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Abstract: The aim of the present research is to discuss the
numerical aspects of heat-mass transfer in power-law nano-
fluids on an stretched surface. In addition, the novelty in this
research lies in its thorough exploration and incorporation of
parameters such as viscous dissipation, slip velocity, and con-
vective boundary conditions into the analysis. This distin-
guishes the study from previous work and underscores its
originality. For non-Newtonian fluids, a power-law model is
employed, while the nanofluid system associate the influ-
ences of thermophoresis and the Brownian motion. The
fluid’s thermal conductivity is considered to change based
on temperature, while the concentration of nanoparticles at
the surface is maintained at a constant level. A heated fluid
situated beneath the lower surface can act as a heat convec-
tion mechanism source. A process of similarity transforma-
tion is employed to simplify the equations related to the mass,
momentum, thermal energy, and nanoparticle concentration
into nonlinear ordinary differential equations. These equa-
tions are then treated numerically with the help of the shifted
Chebyshev polynomials of the sixth order and the spectral
collocation method. The proposed technique reduces the
existing problem into a system of algebraic equations formu-
lated as a constrained optimization challenge. Subsequently,

the optimization technique is applied to determine the
unknown coefficients of the series solution. Graphical repre-
sentations depict the impacts of nanofluid parameters. A
quantitative assessment is presented in a tabular format to
illustrate a comparison with previously published results for
specific scenarios, revealing a notable level of agreement.

Keywords: porousmedium, nanofluid, convective boundary
conditions, viscous dissipation, slip velocity, optimization-
spectral collocation method, Chebyshev polynomials

Nomenclature

c positive constant
C nanofluid concentration
cp specific heat
Cw concentration of the fluid

beside the sheet
∞C concentration of the fluid at

the ambient
Cf

x
skin friction coefficient

DT thermophoretic coefficient
DB diffusion coefficient
Ec Eckert number
f dimensionless stream function
hf coefficient of heat transfer
k permeability of the porous

medium
n power-law index
Nt thermophoresis parameter
Nb Brownian motion parameter
Nux Nusselt number
Pr Prandtl number
Re the local Reynolds number
s exponent of stretching
Sc Schmidt number
Shx Sherwood number



* Corresponding author: Mohammed M. Babatin, Department of
Mathematics and Statistics, College of Science, Imam Mohammad, Ibn
Saud Islamic University (IMSIU), Riyadh 11566, Saudi Arabia,
e-mail: mmbabatin@imamu.edu.sa
Mohamed M. Khader: Department of Mathematics and Statistics,
College of Science, Imam Mohammad, Ibn Saud Islamic University
(IMSIU), Riyadh 11566, Saudi Arabia; Department of Mathematics,
Faculty of Science, Benha University, Benha, Egypt,
e-mail: mmkhader@imamu.edu.sa
Ahmed M. Megahed: Department of Mathematics, Faculty
of Science, Benha University, Benha, Egypt,
e-mail: ahmed.abdelbaqk@fsc.bu.edu.eg

Open Physics 2023; 21: 20230150

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/phys-2023-0150
mailto:mmbabatin@imamu.edu.sa
mailto:mmkhader@imamu.edu.sa
mailto:ahmed.abdelbaqk@fsc.bu.edu.eg


T temperature of the nanofluid
Tf temperature of the fluid below

the sheet
Tw sheet temperature
∞T temperature of the nanofluid

away the sheet
Uw stretching velocity
u v, components of the velocity

vector in the x- and y-direc-
tions, respectively

Greek symbols
η dimensionless variable
κ nanofluid thermal

conductivity
δ porous parameter
ϕ dimensionless nanofluid

concentration
λ slip velocity factor
ρ nanofluid density
∞κ ambient nanofluid thermal

conductivity
μ nanofluid viscosity
τ heat capacity ratio of the

nanomaterial to that of
the fluid

ε thermal conductivity
parameter

γ Biot number
θ dimensionless nanofluid

temperature
λ0 slip velocity coefficient
ψ stream function
Superscripts
w condition along the sheet
′ differentiation with respect to η

