUzly
1
- tupxux + Zzupxux + Etpxxxux T ZDgUx t tptux
1
- zzp[ux +q - qu; - up, t uuzp, — pull; + Euxszx
1 1
+ tpullyy — 2zpUllyy — Etpxxuxx + ZD Uiy — Eul P
1
+ prxx = Uz, + Py + PUsz — tPU + 2ZDUyy,
. 3 3 3
T = quy + 2puuy, + Eusz - pr - Etpxux + 3zp, Uy

3 3
= qVx + 2puyvy + Epuxz + 2PUlyy — Uy P, + Etpuxx

= 3Zplyy + 2PVlly — 2PUyy;

DE GRUYTER

Tfs = tpuy — 22Uy p,, = tiy P, + 2p,, + 22Plyy,
T35 = 2zup,u, — 22pu; — puy, + tquy + 3zp,u, + 4zvp,u,

+ Uty — 2z Uy — 3p, — 2up, + 22qvy — 3zZpUy,
3
= 2zpuuy, - 4vp, + Etpzux + tup, iy
3
= 4zpvyuy + 2tvp, Uy + Etpuxz + tpully, — 4Zpvlly,
1 1
+ Zszyux)’ t ZUpy Py Etuxypxx - Etuxpxxy
* Doy ~ 22Dyl ~ 1Pl — 2UPUy,
T = 3puy — tpu? — tquy + 2zpuylly + tup Uy + 4zpvely
1
- Etpxxxux = tpUyx + 2q - 2up, + 2zuuy,p,
= 2zqvy + 62ply, + 2ZpUlly, — Zlyy, P, — tPULy
1
+ 4zpvuy, + Etpxxuxx = ZUyD + Do — 22Uy D, + 2D,

— 2ZPUgy + tPUyy,

3 3
T = 3zuyp, + Etux Dy — 3p, — 3zpuyy - Etpuxx;

Tiy = —Uzp, + 22UyD, = 22Uy P, = 3D, + DUy, — 2Zpllyy
+ 2ZpUyy,
% = 2zpug + 22quy, — 3zp,Uy — puglly - 2zup,u,

9
- 4zvp,uy + 2zpudly + zp,, Uy — 3q + Epl

+ %quz +tqv; — %puzz +3up, + uu,p, - 2zqv,
+ 3zpuy, — pully, + 2zpul,, + 6vp, + 2vu,p,

+ 3puy + 3zp, Uy — 2pvyly + Zzupyux + 4zpvyliy

+ 4zvp Uy + 3ZpUy, — 2PVl + 2ZPUlyy + 4ZPVUy,

1
* Dyglby ~ Zpryqu + Euyszx T ZUyy Dy + ZUyy Dy

zuszxy T ZUxDyyy prw ~ Py

+ 22p Uy — 22D, Uy — 4ZPUyy,

Tyy = 2zup, Uy, — 2zpu? - 3puy - 2zquy — pully
= 2zpuyly — 4zpvyll = Zp,, Uy = 2ZpUy — 3G — qU,
+ 3up, + uu,p, — 2zuuy,p, + 2zqvy - 6zpuy,

1
= DUlly, = 2ZPUllyy + Euxz P + ZUxy Py — 2ZPUly

1 3
— 4zpvlly + ZPyyxUnx ~ Euszxx + ZUyPyyy ~ prxx
= Upp, + 2ZUyp, = 3P, + PUy; + 2ZPUyy + 2ZPUyy,
3 9
T = quy — 3zp Uy + 2plily, + Eusz + pr + 3zp, Uy

3
= qVx + 2puyvy + Epuxz + 3ZPUyy + 2PULyy — Uy P,y

= 3Zplyy + 2pVllyy — 2PUyy;
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Tfs = quy — Uzp, = 22Uy P, = UrP, + Ply,
+ 2pUylly = qVx + 2pUyVy + 3ply; + 2ZpUy,

+ 2PUllyy = Uy Py, + 2PVUxy = Plyy,

3
Tis = v,q + 2zuyq + veq — 3q + Epzuz

3
- Epu” + Uz P, ~ PUlly — pUlly; + 2vu,p, + 3puy
+ 3zp,uy — 2pvilly + Zzupyux + 2ZpuyUy + 4ZVp, Uy

1
+ 3zpuy, = 2pviy, + 2ZPUllyy + P, Uy + Euyz P
1
+ ZUgy Py — Euz Py ~ ZUxDyyy ~ Prlboy ~ 22D Uy
3

