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Abstract: This work deals with the conversion of flow from
confined to unconfined aquifers, a real-world problem that
has attracted the attention of several authors. We have intro-
duced a piecewise modified mathematical model where the
first part deals with the flow within a confined system, and
the second part deals with the flow within an unconfined
system. In the unconfined part, we added the randomness
to capture stochastic behaviours that could occur due to the
geological formation. Moreover, we used a numerical method
to solve the stochastic differential equations. The obtained
model was evaluated numerically using some numerical
scheme, and the stability analysis was performed using the
von Neumann approach and the numerical simulations were
presented.
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models, Lagrange polynomial method, confined aquifer,
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1 Introduction

Real-world problems are generally modelled using two
types of approaches: deterministic and stochastic models.
Deterministic models have state variables that are distinc-
tively specified by model parameters and sets of these vari-
ables’ prior states [1]. For this, deterministic models behave
the same for both a given set of parameters and initial
conditions; however, their solution is different for a

different set of initial conditions and parameter values
[2,3]. However, deterministic models can be uncertain,
implying that even the smallest changes in the parameters
regulating the physical problem or the initial condition can
have a significant impact on the solution [2,4,5]. The models
allow us to precisely compute events that are yet to come
without including randomness [6]. Hence, if a problem is
deterministic, one has all the information needed to accu-
rately predict the results with certainty [7]. It is presumed
that all the given input parameters are known with cer-
tainty in time and space; as a result, a deterministic value
of every parameter can be allocated [8,9]. The models have
been used with great success to depict physical processes
that show power-law, fading memory to power-law, and
are good for capturing memory processes [10–13]. How-
ever, deterministic models are sometimes unstable, and
this implies minor deviations caused by outside influences
on the fundamental parameters governing the physical
problem, which leads to weighty errors in the forecast,
and thus, the intended goal of a numerical model cannot
be reached [1]. It is indeed that these deterministic models
fail to depict real-world problems, which show a kind of
randomness [14,15]. On the other hand, stochastic models
are the other way around. The models have been used in
many physical problems with great success as they were
introduced to deal with randomness [16–18]. Stochastic
models are mathematical models that consist of para-
meters that include in their formulation random variables
or distributions instead of single values [3,19]. Therefore,
groups of probable solutions will result from using the same
parameters and initial conditions, giving the researcher the
task of analysing the underlying uncertainty of the physical
problem being described [20]. Stochastic models have been
used with great success to depict real-world problems that
provide more than one possible outcome, hence making
them useful for future predictions. Like any other model,
stochastic models also have some limitations. Stochastic
models can be more complex to carry out and may demand
more thorough computational and statistical capacity than
some simple deterministic models [18,21]. Therefore, making
the results more difficult to describe than simple determi-
nistic models [14].
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For this study, stochastic models are focused on [22].
One of the main weaknesses of deterministic models is
that they do not give clear reasoning or explanation for
uncertainty [23]. This limitation can cause problems due to
nature being inherently heterogeneous and the system’s just
being computed at distinct (or sometimes few) places [1,24].
Early theories assumed that all media is homogeneous, but
it was later found that in the real world, the assumption
does not apply to natural formations. For instance, in the
field of hydrogeology, these assumptions are false due to the
heterogeneous nature of hydrogeological parameters that
occur in aquifers [8,25]. To capture random behaviour, a
stochastic approach is introduced. This will help us quantify
and calculate the uncertainty and understand complex flow
due to heterogeneity that exists in underground systems.
The approach will make it easier to deal with hydrogeo-
logical parameters in the aquifer system and the predic-
tion of uncertainties to increase confidence in making
predictions in our generated mathematical models.

2 Equation solutions for confined
and unconfined aquifers

The model under investigation describes the conversion of
flow from confined to unconfined aquifers. Confined ground-
water flow is considered the principal route for transporting
water from recharge regions to wells and springs [26]. Theis
[27] derived the basic equation of unsteady flow toward the
well in 1935 using a comparison between groundwater flow
and heat conduction. Therefore, flow in confined aquifers is
captured by the following equation:
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where h is the hydraulic head, L; r is the radial distance
from the well, L; S is the storage coefficient; T is the trans-
missivity, L /T2 ; and t is the time since pumping started, T.