∞ condition at the ambient

1 Introduction

Flow of the Newtonian fluids across an elastic sheets is
encountered in various engineering procedures that find
use in industries. These applications encompass processes
like extrusion, melt-spinning, hot rolling, production of
glass-fibers, and cooling of substantial metal plates in a
bath, among others [1]. Non-Newtonian fluids constitute a
broad spectrum of significant models, among which are
notable examples such as the Casson model [2], Maxwell
system [3], micropolar system [4], Williamson system [5],
Walter’s B model [6], and the tangent hyperbolic model [7]

and [8], to name a few. A non-Newtonian power law fluid
(PLF) is a complex substance that deviates from the linear
correlation between shear rate and shear stress found in
Newtonian fluids [9]. This type of fluids exhibits a behavior
that conforms to a power law connection, wherein the
shear stress is directly related to the shear rate raised to
a specific exponent, referred to as the flow behavior index
[10]. This exponent dictates the extent of the fluid’s shear-
thinning or shear-thickening characteristics. In simpler
terms, the viscosity of a non-Newtonian PLW can undergo
substantial changes as the shear rate varies [11]. Power-law
models are commonly encountered in a wide range of
industrial and biological settings. These models find prac-
tical applications in various fields, including food manu-
facturing, coatings, polymers, and even bodily fluids like
blood, as mentioned in the study by Sui et al. [12]. More-
over, they play a crucial role in understanding and con-
trolling physical phenomena such as viscous dissipation,
thermal radiation, and magnetic fields within the context
of heat-mass transfer processes. Obtaining a deeper under-
standing of the flow behavior of non-Newtonian PLWs is
imperative for improving processes and optimizing designs
across these diverse domains [13].

The expression “nanofluid” pertains to a liquid that
includes a dispersion of submicron solid particles, com-
monly known as nanoparticles. Choi [14] is credited with
coining this term. The defining trait of nanofluids is the
augmentation of thermal conductivity, an occurrence initi-
ally observed by Masuda et al. [15]. Aziz and Khan [16]
noted that a satisfactory elucidation for the anomalous
rise in thermal conductivity and viscosity remains elusive.
Numerous researchers have investigated the boundary
layer (BL) flow generated by the stretching of an elastic
sheet in various nanofluid models, resulting in a substan-
tial body of literature dedicated to this particular issue [17].

Building upon previous investigations, many researchers
have effectively employed diverse numerical methodologies
in this specific field. One such method is the spectral colloca-
tion technique (SCM), which stands as a versatile approxi-
mate analytical approach for deriving approximate solutions
to differential equations. The SCM presents several merits in
tackling such issues, as the Chebyshev coefficients of the solu-
tion can be easily computed using any accessible numerical
software, resulting in superior computational efficiency [18].
Chebyshev polynomials, recognized orthogonal polynomials
defined within the domain −1, 1[ ], are commonly utilized due
to their advantageous characteristics in approximating func-
tions. Furthermore, this approach is distinguished by its
remarkable precision, rendering it a dependable numerical
method. With its capacity to ensure precise calculations and
dependable results, the technique guarantees swift
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convergence rates and straightforward application in a
variety of problem contexts, spanning finite and infinite
domains, as demonstrated in the previous work [19]. It exhi-
bits rapid convergence, enabling accurate solutions to be
attained with a few number of terms, effectively conserving
computational resources and time. In addition, the method’s
flexibility permits its utilization not only in differential equa-
tions but also in optimization problems, establishing its value
across a wide array of domains [20]. This method has been
extensively utilized in different problems [21] and has played
a significant role in conducting crucial research owing to
these benefits.

According to the author’s current knowledge, the lit-
erature has not yet addressed this particular aspect. The
purpose of investigating these studies on power-law nano-
fluids is to provide an accurate representation of the trans-
port properties of the nanofluid. Moreover, what sets this
research apart is its comprehensive investigation and inte-
gration of factors like new mass flux condition, viscous
dissipation, slip velocity, and convective boundary condi-
tions within the analysis. This serves to differentiate the
study from earlier research and emphasizes its novelty. An
optimization method utilizing sixth-kind Chebyshev poly-
nomials is employed to visually illustrate the impact of
these properties through tables and graphs.