~ UuyDy + Epzut +upyue — puyly + 2vp,u;

1 3
- prxyut = 2puyv; - Eputz = 4zpuyy — pullyy

1
+ prxuly t Uy Py ~ 2pviyy,

T = U, p, - 2zpu’ - 22quy — pu,ly
+ 2ZuUp, Uy — ZP,,, Uy = 2ZPUy — DUy — qU; — PUlly,

1 1
t WPy ~ 2zpuiyy + ZDyxUxx — Eulpxxx - Uzpp ~ que

2
1
+ up,u; - Epmut = DUt + DUy + 2ZPUg — PUlUsy
1
+ 5 Puclex + Pl
2 3
15 = quy + 2puyuy, + Eusz +32p Uy — qVx + 2pUyVy
3
+ Epuxz + zpuuxy T Uy Dy ~ 3zplyy + 2ZpVlixy
3 3 .
Y2 2puyy — o Pue
Tfs = quy - DUy + 2puylly + pllyy = 2Zp Uy + 3Ply,
+ 22pUyy + 2pUlly = Uy Py, + 2PVl = PyUs = PUyy,
3
16 = 2zquy, - puj + Epzuy + upyuy + 2vp,uy
1 3
+ 2zpuuy, - prxyuy = pugly — 3q + qvy - Epuyz
= pullyy + 3puy + 3zp Uy + 2ZUp Uiy = ZpVyly + 4ZVP, Uy
1
+ 3zpuy, + 2Zpully, — 2PVl + Pyl + Euyy P
+ Zly Dy ~ ZUx Dyyy ~ Dylboy — 2pruxxy — Wy Py

3 1

+ SPUCE U U+ VP = Pyl + Ve~ 2PtV
3 1

~ 5Pl ~ 42plly — pully + Py

+ u)O/p[x - vautX)

Application of conserved quantities == 17

Tis = plylly — 2ZpU’ — 2zqUy + 2ZUp, Uy + 2PVelly = ZP, Uy
= 2ZP Uy = PUilly + Ully P, — qVx + 3PUy, + PUlly,

1
- Euxypxx = 2ZpUllyy + 2PVl + ZPyxUxx ~

1

Euypxxx
1

- uypt - qut + upxut - pr)(xul - p[ut

1
= DUy + 2ZpUy — pUlyy + prxutx + DUy,

;3 3 3 3
T16 - Eu)’px + ?’Zuxpx + Eutpx - Epu)O’ - 3ZpuXX - Eputm
Ti; = buyy — pyly — Zzpyux + 2Zplyy,
3
T = 2zqu, - pu; + JPAly * U,y + 20p,ity + 22pUlt
1 3
- prxyuy - 3q+qvy - Epuyz ~ pulyy, + 3puy + 3zp,uy

+ 2Zup Uy — 2pvylly + 4Zvp, Uy + 3zpuy, + 2zputlyy

1
= 2pviy, + Dylby * Euyypxx t ZUy Pyy ~ ZUx Dyyy

= Dylboy 27D, Uyyy — 4ZPUyy,

Ty = puyll = 2zpul = 2zquy + 2Zup, Uy + 2pVlly = ZP,, Uy
1
— 2zp Uy + UUy P, — qVx + 3Ply, + PUllyy — Euxy Pix
1
— 2ZpUllyy + 2PVUyy + ZD, Uy — Euy Do — UpD; — DUy
+ 2ZpUyy,
;3 3
5= Euyl’x + 3zUy p, - Epuxy = 3ZpUyy;
Tfs = quy = pyUty + 2pUlly + Pllyy = qVy + 2PUyVy
+ 3plly, + 2pUlly, = Uy P,y + 2PVl — pyU¢ = PUyy,
X 2 3 1
18~ ~PpUy + o Py +up,uy + 2vp,uy - 9 Poglly
3
= PUgly + qvy — Epuyz = pullyy — 2pVyly — 2pVlly,

1 3
* Pylhy * Sy Pax  Pylbay ~ Uy Pr *+ 5Dyl + UDyUe

1 3 1
= SPoglle + qVe = 2PV = S PUy; = PUllyy + Pty

+ Uy Py + 2VP, Ut — 2PVUgy,
Tl)é = Ulypy + UU P, + PUylly = qVx + 2PUxVx + 3Pl + PUlly
1 1
- Euprx + 2PVl — Euypxxx T UyPy T QU — PUU
1 1
- prxxul - DUt — PUpyy — pUlly + prxulx + puy,