Boulton [28] extended the Theis transient confined
theory to include the effect of the water table in uncon-
fined aquifers due to the nonlinearity of unconfined aqui-
fers, the integro-differential partial differential equation is
given by:

[ ( )]∫∂
∂
=
∂
∂
+
∂
∂
−

∂
∂

− −
S

T

h

t

h

r r

h

r
αS

h

τ
α t τ τexp d ,y

t
2

2

0

(2)

where Sy is the specific yield of the unconfined aquifer; α is
the empirical constant, a reciprocal of the delay index,

( )− − −; eT and α t τ1 is the exponential delay index.

The following system of partial differential equations
is used to represent flow in confined and unconfined aqui-
fers in this study, respectively:
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While the above model has been used in several
situations, it is worth noting that it does not consider ran-
domness that could occur due to the complexity of the
geological formations. Therefore, it cannot replicate
random behaviours that could arise due to the complex-
ities of these media. Hence, a model that considers these
factors is needed and an attempt will be made in Section 3.

3 Conceptual model

Several complexities exist in nature that cannot be
avoided; therefore, various mathematical concepts have
been developed to understand and capture the complex-
ities of the nature that we live in. To increase confidence
in prediction, the idea of modelling in time and space was
used, and advanced software was developed to capture
the problems with high complexities [23]. Two common
methods have been used to depict nature and its complex-
ities, which are non-local operators and the stochastic
approach [29–32]. Both methods are different and are
used for different physical problems in modelling.
Recently, there have been advancements in analytical
and numerical solutions for non-local operators [33,34].
The concept of the stochastic approach depicts the hetero-
geneous nature of a closed system for a Markovian pro-
cess [35], whereas the concept of non-local operators
depicts non-Markovian processes, particularly when no
local operators have any kind of index law properties
[36]. The two concepts are different; however, recently
Atangana and Bonyah [36] have combined the two to sug-
gest a methodology that will be used in the future to
model complex physical problems.

Groundwater systems are open and complex systems
that are influenced by factors such as hydrological condi-
tions, geological structure, and topography, to name a
few [37–39]. Therefore, several aquifer system characteris-
tics cannot be monitored directly; hence, they are mea-
sured indirectly by evaluating the input and output
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measurements [40]. Considering the model suggested in
this study, due to the random nature of the aquifer system,
randomness can occur in space or time. In addition to this,
the flow from confined to unconfined aquifers becomes a
stochastic change over time. The flow in the aquifer during
the process may take long periods, but the inherent uncer-
tainty in time cannot be removed. Therefore, an accurate
time series of the process cannot be acquired. Even though
a hydrological parameter such as conductivity is low in the
aquitard, it is considered uncertain in space. This is due to
the difficulty in measuring hydrogeological parameters at
every point of a model. Hence, the stochastic approach is
introduced to depict the random setting of nature in a
larger time and space. This will help develop a predictive
model and get reliable results for the conversion of flow.
Several researchers over the years have used mathema-
tical models that have been proposed in the past to model
the conversion of flow [41–46]. The models, which used
differential and integral operators based on the concept of
rate of change, were developed to capture the conversion
based on one type of aquitard setting. Although various
fields have successfully used these operators, researchers
found that they could only be used to express classical
mechanical problems with no memory [47]. Hence, in this
study, a stochastic approach is introduced to capture the
complex nature and uncertainties of the aquifer systems,
in particular randomness that may occur. This approach
will help in giving a better representation of the conversion
of flow that occurs in the real world.

The model under investigation is in comparison with
the existing model, the Moench and Prickett model [46]
(Figure 1), with similar assumptions. The conceptual model
consists of a confined aquifer with a horizontal initial
piezometric head, h. A pumping well fully penetrates the
aquifer and discharges at a constant rate, Q. When the
groundwater level falls below the upper border of the con-
fined aquifer, the piezometric surface continues to fall below
the overlaying aquitard, forming an unconfined zone near the
well. With continuous pumping, the hydraulic head in the
pumping well, hx drops below the top of the confined aquifer,
< ≤h b0 x the confined unit’s thickness is given by [ ]L . This

gives rise to an unconfined flow with a radial distance of
< ≤h R0 x , where r [ ]L is the radial distance from the

pumping well and R [ ]L is the radial distance between the
pumping well and the transient conversion contact [48].