2 Formulation of the physical model

Assume the consistent two-dimensional BL movement of a
non-Newtonian PLF with nanoparticles over an extending
sheet, featuring a nonlinear velocity distribution of =U cxw

s.
In this formula, c represents a constant, s is the stretching
factor, and x denotes the position along the stretching surface.
It is considered that the sheet is enclosed within a porous
medium possessing permeability denoted as k . The lower

side of the surface is subjected to heating as fluid flows over
it at a temperature ofTf . This heating process involves varying
heat transfer coefficient hf , and it operates through a convec-
tive heat transfermechanism. The extended sheet is held at an
unchanging temperature Tw, and a consistent concentration
Cw. Furthermore, the uniformity of ambient temperature and
concentration, denoted as ∞T , and ∞C , respectively, is pre-
sumed at a significant distance away from the sheet’s surface.
Furthermore, it is taken into consideration that Tf is greater
than Tw, and Tw is greater than ∞T . The visual representation in
Figure 1 illustrates the flow of a power law nanofluid initiated
by a nonlinearly stretching sheet within a porous medium.

The non-Newtonian fluid employs the power-law model,
which defines the connection between strain rate and shear
stress as follows [22]:
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where n denotes the power law exponent. When n equals 1,
formula (1) characterizes a Newtonian fluid featuring a
dynamic viscosity coefficient of μ. Conversely, when n is
greater than 1, formula (1) describes a dilatant or shear-
thickening fluid, and when n is less than 1, it portrays
a pseudoplastic or shear-thinning fluid. Moreover, the
thermal conductivity κ of PLF is taken to change as it moves,
and this change adheres to a linear relationship with tem-
perature. This temperature-related connection can be for-
mulated in the subsequent manner [23]:
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Evidently, based on the recent equation, the thermal con-
ductivity remains consistent at ambient conditions = ∞T T

and reaches its peak value when the temperature equals
=T Tf , where T is the PLF temperature and ∞κ represents

the ambient thermal conductivity. In the energy equation, we

Figure 1: A sketch of the physical model.
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consider the inclusion of viscous dissipation using the power-
law model, as well as the impacts of thermophoresis phenom-
enon and the Brownianmotion of nanoparticles. By employing
scale analysis, the governing equations for momentum, mass,
thermal energy, and nanoparticles concentration in power-law
nanofluid model will be expressed in Cartesian coordinates x

and y in the following form [24] (∇ = ∂
∂

∂
∂,

x y
( )):
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where ρ denotes the density of the fluid, DB represents the
coefficient of Brownian motion, and DT is the thermophor-
esis diffusion coefficient. The suitable boundary conditions
for the velocity, temperature, and concentration fields in
the current scenario are provided as follows [25]:
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where λ0 is the coefficient of slip velocity. As outlined by
Mahmoud and Megahed [24], we employ the subsequent
transformations [24]:
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where =ν
μ

ρ
is the kinematic viscosity and η is the simi-

larity variable. Also, in the aforementioned equations, ψ

denotes the stream function, which satisfies the continuity
Eq. (3), and defines by the following:
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By making use of the similarity transformations as described
in Eqs. (10) and (11), we can precisely fulfill the continuity Eq.
(3). In addition, Eqs. (4)–(6) are modified into the subsequent
formulations:
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Likewise, the adjusted boundary conditions are stated as
follows:
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→ ∞ ′ → → →η f θ ϕ: 0, 0, 0, (17)

where the parameters δ λ γ N, , Ec, , Sc, Pr, b, and Nt , are
defined as follows:
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3 Quantities relevant to
engineering and industry

The dimensionless variables that are of practical impor-
tance encompass the friction factor Cf

x
, local Sherwood

number Shx , and local Nusselt number Nux . These para-
meters are elucidated as follows:
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is the local power-law Reynolds number.
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4 Procedure of solution using SCM

4.1 Some properties of the CP6s and
approximate the solution

We present some of the main definitions and properties of
the shifted Chebyshev polynomials of the sixth-kind (CP6s)
[26] to suit their use in solving the problem under study in
the domain 0, ℏ[ ].