S DU S N N
18 zypx thx 2Puxy zputx:
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T = quy = pyUy + 2pUy + pUyy + 2ZP Uy — qVy
+ 2pUyVy + 3Ply, — 2ZPUyy + 2PULLy = Uyy Py,
+ 2PVl = pyut ~ DUy,

3
Tig = =puy = 22quy + - p,Uy + UP,lly + 20P,lty
1 3
- 2zpuuy — prxyuy = pUelly + qvy = Epuyz

~ pullyy = 3pUy — 3Zp, Uy — 2ZUP, Uy ~ 2PVyly

= 4zvp, Uy — 3ZpUy; — 2ZpUllyy — 2PVl + Pyl
1
+ Eu)’)’pxx ~ Zly Dy + Zuxpxxy - Pyuxxy + Zszuxxy
3 1
- uXXypt + Epzuf + upyut + zvpxut + 3q - prxyut
3
+ Qs — 2pUV; — Eputz + 4ZpUy — pully
1
+ prx“ty + uxyptx - vautxr
Ty = 2zpu? + 22quy + Puylly = 2ZUP, Uy + 2PVl + ZP, Uy
+ 2Zp,Uy — PUlly + Ully P, — qVx + 3PUy, + PUlly,

1
- Euxy Pux + 2ZpUllyy + 2DVUyy — ZP,, Uy

1 1
- Euypxxx ~ Uypy — qUe + UP U — prxxul ~ DUy — PUy
1
= 2ZPUpc ~ Pl + 3 Pylhex + Pl

3 3 3 3
Tiy = S WPy~ 3ZUP + SUPy ~ 5Py + 3ZPUnc — Pl

3.2.1 Physical meaning of some of the obtained
conservation laws in physical sciences and
engineering

Local conservation laws for the higher dimensional inte-
grodifferential soliton Eq. (1.6) observe a divergence cri-
terion on the whole space ¢ solution of Eq. (1.6)

(D,T? + DyTY + D,T* + D,TY)]; = 0, (3.15)

where (D,, Dy, Dy, D) are total differential operators with
conserved density T as well as T%, T”, T*, which are spatial
fluxes are functions depending on (z, y, x, t). In physical
sense, we observe that every conservation law generates a
related conserved integral [67,68]

Plu,v] = ICtdx, (3.16)
T

as can be obtained in this case, where I' denotes the solu-

tion domain u(t, x, y, z). It has been established that con-

servation laws with discontinuous coefficients, such as

DE GRUYTER

fluxes, densities as well as source terms, emerge in quite
a large number of problems in the fields of physics and
engineering. In this research, the resultant conservation
laws have been observed to have relevance in physical
sciences. Physically speaking, part of the obtained symme-
tries that delineate conserved quantities, viz, conservation
of energy, momentum, and so on. More precisely, it is
observed that time translation symmetries purvey energy,
whereas in the case of space translation alongside boost
symmetries, momenta are attained.

2
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Figure 1: In an experiment recently conducted at Glasgow University,
Heisenberg’s uncertainty principle is manifested in which a light beam
that initially possesses no orbital angular momentum was observed. We
define A@ as the range of azimuthal angular positions appearing for a
photon in a cross-sectional part of the beam through a sector aperture.
Moreover, at the upstream of the said aperture, the beam is observed to
be in an ¢ = 0 eigen state of orbital angular momentum (i.e., upper
panel). Nonetheless, the uncertainty principle states that the limitation in
¢ causes a spread in orbital angular momentum represented as L = ¢h
for every photon. Additionally, for strait apertures, the connection is
portrayed as AQAL > h/2 [74].
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Thomson Model

Application of conserved quantities == 19

Rutherford Model
AN
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Figure 2: In the models of atom introduced by Rutherford and Thomson. The later postulated a model that predicted that virtually at small angles, all
of the incident alpha particles would be dispersed. Geiger and Rutherford discovered that almost none of the alpha particles were dispersed.
However, via a very large angle, a few were found to deflect. Thus, the outcome of the Thomson model was in disagreement with Rutherford’s
experiments. Rutherford engaged conservation of energy alongside momentum in the development of a new, and much better model of the atom,

and that is the nuclear model [75].

Theorem 3.4. The set of 19 non-trivial local conservation
laws generated by HD-SOLeqn (1.6) via Ibragimov’s theorem
comprise components (T, Tj‘, T]-y, sz, j=12,..19), with
density as the first component and fluxes constituting the
other components.