The addition of a random element to a deterministic
differential equation results in a change from an ordinary
differential equation (ODE) to a stochastic differential equa-
tion (SDE) [49,50], and SDEs generalize ODEs by introdu-
cing random noise into the dynamics [51]. SDEs were also
employed in geological investigations to derive accounts

of particle size distributions [52] and were later used to
investigate flow in heterogeneous porous media [53].
The stochastic approach proposed by Freeze [54] on the
field of flow in porous media opened the door for sto-
chastic modelling in hydrological studies. In this study,
the randomness will represent the inflow of water due
to recharge or water trap that is being released due to
force induced during abstraction. However, analytical
solutions for these equations are not always available;
thus, researchers rely on numerical approaches to approx-
imate the solution.

Considering the general form of an SDE given by
( ) ( )= +X μ X t σ X Bd d d ,t t t t (4)

where Bt denotes the standard Brownian motion. The
drift term is represented by ( )μ X tdt , this explains the
deterministic portion of the equation, and in the case
where this is the only term, a canonical ODE is acquired
[55]. The diffusion term is denoted by ( )σ X Bdt t , this
explains random movement proportional to a Brownian
motion; in the case of small times, the diffusion term
makes the probability to disperse diffusively with a diffu-
sivity exclusively proportional to σ 2 [55]. Thus, to include
in mathematical formulation the randomness effects that
could occur due to complexities of geological formation,
in particular in the unconfined part, the existing model is
converted to
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where b is the aquifers thickness, L; h is theinitialx head, L;
h2 is the elevation of the piezometric surface in the con-
fined unit, L; h1 is the elevation of the piezometric surface
in the unconfined unit, L; B( )t is th the environmental noise,
L; σ is the fluctuations in the water level, L; Sc is the storage
coefficient for confined zone; Sy is the storage coefficient for
unconfined zone; Qand is the discharge rate.

The above equation represents the transient confined
to the unconfined flow of the conceptual model, respec-
tively. It is assumed that the process within the confined
part obeys the Theis conditions, which can be found in the
study by Kruseman and de Ridder [56]. In this study, we
will not stress finding the exact solution of the confined
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aquifer part since this solution has been already obtained
in the literature as
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Therefore, we will only focus on the derivation of the
numerical scheme of the stochastic part.

4 Numerical scheme for a general
stochastic partial differential
equation

Partial differential equations replicate processes as a function
of space and time. These types of equations can be classified
into two major classes, as have been recorded in the litera-
ture, deterministic and stochastics, which have been dis-
cussed earlier in this study. Stochastic equations are used to
capture processes that show some randomness as a function
of time and space. They are used in applications for several
real-world problems; for instance, the conversion of flow
from confined to unconfined aquifers. Several of these
equations are nonlinear [57], thus they cannot be solved

easily using analytical methods. Therefore, researchers
used numerical schemes to provide a numerical solution
for future predictions. In this section, we shall consider a
general nonlinear stochastic equation and present an
application of a numerical scheme based on the Lagrange
interpolation formula [33].
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Assuming, ( )g x , and ( )l t are conditions are initial and
bounded conditions, respectively, the function ( ( ))f x t u x t, , ,

is bounded and twice differentiable with respect to the vari-
able t and n-times differentiable with respect to the variable
x . The function ( )B t may not be differentiable.

We assume that < <t t T0 and < <x x L0 .
[ ]∀ ∈ − = ∆−i M x x x1, ... ,   .i i 1

[ ]∀ ∈ − = ∆−j N t t t1, ... ,   .j j 1

To solve our equation, we first apply, as a routine, the
integral on both sides, and obtain the following equation.
This is achieved due to the fundamental theorem of calculus,
and the general aim is to obtain an integral equation that will
be further discretized using polynomial interpolation.