With the help of the following recurrence relation, we
can generate the orthogonal Chebyshev polynomials T zk( )

[27,28]:
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The shifted CP6s on 0, ℏ[ ], >ℏ 0 can be defined with
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The analytic formula of ηk� ( ) is given by [31]:
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The function ∈ψ η L 0, ℏ2( ) [ ] can be approximated as a
finite series sum with the first +m 1( )-terms as follows:
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Through the following two theorems, respectively, we
investigate the upper bound of the error in the approxima-
tion by using the CP6s and drive the main approximate
formula of the derivatives for the approximation solu-
tion ψ η

m
( ).

Theorem 1. [21] The obtained truncation error =εm

−ψ η ψ η
m

∣ ( ) ( )∣ in approximating the function ψ η( ) by
ψ η

m
( ), which is defined in (20) can be estimated as follows:

≤ −
ε 2 .m

m
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Proof. Due to the differentiation operator is linear, we can
obtain the following:
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The connection with Eqs. (22)–(24) leads us to obtain the
desired formula (21). □

4.2 Approximate the solution with a
numerical scheme

In this subsection, we are going to implement the SCM
for solving numerically the proposed system (13)–(17).
We approximate f η θ η,( ) ( ), and ϕ η( ) by f η θ η,
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The substituting from (21) and (25) in the system (13)–(15)
leads us to obtain the following system:
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We collocate the previous Eqs. (26)–(28) at m of nodes η
p
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reduce it to the following nonlinear algebraic equations:
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( ( ))( ( ))

( ) ( )

( )

(31)

Also, the boundary conditions (16)–(17) will be reduced to
the following algebraic equations by substituting from Eq.
(25) in Eqs. (16)–(17):

∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

⎜ ⎟

− =

′ = +
⎡

⎣
⎢ ′

⎛
⎝
− ′

⎞
⎠

⎤

⎦
⎥

′ = −
⎡
⎣⎢
− −

⎤
⎦⎥
⎡
⎣⎢
+ −

⎤
⎦⎥

′ + ′ =

=

= =

′

=

′
−

= = =

−

= =

a

a λ a a

b γ b ε b

N b N c

2 1 0,

0 1 0 0 ,

0 1 2 1 1 2 1 ,

0 0 0,

m

m m m
n

m m m

t

m

b

m

0

0 0 0

1

0 0 0

1

0 0

� � �

�

� �

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

ℓ

ℓ
ℓ

ℓ

ℓ ℓ
ℓ

ℓ ℓ
ℓ

ℓ ℓ

ℓ

ℓ ℓ
ℓ

ℓ
ℓ

ℓ

ℓ
ℓ

ℓ

ℓ ℓ
ℓ

ℓ ℓ

(32)

∑ ∑ ∑′ = = =
=

∞
= =

a η b c0, 2 0, 2 0.

m m m

0 0 0

� ( )
ℓ

ℓ ℓ
ℓ

ℓ

ℓ

ℓ (33)

Now, we define the following cost functions to express the
nonlinear system of +m3 1( ) algebraic Eqs. (29)–(33) as a
constrained optimization problem:

∑= −

+ ⎛
⎝

− +
+

⎞
⎠

− −

=

−
CF nf η f η

s n

n

f η f η

s f η δ f η

1

2 1 1

1

,

p

m

m p m p

n

m p m p

m p m p

0

3 2 1

2

1 2 1

( )( ( ))

( )
( ( ))( ( ))

( ( )) ( ( ))

( ) ( )

( )

( ) ( )

(34)
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+ +
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=
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CF εθ η θ η ε θ η

N θ η ϕ η N θ η

s n
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f η θ η
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2
1

Pr
1
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1
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p

m

m p m p m p
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( ( ))( ( )) ( ( ))

( )
( ( ))( ( ))

( ( ( )))

( ) ( )

( ) ( ) ( )

( )

( )

(35)
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+

⎞
⎠
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( ( ))( ( ))
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(36)

with the constraints (Cons):