Consequently, in the case of HD-SOLeqn (1.6), for
example, conserved vectors (T}, T{\, T, T?) yield conserva-
tion of energy obtained as

Pilu, v] = I(Zuxvxp + 2Uyy pV
r
+ 2Uylly P + Uy P + 2Uyy PU — Uy P

+ uyq - qu - pyut - pxquy)dX;

(3.17)

for solution u(t, x, y, z), corresponding to time translation
symmetry. Besides, conserved vectors (T, Ty, Ty, T?),
accordingly give the conserved quantity of momentum
explicated as

Polu, v] = I(uyzp ~ pyl)ax, (3.18)
r

which relates to the corresponding space translation sym-
metry. In addition, one obtains conserved quantity of dila-
tion energy as

Pslu, v]= I(Zyuy Py — 2up, = xup, = 3tu;p,
T

+ 3tquy — 2ypuy, + 6tpuyly — 3tqvy
+ BIplVy + 9tPUy, + XPUy, + 6tpULL,

(319)

= 3tuy p,, + 6tpvily — 3tpuy)dx,

which correspond to (T%, T}, T7, T?), which furnishes
conservation laws associated with scaling symmetry.
Moreover, another conserved quantity of dilation energy
is obtainable as

Pulu, v] = I(Zpuy = 2up, - 2zu,p,
T
- Xuyp, — 3tup, + 3tqu, + 2zpu,,
+ XPlyy + 6tpUyll, — 3tquy + 6IpLVy
+ 9tpuy, + 6tputly, — 3ty Py,
+ 6tpvily — 3tpuy)dx,
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Figure 3: We have a uni-dimensional inextensible collision in play between two objects. Momentum is conserved, whereas kinetic energy is found not
to be conserved. In (a), two objects that are initially having equal mass, move directly toward each other at a uniform speed. In the case of (b), the
objects cohere, making way for a perfectly inductile collision. Therefore, the consolidated objects stop and that is the instance revealed in this figure.

However, this is untrue for all unyielding collisions [76].

corresponding to (T}, T}, T7, T?). The rest could also be
studied in the same way. For more interesting insights,
see the study of Adeyemo and Khalique [68]. In particle
physics, various other conservation laws apply to suba-
tomic particles’ properties which are invariant in the
course of interactions. In addition, an essential function
of conserved vectors is the fact that they occasion the pos-
sibility of making prediction for the macroscopic character
of a system without taking cognizance of the microscopic
details in the course of a chemical reaction or physical
process [69].

3.3 Application of conserved quantities in
physical sciences and engineering

Frankly speaking, conservation law, also referred to as the
law of conservation, in physics, depicts a principle that

states that a certain physical property (i.e., a measurable
quantity) remains unchanged with time within an isolated
physical system. Thus, in physical sciences and engineering
mathematics, conservation laws state that a particular
measurable property associated with an isolated physical
system remains constant (that is does not change) as the
system evolves over time [70].

Conservation laws [71-73] alternatively, are an area of
applicable engrossment in engineering and physics, with
the inclusion of theoretical vis-a-vis quantum-mechanics.
This part of our research scrutinizes the conserved quan-
tities of model HD-SOLeqn (1.6) with an observable trait that
showcases results unveiling the availability of conservation of
momentum alongside that of energy. Physical quantities resi-
dent in isolated systems, namely, mass, charge, angular
momentum, energy, along with linear momentum are con-
served. Meanwhile, it is unveiled that conserved quantities
invoke an advantageous feature of DE ntegrability check.
Further to that, conserved quantities significantly engender
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Figure 4: A graphical depiction of experimental relationship between force and acceleration - Newton’s law [77].
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Figure 5: A diagrammatic representation of relationship between force, weight, and mass [78].

the establishment of existence-uniqueness characteristic for lin-
earization mappings and solutions. Besides, they bring to play
stability analysis and to ascertain global behavior of solutions.
In addition, conserved quantities play a leading role in
the evolution of numerical techniques. They also furnish a
crucial starting point in securing non-locally related sys-
tems and potential variables. In particular, a conserved
quantity is fundamental in the investigation of a given DE,
which implies that it holds for any posed data whether initial
conditions and/or boundary conditions. Furthermore, the
conservation law structure is such that it is not depending
on co-ordinates since it involves a contact transformation
mapping one to the other. Momentum is simply referred to
as the resistance of a given object with regards to an altera-
tion in the object’s velocity. Engineers employ this concept to
make lives safer for people through the design of products in
lengthening the time over which a deceleration happens.