Figure 1: Schematic illustration of confined to unconfined flow towards a completely penetrated well passing through an overlaying aquitard (sandy
clay) in a confined aquifer [48].
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We consider that ∆ = −+x x xi i1 and ∆ = −+t t tn n1 .
And fixing =x xi.
To discretize, we consider the coupling point ( )+x t,i n 1 ,

then the following expression is obtained:
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As a routine, we consider again the couple points
( )x t,i n , then the following expression is obtained:
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Now to proceed, we subtract as in the standard deriva-
tion of the well-known Adams–Bashforth approach for
ODEs Eq. (9) from Eq. (8) to obtain
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At this point, since the function f is nonlinear, we are
using the Lagrange interpolation approach to approximate
the function within the interval [ ]∈ −τ t t,n n1 for the deter-
ministic part to have
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Thus, replacing the above in Eq. (10) and integrating on
both sides and rearranging gives
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However, the discretization of the stochastic part is
obtained according to the properties of the function ( )B t .
Thus, if this function ( )B t could be differentiable, we have
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Replacing the above in Eq. (12), we obtain
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Important note: To start the above scheme, ( )u x , 0i is
obtained via the Euler forward method.
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where [ ]∈ +c t t,n n n 1 . Thus, the scheme is given by
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Therefore, the numerical solution obtained from this
approach yields
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If ( )B t is differentiable,
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We stress that we need two components to start the
process, the first component is obtained via initial condi-
tion, and the second component can be obtained using the
simple Euler approach, therefore ≥n 1.
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5 Application to convert from
confined to unconfined model

The system of equations that governs the conversion from
confined to unconfined flow has a nonlinearity in the
second equation. While a derivation of the exact solution
could be achieved using some integral transform like
Laplace and Sumudu, however, we foresee some complica-
tions in obtaining the inverse Laplace or Sumudu trans-
form. To avoid such a situation, we employed the
presented numerical scheme above to derive a numerical
solution. However, for simplicity, we let
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According to the suggested approach, we have the fol-
lowing system of iterative formula,
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In Eq. (22), one can see the presence of −n 1; this could
confuse especially those who are not used to multiple steps
approaches. We then stress that the process to be activated
first needs two steps. The first step is of course the initial
condition, and the second step is presented below, which is
obtained from the Euler forward method between 0 and t1 as
presented in Eq. (23).
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if ( )B t is differentiable.

( ( ))

( ( ))

( )( ( ) ( ))

= + ∆

−
∆

+ −

+

− −

+

h h tf r t h r t

t
f r t h r t

σh r c B t B t

3

2
, , ,

2
, , ,

, ,

i
n

i
n

i n i n

i n i n

i n n n

1

2

2 1 1

1

(25)

if ( )B t is not differentiable.
However, noting that

( ( ))
( ) ( )

( ) ( ) ( )

[ ( )]∫

=
⎡

⎣
⎢

−
∆

+
− +
∆

−
∂
∂

− −
⎤

⎦
⎥

+ −

+ −

+

+

f r t h r t
T

S r

h r t h r t

r

h r t h r t h r t

r

αS
h

τ
α t τ τ

, , ,
1 , ,

2

, 2 , ,

exp d ,

i n i n

i

i n i n

i n i n i n

y

t

n

2

1 1

1 1

2

0

1

n 1

(26)

where

[ ( )]
( ) ( )∫ ∑∂

∂
− − =

−
∆=

−
−h

τ
α t τ τ

h r t h r t

t
δexp d

, ,
,

t

n

j

n
i j i j

n j

0
1

2
1

,

n

(27)

[ ( )]

( ) ( )

∫

∑

∂
∂

− −

=
−
∆

+

=

−
−

+

+
h

τ
α t τ τ

h r t h r t

t
δ

exp d

, ,
.

t

n

j

n
i j i j

n j

0

1

1

1
1

1,

n 1

(28)

Thus,
If ( )B t is differentiable while we have

( ) ( )

( ) ( ) ( )

( ) ( )

( )( ( ) ( ))

( ) ( )

( ) ( ) ( )

( ) ( )