∑ ∑

∑ ∑
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⎤
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= =

=

′

=

′
−

=

= =

−

= =

=
∞

= =

a a

λ a a

b γ

b ε b

N b N c

a η b c
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0 1

2 1 1 2 1

0 0

2 2 .

m m

m m
n

m

m m

t

m

b

m

m m m

0 0

0 0

1

0

0 0

1

0 0

0 0 0

�

� �

�

� �

�

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( )

ℓ

ℓ
ℓ

ℓ

ℓ ℓ

ℓ

ℓ ℓ
ℓ

ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ
ℓ

ℓ

ℓ
ℓ

ℓ

ℓ ℓ
ℓ

ℓ ℓ

ℓ

ℓ ℓ
ℓ

ℓ

ℓ

ℓ

(37)

The constrained optimization problems (34)–(37) can be
solved by using the Penalty Leap Frog procedure [32] for
the coefficients a b c, ,ℓ ℓ ℓ, and = m0, 1,…,ℓ . By substituting
these coefficients in the forms, (25) leads us to formulate
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the required approximate solution of the system under
study (13)–(17).

Finally, to achieve a complete numerical simulation
and estimate the efficiency of the proposed technique,
we use the residual error function ηREF ,f ( ) ηREF ,θ( ) and

ηREF ϕ( ), of f η θ η,( ) ( ), and ϕ η( ), respectively:

= −

+ ⎛
⎝

− +
+

⎞
⎠

− −

−
m η nf η f η

s n

n

f η f η
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1
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f
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n
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3 2 1
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1 2 1

( ) ( )( ( ))

( )
( ( ))( ( ))

( ( )) ( ( ))

( ) ( )

( )

( ) ( )
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⎠

+

m η εθ η θ η

ε θ η N θ η

N θ η ϕ η
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1
,
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1 1

2 1

1
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( ( )) ) ( ( ))

( ( ))( ( ))

( ( ( )))

( )
( ( ))( ( ))

( )

( ) ( )

( ) ( )

( )

( )

(39)

= +

+ ⎛
⎝

− +
+

⎞
⎠

m η ϕ η

N

N

θ η

s n

n

f η ϕ η

REF ,

Sc
2 1 1

1
.

ϕ
m

t

b

m

m m

2 2

1

( ) ( ) ( ( ))

( )
( ( ))( ( ))

( ) ( )

( )

(40)

5 Validation of the code’s accuracy

In this section, our goal is to verify the effectiveness of the
provided numerical solution that has been applied in this
context. Disregarding the influences of slip velocity and
porous parameters ( = =λ δ 0) and setting the stretching
factor to a unity value ( =s 1), we compare the outcomes
for the dimensionless wall shear stress − ″f 0( ) with the
findings of Hassanien et al. [33] and Khan and Gorla [34]
for various values of n in Table 1. The analysis reveals a
strong concurrence for every power law index parameter
in the comparison, affirming our high level of confidence
in the precision of the current findings.

Through Table 2, we presented the evaluated values of
the residual error function (REF) for the purpose of veri-
fying the validity of the approximate method used, where
the values of the parameters are taken = = = =λ δ γ Ec 0.2,

= =ε N 0.1,t =N 0.8,b =n 1.2, = ∕s 1 3, =Sc 2.0, =Pr 3.0. In
light of these values, we can confirm the accuracy of the
technique proposed in this article.

6 Discussion of numerical results

The main aim of this study is to investigate how newly
emerging physical parameters affect the temperature, velo-
city, and concentration profiles. Figure 2 delves into the
discussion surrounding how changes in physical attributes,
like the porous parameter δ, impact the profiles of velocity
′f η( ), temperature θ η( ), and concentration ϕ η( ). As antici-

pated, an increase in the porous parameter results in a
reduction of the momentum boundary layer thickness, con-
currently leading to a decrease in velocity. Conversely, when
the porous parameter is increased, it results in an elevation
of both θ η( ), and ϕ η( ) levels for the same parameter value.
Physically, the nanofluid concentration rises as the δ

increases due to the greater porosity of the medium. This
increased porosity facilitates improved nanoparticle trans-
port and dispersion, allowing the fluid to hold more nanopar-
ticles. Consequently, the nanofluid concentration within the
porous medium increases, reflecting the influence of the δ on
nanoparticle retention and distribution. Moreover, the find-
ings in previously published research [35] validate the current
observations regarding the flow and heat transfer character-
istics within a porous medium.