The
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Moreover, momentum is crucial in Physics due to the
fact that it recounts the connection that is existing between
mass, speed, as well as direction. Besides, it also delineates
the force required to put an object to a halt and to further
keep them in motion. It is to be noted that an apparently
small object can deploy a large amount of force, provided it
possesses sufficient momentum. Figures 1 and 2 present
some practical applications of momentum.

Consequently, understanding momentum makes it pos-
sible for engineers to have an understanding of various kinds
of collisions (Figure 3). As a result, having the knowledge can
assist in ensuring that cars are much safer, predict the results
observed when two objects bang into each other, or investi-
gate the proof of a traffic accident. One typical example is the
utilization of air bags in automobiles. Using air bags in auto-
mobiles makes it possible for the effect of the force exerted on
an object that is involved in a collision to be minimized. Air

Muscle contraction

é@

\g/"

@

Figure 6: A diagrammatic representation revealing the Phosphagen system [80].
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bags attain this by lengthening the required time in stopping
the momentum of the driver as well as passenger. It is to be
acknowledged that whether it is achieved or otherwise, situa-
tions involving momentum and impulse can be experienced
everywhere.

Mass can be defined as a measure of the quantum of
material present in an object, being directly associated
with the type and number of atoms that is found in the
object. Mass remains constant with regards to the position
of the involved body, its movement or alteration of its
shape, except material is removed or added.

In engineering science, mass is used to signal the size
of something. Mass which is measured in grams or Kkilo-
grams likewise referred to as drive is a measure of anxiety,
which makes it important in human lives.

Moreover, weight and mass are essential in engi-
neering due to the fact that the greater the mass of any
given object is, the greater the force required in accom-
plishing the same change in motion needed. Thus, for a
given object, a larger force initiates a larger change in
motion. Figure 4 shows a set-up relaying the relationship
between force and acceleration. Besides, Figure 5 portrays
some connections among force, weight, and mass.

Besides, mass is crucial in science as a result of two
major factors affecting the movement of things in space:
gravity and inertia. The more mass, an object possesses,
the more experience it has regarding both properties. That
is the reason heavy things (things with large mass) are diffi-
cult to move. Next, energy quantity implies energy quantum
found in a certain volume of natural gas expressed in kilo-
watt hour (kWh).

People walk, ride bicycles, move cars along roads as
well as boats through water, cook food on stoves, make ice
in freezers, light our homes together with offices, manu-
facture products, and also send astronauts into space using
energy. There are various different forms of energy, inclu-
sive of heat, mechanical, electrical, and so on.

Therefore, energy systems are utilized on daily basis
by humans to make life easy. Some of these ways include
washing clothes, watching television, taking a shower,
heating and lighting the home, working from home on
desktop computers or laptop, running appliances, cooking,
and so on. Residential uses of energy on a global scale
account for almost 40% of total energy utilized.

More applications of energy is found in the phos-
phagen system (Figure 6) that is active during all-out exer-
cise lasting for about 5-10 s including a 100-m dash, diving,
lifting a heavy weight, jumping, dashing up a flight of
stairs, or any other scheme that engages a maximal, short
burst of power [79].

DE GRUYTER

4 Conclusion

In this article, we clearly purveyed a conspectus investiga-
tion carried out on the HD-SOLeqn (1.6). We engage the
universal technique, namely, Lie group analysis to which
when engaged to solve a DE, it occasions the methodical
procedures of generating Lie point symmetries of such
equation. In the study, a demonstration of the robust use-
fulness of the aforementioned technique assisted us in
performing a detailed and comprehensive construction of
a one-dimensional optimal system of the Lie subalgebras for
the nine-dimensional Lie algebra obtained for the equation,
which affords us the chance to obtain various more general
and robust combinations of the symmetries. Moreover, owing
to the relevance of conserved quantities in the study of DEs,
we attained diverse associated conservation laws to the HD-
SOLeqn using the Lie subalgebras, where various quantities
such as conservation of energy are derived. In consequence,
this study clearly highlighted the importance of soliton solutions
of higher-dimensional NLNPDEs in physics and engineering
mathematics and the robust application of the Lie group theory
of DEs in proffering solutions to them. Therefore, this research
can be beneficial in various fields and in particular in the
research area of physical sciences and engineering.
Particularly, in an area where further analysis of the
result could be of immense usefulness.
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