∑

∑

= + ∆
⎧
⎨
⎩

−
∆

+
− +
∆

−
−
∆

⎫
⎬
⎭

+ −

− ∆
⎧
⎨
⎩

−
∆

+
− +

∆

− −
⎫
⎬
⎭

+ + −

+ −

=

−
+

+

+ − − −

+ − − − −

=

−

+

h h t
T

S r

h r t h r t

r

h r t h r t h r t

r

αS
h r t h r t

t
δ

σh r t B t B t

t
T

S r

h r t h r t

t

h r t h r t h r t

r

αS h r t h r t δ

3

2

1 , ,

2

, 2 , ,

, ,

,

2

1 , ,

, 2 , ,

, , .

i
n

i
n

i

i n i n

i n i n i n

y

j

n
i j i j

n j

i n n n

i

i n i n

i n i n i n

y

j

n

i j i j n j

1 1 1

1 1

2

1

1
1

,

1

1 1 1 1

1 1 1 1 1

2

1

2

1 ,

(29)
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If ( )B t is not differentiable while we have

( )( ( ) ( ))

∑

∑

= + ∆
⎧
⎨
⎩

−
∆

+
− +
∆

−
−
∆

⎫
⎬
⎭
−
∆ ⎧
⎨
⎩

−
∆

+
− +
∆

−
−
∆

⎫
⎬
⎭

+ −

+ + − + −

=

− +
+
−

−
−

+
− −

−
−

=

− +

+

h h t
T

S r

h h

r

h h h

r

αS
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t
δ

t T

S r

h h

r

h h h

r
αS

h h

t
δ

σh r C B t B t

3

2

1

2

2

2

1

2

2

, .

i
n

i
n

i

i
n

i
n

i
n

i
n

i
n

y

j

n

i

j

i

j

n j

i

i
n

i
n

i
n

i
n

i
n

y

j

n

i

j

i

j

n j

i n n n

1 1 1 1 1

2

1

1 1

,

1

1

1

1

1

1 1

1

1

2

0

2 1

,

2

1

(30)

We present the stability analysis of this method using
the von Neumann method for the first part of the equation.

( ) ( )

( ) ( )

= + − + − +

− − + − +

+
+ − + −

+
−

−
−

+
− −

−
−

ε ε a ε ε a ε ε ε

a ε ε a ε ε ε

2

2 .

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

1
1 1 1 2 1 1

3 1

1

1

1
4 1

1 1

1

1
(31)

We replace
( )=ε δ iƦ xexpj

n
m m ,

( )=+ +ε δ iƦ xexpj
n

m m
1

1 ,

[ ( )]= + ∆+
+

+ε δ iƦ x xexpj
n

m m1

1
1 .

Replacing yields

( ) ( )

( ( ))

( ( ))

( ( ))

( )

( ( ))

( ( ))

( ( ))

( ( ))

( )

( ( ))

=

+ + ∆

− − ∆

+ + ∆

−

+ − ∆

− + ∆

− − ∆

+ + ∆

−

+ − ∆

+

−

−

−

−

−

δ i x δ i x

a δ i x x

a δ i x x

a δ i x x

a δ i x

δ a i x x

a δ i x x

a δ i x x

a δ i x x

a δ i x

δ a i x x

exp Ʀ exp Ʀ

exp Ʀ

exp Ʀ

exp Ʀ

2 exp Ʀ

exp Ʀ

exp Ʀ

exp Ʀ

exp Ʀ

2 exp Ʀ

exp Ʀ .

m m m m

m m

m m

m m

m m

m m

m m

m m

m m

m m

m m

1

1

1

2

2

2

3 1

3 1

4 1

4 1

1 4

(32)

We can proceed with the simplification to have

( ( ( )) ( ))

( ( ) ( ))

{( ( ) ( ))

( ( ) ( ))}

= + ∆ − − ∆

+ ∆ − + − ∆

− ∆ + − ∆

+ ∆ − + − ∆

+

−

δ δ a i x a i x

a i x i x

a δ i x i x

a i x i x

1 exp Ʀ exp Ʀ

exp Ʀ 2 exp Ʀ

exp Ʀ exp Ʀ

exp Ʀ 2 exp Ʀ .

m m m m

m m

m m m

m m

1 1 1

2

3 1

4

(33)