Figure 3 illustrates how variations in the power-law
index parameter n impact on ′f η( ), θ η( ), and ϕ η( ). With
an increasing power-law index parameter, both the

Table 1: Comparison the values of f‒ ″ 0( ) in relation to the preceding
research of [33] and [34] for various values of n when = =λ δ 0

and =s 1

n Work [33] Work [34] Present work

0.5 1.165235 1.161360 1.16135898
1.0 1.000000 1.000000 1.00000000
1.5 0.980902 0.980010 0.98000580

Table 2: Comparison the values of the REF obtained by the proposed
scheme

η REF of (( ))f η REF of (( ))θ η REF of (( ))ϕ η

0.0 ×1.852951 10‒8 ×2.021354 10‒8 ×0.015975 10‒8

1.0 ×7.951753 10‒8 ×5.654201 10‒7 ×2.357410 10‒7

2.0 ×6.852650 10‒7 ×4.095230 10‒6 ×3.652104 10‒7

3.0 ×2.963741 10‒7 ×2.982140 10‒7 ×0.752014 10‒8

4.0 ×3.789654 10‒7 ×9.632501 10‒7 ×2.321045 10‒8

5.0 ×0.951047 10‒7 ×3.852201 10‒8 ×7.855214 10‒7

6.0 ×7.963012 10‒8 ×7.952014 10‒7 ×4.662240 10‒6

7.0 ×6.875421 10‒6 ×5.852014 10‒6 ×3.875421 10‒6

8.0 ×4.021345 10‒7 ×0.952014 10‒6 ×2.632501 10‒8

9.0 ×3.6540123 10‒7 ×7.654127 10‒7 ×5.214570 10‒8

10.0 ×4.855201 10‒6 ×3.852147 10‒6 ×6.0145822 10‒7
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dimensionless temperature and dimensionless velocity
decrease and converge toward a limit as the parameter
approaches infinity. Physically, the nanofluid’s velocity
decreases as the power-law index parameter increases
because the fluid becomes more non-Newtonian. In non-
Newtonian fluids, higher values of this parameter indicate
increased resistance to flow, leading to slower velocity.
Physically, when the power-law index parameter is higher,
it signifies a nanofluid that is thicker and exhibits
increased viscosity, leading to a reduction in the flow velo-
city. In addition, it is worth noting that a marginal uptick in
nanoparticle concentration has been observed under these
identical parameter conditions.

Figure 4 examines how the slip velocity parameter λ

affects the distributions of temperature θ η( ), velocity ′f η( ),
and nanoparticle volume fraction ϕ η( ) in the scenario
involving a nonlinear stretching sheet. Examining the

graphical representation reveals that when the slip velo-
city parameter increases, it causes both the temperature
and velocity distributions to decrease. However, the oppo-
site trend is observed when it comes to the concentration,
particularly at a distance from the sheet.

Figure 5 shows how the Biot number influences
the θ η( ) and ϕ η( ) fields. When the Biot number rises, it
amplifies the thermal diffusivity, thereby necessitating
the expansion of the thermal boundary layer (TBL). Physi-
cally, the Biot number tends to slow down the heat transfer
from the solid surface to the fluid, which can lead to the
observation of elevated temperatures near the surface, as
depicted in the figure. It is important to note that the negative
values of the concentration arises from its definition. Specifi-
cally, when the concentration of nanoparticles is higher at
points away from the sheet compared to the concentration at
any given point, this leads to a negative value for the
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Figure 2: (a) f η′( ) and θ η( ) for various δ (b) ϕ η( ) for various δ .
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Figure 3: (a) f η′( ) and θ η( ) for various n and (b) ϕ η( ) for various n.
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dimensionless concentration. Physically, a decrease in the
Biot number has the potential to result in a higher concentra-
tion of nanoparticles in proximity to the surface. Conversely,
as we distance ourselves from the surface, we observe an
inverse trend, where the concentration rises with an increase
in the Biot number.

Figure 6 depicts how the θ η( ) and ϕ η( ) profiles evolve
as the Eckert number (Ec) increases. The observation
shows that higher Eckert numbers lead to an increase in
both the thickness of the fluid layer sticking to the surface
and the temperature of the nanofluid. Consequently, this
results in an improved TBL. Concerning the concentration
of nanofluid, as the Eckert number rises, the layer of nano-
fluid adhering to the surface exhibits lower concentration.
However, farther away from the sheet, the concentration
behaves in the opposite manner.

Figure 7 underscores how the θ η( ), and ϕ η( ) fields are
influenced by the thermophoresis parameter Nt when all
other parameters are held constant. Both the temperature
and the TBL of the nanofluid exhibit a mild increase in
response to changes in the thermophoresis parameter, as
observed. Higher values of the Nt result in an increased
thermophoresis force. This force causes nanoparticles to
diffuse in the surrounding fluid due to temperature gradi-
ents, leading to an elevated concentration of the nanofluid,
particularly at a distance from the surface. However, a
contrasting trend is observed near the surface. In a phy-
sical context, when the thermophoretic effect intensifies, it
corresponds to a greater penetration of nanoparticles into
the surrounding fluid. As a consequence, both the θ η( ) and
ϕ η( ) of the nanofluid increase, leading to elevated levels of
these properties.
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Figure 4: (a) f η′( ) and θ η( ) for various λ and (b) ϕ η( ) for various λ.
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Figure 5: (a) θ η( ) for various γ and (b) ϕ η( ) for various γ.
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Figure 8 illustrates the effect of the Schmidt (Sc) and
Brownian motion Nb parameters on the nanoparticle con-
centration ϕ η( ) profile. It is observed that, at a distance
from the surface, increasing values of both the Sc, and Nb

result in a decrease in nanoparticle concentration, leading
to a reduction in the concentration BL. Conversely, near
the surface, the opposite trend is noticed for both of these
parameters.

Figure 9 presents θ η( ) and ϕ η( ) profiles for different
values of the thermal conductivity parameter ε. This plot
illustrates that at a distance from the stretching sheet, an
increase in the values of the thermal conductivity para-
meter leads to an improvement in both the thermal and
concentration fields of the nanofluid.

Table 3 displays numerical data for the skin friction

coefficient +
CfRex

n

x

1

2

1

1 , local Sherwood number
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n

x

1

1 ,
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Figure 9: (a) θ η( ) for various ε and (b) ϕ η( ) for various ε.

Table 3: Values of +
Re Shx

n

x

‒1

1 , +
Re Nux

n

x

‒1

1 , and +
CfRex

n

x

1

2

1

1 for various values of δ n λ γ, , , , Ec, N N,t b, and ε with = =Sc 2.0, Pr 3.0, and =s
1