We have that [ ]= ∆ ∈ −θ Ʀ x π π,m , now using,

( ) ( )
=

− −
θ

iθ iθ

i
sin

exp exp

2
,

( ) ( )
=

− −
θ

iθ iθ
cos

exp exp

2
,

( ) ( )⎛
⎝
⎞
⎠ =

− − −θ iθ iθ
sin

2

1 exp exp

2
,2

⎟

⎟

⎜

⎜

=
⎛
⎝
+ − ⎛

⎝
⎞
⎠
⎞
⎠

−
⎛
⎝
− + ⎛

⎝
⎞
⎠
⎞
⎠

+

−

δ δ a i θ a
θ

δ a i θ a
θ

1 2 sin 4 sin
2

2 sin 4 sin
2

.

m m

m

1 1 2

2

1 3 4

2
(34)

We can now use the Euler approximation on the first
step to have

⎜ ⎟
−
∆

=
⎛
⎝

−
∆

+
− +
∆

⎞
⎠

+ − + −u u

t r

u u

r

u u u

r

T

S

1

2

2
.

i i

i

i i i i i
1 0

1

0

1

0

1

0 0

1

0

2
(35)

( ) (

)

= +
∆
∆

− +
∆
∆

−

+

+ − +

−

u u
tT

Sr t
u u

tT

r
u u

u

2 2
2

,

i i
i

i i i i

i

1 0

1

0

1

0

2 1

0 0

1

0

(36)

( ) ( )= + − + − ++ − + −u a u u a u u u2 .i i i i i i
0

1 1

0

1

0
2 1

0 0

1

0 (37)

By the von Neumann approach, we have

= + − ⎛
⎝
⎞
⎠δ δ ia θδ a

θ
δ2 sin 4 sin

2
,1 0 1 0 2

2

0
(38)

⎟⎜=
⎛
⎝
+ − ⎛

⎝
⎞
⎠
⎞
⎠

δ ia θ a
θ

1 2 sin 4 sin
2

,0 1 2

2

(39)

= + − ⎛
⎝
⎞
⎠

δ

δ
ia θ a

θ
1 2 sin 4 sin

2
,

1

0

1 2

2

(40)

< ⟹ + − ⎛
⎝
⎞
⎠ <

δ

δ
ia θ a

θ
1 1 2 sin 4 sin

2
1,

1

0

1 2

2

(41)

( )⎟⎜⟹
⎛
⎝
− ⎛

⎝
⎞
⎠
⎞
⎠
+ <a

θ
a θ1 4 sin

2
4 sin 1,2

2 2

1

2 2 (42)

( )⟹ − ⎛
⎝
⎞
⎠ +

⎛
⎝
⎞
⎠ +

<

a
θ

a
θ

a θ1 8 sin
2

16 sin
2

4 sin

1,

2

2

2

2

4

1

2 2

(43)

( )⟹ ⎛
⎝
⎞
⎠ + < ⎛

⎝
⎞
⎠a

θ
a θ a

θ
4 sin

2
sin 2 sin

2
.2

2

4

1

2 2
2

2

(44)

The above can further be simplified; however, under
the above condition, we have that

<
δ

δ
1.

1

0

We now assume that for a fixed >m c, 0, such that

when <c 1, then < 1
δ

δ

m

0

.

At +m 1, we have,

= ++ −δ δ a δ a̅ ̅ ,m m m1 1 1 2
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| | | || | | || |≤ ++ −δ δ a δ a̅ ̅ .m m m1 1 1 2

By induction, we have that

| | | |{| | | |}≤ ++δ δ a a̅ ̅ ,m 1 0 1 2

| |

| |
{| | | |}≤ + <+δ

δ
a a̅ ̅ 1.

m 1

0

1 2

Therefore, we will need

| | | |=
⎧
⎨
⎩
+ − ⎛

⎝
⎞
⎠ +

⎫
⎬
⎭
<Υ ia θ a

θ
c a amax 1 2 sin 4 sin

2
; , ̅ ̅ 1.1 2

2

1 2
(45)

To reach the stability,
we shall now present the analyses for the second part.
For the second part, we have

{ }

{ }

∑

∑

= + − + − +

+ − + ∼ −

+ − + −

+ −

+
+ − + −

=

−
+

+ +
−

−
−

+
− −

−
−

=

−
+

h h a h a h a h a h a h

a h h δ σh B a h

a h a h a h a h

a h h δ
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̅

̅ ̅ 2 ̅ ̅
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i
n

i
n

i
n

i
n

i
n

i
n

i
n

j

n

i

j

i

j

n j i
n

n i
n

i
n

i
n

i
n

i
n

j

n

i

j

i

j

n j

1
1 1 2 1 2 1 2 2 1

3

1

1

1

, 1 1 1

1

1 1

1
2 1

1
2

1
2 1

1

3

1

2

1

,

(46)

Replacing by the error yields

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) { }

∑

∑

= + + ∆ − − ∆

+ ∆ − + − ∆

+ − + ∼

− + ∆ + − ∆

− − ∆ +

− − ∆ + −

+

=

−

+ +

− −

− −

−
=

−

+

δ δ a δ x a δ x

a δ x a δ a x δ

a δ δ δ δ B

a δ x a δ x

a δ x a δ

a δ x a δ δ δ

exp Ʀ exp Ʀ

exp Ʀ 2 exp Ʀ

6

̅ exp Ʀ ̅ exp Ʀ

̅ exp Ʀ 2 ̅

exp Ʀ ̅ .

n n n m n m

n m n m n

j

n

j j n j n n

n m n m

n m n

n m

j

n

j j n j

1 1 1

2 2 2

3

1

1

1 , 1

1 1 1 1

2 1 2 1

2 1 3

1

2

1 ,

(47)

But, noting that to start the process, we need two
components.

< 1.
δ

δ

1

0

If we have the following

| ( ) ( ) |+ ∆ + − ∆ − <a x a x a1 ̅ exp Ʀ ̅ exp Ʀ 2 ̅ 1,m m1 1 1

| ( ( ) )|+ ∆ − <a x1 ̅ 2 cos Ʀ 2 1,m1

− ⎛
⎝
∆ ⎞
⎠ <a

x
1 4 sin

Ʀ

2
1,

m

1
2

⎛
⎝
∆ ⎞
⎠ <a

x
4 sin

Ʀ

2
2,

m

1
2

<a4 2,1

<a1

1

2
.

We shall assume that ∀ ≥ <n 1,   1
δ

δ

n

0

. Now showing

that <+
1

δ

δ

n 1

0

, under some conditions. We have that δ1 and

δ0. These can be obtained using a simple approximation.
But we shall note that the original state of this phase cor-
responds to the last state of the first phase; thus, if we can
take = +t t̅ n0 1 of the last stage, then we shall have,

( )= =h
Q

πT
W r t

4
̅ , ̅ Ω̅,i i

0
0

(48)

{ }− =
∆

− + −
⎧
⎨
⎩

−
∆

⎫
⎬
⎭+ −

+ −
h h

t

r

T

S
h h h

T

Sr

h h

r
2

2
,i i i i i

i

i i1 0

2 1

0 0

1

0 1

0

1

0

(49)

( ) ( )= + ∆ − + − ∆δ δ a δ x a δ a δ x̅ ̅ ̅ exp Ʀ 2 ̅ ̅ ̅ exp Ʀ ,m m1 0 1 0 1 0 1 0 (50)

{ ( ) ( ) }= + ∆ + − ∆ −δ a x a x a̅ 1 ̅ exp Ʀ ̅ exp Ʀ 2 ̅ ,m m0 1 1 1 (51)

( )

( )

( )

( )

∑

∑

= + ⎛⎝ ∆ − ⎛
⎝
∆ ⎞
⎠
⎞
⎠

+ ∼ + −

− ∆ − ⎛
⎝
∆ ⎞
⎠

− −

+

+
=

−

+

=

−

+

δ δ a i x a
x

δ

σB δ a δ δ δ

a i x a
x

a δ δ δ

2 sin Ʀ 4 sin
Ʀ

2

2 ̅ sin Ʀ 4 ̅ sin
Ʀ

2

̅ ,

n n m

m

n

n n

j

n

j j n j

m

m

j

n

j j n j

1 1 1
2

1 3

1

2

1 ,

1 2
2

3

1

2

1 ,

(52)

| | | | ( )