3

δ n λ γ Ec Nt Nb
ε

++
CfRex

n

x

1

2

1

1 ++
Re Nux

n

x

‒1

1 ++
‒Re Shx

n

x

‒1

1

0.0 1.2 0.2 0.2 0.2 0.1 0.8 0.1 0.529562 0.140718 0.0175897
0.2 1.2 0.2 0.2 0.2 0.1 0.8 0.1 0.628848 0.134881 0.0168601
0.5 1.2 0.2 0.2 0.2 0.1 0.8 0.1 0.751197 0.126876 0.0158596
0.2 0.6 0.2 0.2 0.2 0.1 0.8 0.1 0.786618 0.127690 0.0159612
0.2 0.9 0.2 0.2 0.2 0.1 0.8 0.1 0.691065 0.132701 0.0165876
0.2 1.2 0.2 0.2 0.2 0.1 0.8 0.1 0.628848 0.134881 0.0168601
0.2 1.2 0.0 0.2 0.2 0.1 0.8 0.1 0.766146 0.129807 0.0162258
0.2 1.2 0.2 0.2 0.2 0.1 0.8 0.1 0.628848 0.134881 0.0168601
0.2 1.2 0.4 0.2 0.2 0.1 0.8 0.1 0.537637 0.137577 0.0171971
0.2 1.2 0.2 0.1 0.2 0.1 0.8 0.1 0.628848 0.074908 0.0093635
0.2 1.2 0.2 0.2 0.2 0.1 0.8 0.1 0.628848 0.134881 0.0168601
0.2 1.2 0.2 0.4 0.2 0.1 0.8 0.1 0.628848 0.224913 0.0281141
0.2 1.2 0.2 0.2 0.0 0.1 0.8 0.1 0.628848 0.159732 0.0199665
0.2 1.2 0.2 0.2 0.2 0.1 0.8 0.1 0.628848 0.134881 0.0168601
0.2 1.2 0.2 0.2 0.5 0.1 0.8 0.1 0.628848 0.098448 0.0123060
0.2 1.2 0.2 0.2 0.2 0.1 0.8 0.1 0.628848 0.134881 0.0168601
0.2 1.2 0.2 0.2 0.2 0.3 0.8 0.1 0.628848 0.133913 0.0502174
0.2 1.2 0.2 0.2 0.2 0.6 0.8 0.1 0.628848 0.132347 0.0992606
0.2 1.2 0.2 0.2 0.2 0.1 0.2 0.1 0.628848 0.134881 0.0674405
0.2 1.2 0.2 0.2 0.2 0.1 0.6 0.1 0.628848 0.134881 0.0224802
0.2 1.2 0.2 0.2 0.2 0.1 0.9 0.1 0.628848 0.134881 0.0149868
0.2 1.2 0.2 0.2 0.2 0.1 0.8 0.0 0.628848 0.138658 0.0173323
0.2 1.2 0.2 0.2 0.2 0.1 0.8 1.0 0.628848 0.109531 0.0136914
0.2 1.2 0.2 0.2 0.2 0.1 0.8 3.0 0.628848 0.079891 0.0099864
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and local Nusselt number
−
+

Re Nux
n

x

1

1 across various values
of the governing parameters in the suggested model. It has
been observed that the local Nusselt number exhibits a
decreasing trend with respect to three factors: the n, λ,
and the Biot number. Conversely, it shows an increasing
trend with respect to three other factors: the δ, Ec, and Nt .
In addition, it is noted that the skin friction coefficient rises
as the δ increases, while it exhibits a decreasing trend with
increasing values of both the n and λ. Moreover, the local
Sherwood number experiences an increase as the n, λ, and
Biot number rise, whereas the opposite trend is observed
for the δ, Ec, and Nb.

7 Conclusion

Researchers are conducting a novel study, delving into the
flow and heat transfer behaviors of a power-law nanofluid
on a stretching sheet within a porous medium under con-
vective heating. In addition, the study considered the effect
of the slip velocity, and dissipative effects of viscosity. The
analysis focuses on how changing thermal conductivity
and nanoparticle control at the boundary influence the
calculation. To obtain numerical solutions for the gov-
erning problem, we utilized a spectral collocation method
that employs the sixth-order Chebyshev polynomials. We
present visual representations illustrating how the perti-
nent parameters change concerning velocity, temperature,
and nanoparticle concentrations. The key findings can be
summarized as follows:
1) An increase in the n and λ led to a reduction in the thick-

ness of the thermal and momentum BLs. Conversely, the
concentration BL showed an opposite trend.

2) The presence of the porous parameter caused an
increase in both temperature and nanoparticle con-
centration, while conversely, it led to a reduction in
the velocity distribution.

3) An uptick in the Biot number and Eckert parameter
led to higher nanofluid temperature, an increase in
thermal thickness, and elevated sheet temperature.

4) Boosting thermophoretic forces resulted in a faster tem-
perature rise across the TBL and led to an enhancement
of nanoparticle concentration away from the sheet.

5) When the thermal conductivity parameter increased,
the sheet’s temperature decreased, but this trend reversed
for the nanofluid as it moved away from the sheet.
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