{ } ( )

| | | || |

| || |

∑

∑

≤ + ∆ − ⎛
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∆ ⎞
⎠

+ ∼ + ∆

− ⎛
⎝
∆ ⎞
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+ −

+

≥
+

=

−

+

=

−

+

δ δ a i x a
x

σ B a i x

a
x

a δ δ δ

a δ δ δ

2 sin Ʀ 4 ̅ sin
Ʀ

2

max 2 ̅ sin Ʀ

4 ̅ sin
Ʀ

2

̅ .

n n m

m

n
n m

m

j

n

j j n j

j

n

j j n j

1 1 2
2

0
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2
2

3

1

1

1 ,

3

1

2
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(53)

By hypothesis, we have ∀ ≥ <1 1.n

δ

δ

n

0

Therefore,

<+
1

δ

δ

n 1

0

if,

( )

{ }

( )

∑ ∑

+ ∆ − ⎛
⎝
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⎠
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⎝
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−
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1 2 sin Ʀ 4 sin
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2
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Ʀ
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m

m

n
n

j

n
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j

n

n j

m

m

1 2
2

1
1 3

1

1
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1

1

,

1 2
2

(54)
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6 Numerical simulations

The numerical simulations are presented in Figures 2–4. To
obtain these figures, the following theoretical parameters
were used: =r 0.01 m which is the radial distance from
the well, the transmissivity =T 1,000 m /day3 , the stora-
tivity of the confined aquifer =S 0.009c , the storativity of
the unconfined aquifer =S 0.0009y , the thickness of the
aquifer =b 30 m, the time steps size =td 0.00000001 m,
and the space step size =rd 0.1 m. These figures were
achieved for various values of fractional order alpha, the
part that was introduced to represent the passage from
confined to unconfined. We shall note that the used frac-
tional orders are chosen above and below 0.5. Above 0.5
especially near 1, we have a slow but not very slow flow
while when the fractional order is less than 0.5, we have a
fast flow that represents the flow within a fracture.

To incorporate in the mathematical model the result of
random nature, randomness is added to the classical
model and the numerical simulations are performed using
sigma = 0.009. We presented the simulations for different
values of fractional order, where the passage from con-
fined to unconfined was made up of an exponential decay
kernel.

One of the commonly asked questions is how to deter-
mine a fractional order in practice, as this is a mathema-
tical parameter. To provide an answer to this question, one
will recall the primary aim of a mathematical model.
Indeed, if the aim is to replicate observed facts using a
mathematical model, then if there is a good agreement
between observed facts and the solution of the mathema-
tical model, prediction can proceed. In our case, one aims
to determine the aquifer's parameters, including stora-
tivity and transmissivity, and then the crossover time.

Figure 2: Numerical solution of the confined to unconfined groundwater flow by introducing a stochastic approach with α = 0.45.
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Figure 3: Numerical solution of the confined to unconfined groundwater flow by introducing a stochastic approach with α = 0.75.

Figure 4: Numerical solution of the confined to unconfined groundwater flow by introducing a stochastic approach with α = 0.95.
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The fractional order alpha will be determined by compar-
ison of mathematical solution and observed data; the alpha
that provides the best fit will be the suitable alpha for
prediction.

7 Conclusion

The dynamic process underlying the conversion of ground-
water flow from confined aquifers to unconfined has been a
centre of interest for several researchers in the last decades.
This conversion often occurs due to over-abstraction of the
subsurface water and can sometimes lead to depletion, a
situation that should be avoided through groundwater man-
agement. However, good management used prediction to
make sound decisions; indeed, this could be achieved through
monitoring andmodelling using differential equations. In this
work, we added a stochastic component to an existing part
that was constructed to replicate this conversion. We aimed
to include in the mathematical formulas randomness that
could occur due to recharge or water trapping that is released
due to the force induced during abstraction. A simple numer-
ical scheme was used to solve numerically the system of
equations. Numerical simulations were performed for dif-
ferent densities of randomness.
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