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Abstract: In this research, we use the homotopy perturba-
tion method (HPM) combined with the Elzaki transform to
investigate the fractional Biswas–Milovic equation (BME)
within the framework of the Caputo operator. The fractional
BME is a significant mathematical model with applications
in various scientific and engineering fields, including phy-
sics, biology, and chemistry. However, its fractional nature
introduces analytical complexities. By integrating the HPM
with the Elzaki transform, we aim to provide an effective
approach for obtaining accurate solutions to this equation.
The combination of these mathematical techniques allows
us to explore the behavior of the fractional BME in a com-
prehensive manner. The research outcomes are supported
by numerical results and comparisons, demonstrating the
reliability and efficiency of the proposed methodology. This
study contributes to advancing the tools for solving frac-
tional equations and enhances our understanding of the
intricate dynamics described by the fractional BME.

Keywords: homotopy perturbation method, Elzaki trans-
form, fractional Biswas–Milovic equation, Caputo operator

1 Introduction

Fractional partial differential equations (FPDEs) are math-
ematical problems that extend the traditional concept
of partial differential equations (PDEs) by incorporating

fractional derivatives and integrals. FPDEs have been used
to model a broad range of phenomena in fields such as
engineering, physics, and finance [1–6]. The use of fractional
derivatives allows for the description of memory and her-
editary effects, which are not captured by traditional PDEs.
Applications of FPDEs include modeling of viscoelastic mate-
rials, PDEs and fractional financial models. The study of
FPDEs is an active area of research, and new developments
are continually being made in both the theoretical and
numerical aspects of these equations [7–9].

The Biswas–Milovic equation (BME), also known as the
Biswas–Milovic model, is a mathematical equation that
describes the behavior of two-phase flow in porous media.
The equation was first proposed by Biswas and Milovic in
1989 and has been widely used in the field of subsurface
hydrology and petroleum engineering. The BME is a non-
linear differential equation that describes the dynamic
behavior of two-phase flow in porous media [10]. It takes
into account the effects of capillarity, viscous forces, and
gravity on the flow of fluids in porous media [11–13]. The
equation is based on the assumption that the fluids are
incompressible and the porous medium is isotropic and
homogeneous [19–23].

The fractional-order BME is a type of fractional differ-
ential equation that describes the dynamics of certain phy-
sical systems. It is a generalization of the standard BME,
which is a second-order differential equation. The frac-
tional-order BME involves derivatives of fractional order,
rather than integer order derivatives. These types of equa-
tions are used to model phenomena such as viscoelasticity,
anomalous diffusion, and chaotic systems. The solution of
these equations can be challenging, and various numerical
and analytical methods have been developed to solve them.

The novelty of our contribution in this study is deeply
rooted in the innovative approach we have taken to address
the complex dynamics described by the BME within the fra-
mework of the Caputo operator. Fractional differential equa-
tions have become increasingly relevant in modeling various
physical and engineering phenomena, owing to their ability to
capture non-local and memory-dependent effects. However,
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solving these equations analytically remains a formidable
challenge. Our research breaks new ground by introducing
and successfully applying the homotopy perturbation trans-
formmethod (HPTM) to this specific fractional equation. First,
ourmethodology stands out as a novel and powerful approach
for solving the BME. While HPTM has been used in diverse
contexts, its application to this equation, characterized by its
complexity and importance in modeling real-world processes,
is a novel contribution. This highlights the versatility of HPTM
as an analytical tool for addressing fractional differential
equations, especially those involving the Caputo operator.
Furthermore, our research goes beyond numerical approxi-
mations by providing analytical solutions to the BME. These
solutions offer profound insights into the intricate dynamics
governed by this fractional equation [24,25]. This analytical
depth is crucial for understanding the underlying physics
and behavior of systems described by such equations, setting
our contribution apart from purely numerical approaches
[26,27]. Ultimately, our article not only advances the toolbox
of analytical techniques available for tackling fractional differ-
ential equations but also enhances our understanding of the
BME’s dynamics. This research has broader implications, as
it contributes to the field of fractional calculus, offering
researchers and practitioners a valuable methodology for
addressing complex, memory-dependent systems in various
scientific and engineering domains [28–31].

The HPM is a numerical technique for solving non-
linear differential equations. It is based on the concept of
homotopy, which is a continuous deformation of one pro-
blem into another. The HPM is used to solve a nonlinear
problem by introducing a small parameter, called the per-
turbation parameter, and then using it to continuously
deform the original problem into a simpler problem. The
Elzaki transformation is a modification of the HPM that
was proposed by Elzaki [32]. The Elzaki transformation is
used to improve the convergence of the HPM by introdu-
cing an additional term in the homotopy equation. This
additional term is based on the gradient of the solution,
and it helps to guide the deformation of the problem
toward a solution [32–34].

2 Basic definitions

2.1 Definition

The fractional derivative Dß in Abel-Riemann sense having
order ß is given as [35,36]:
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2.2 Definition

In the Abel-Riemann sense, the fractional integration
operator κϕ is expressed as [35,36]:
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2.3 Definition

The Caputo derivative Dß of fractional-order ß is defined
as [35,36]:
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2.5 Definition

The Elzaki transform in the sense of Caputo operator is
given as [35,36]:
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3 General discussion of the
proposed method

We consider the following differential equation as the
basis for implementing the HPTM.
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Using the inverse Elzaki transformation, we obtain
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On applying the HPM,
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and He’s polynomials represent ( )H θk as:
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By comparing the coefficients, ϱ, we achieved
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Thus, the analytic result ( )θ μ ε,k is achieved by applying
the truncate series:
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4 Numerical results

4.1 Problem

Consider the fractional Biswas–Milovic model is given as:
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with the IC:
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After calculation, we obtain
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By applying the inverse Elzaki transform, we obtain
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On applying the HPM,
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The nonlinear term find by He’s polynomial ( )H θk is
defined as:
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By comparing the coefficients ϱ, we obtain
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Consider the fractional nonlinear BME
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By applying the inverse Elzaki transformation, we obtain
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On applying the HPM,
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By comparing the coefficients ϱ, we obtain
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Thus, the analytic result is achieved by applying the trun-
cate series as:
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For ℓ = 1 and =ℏ 1, we achieved the exact result as:

( ) ( )=θ μ ε ιμ, exp .

4.3 Problem

Consider the fractional nonlinear BME:
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with the IC:
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On using the Elzaki transform, we obtain
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After calculation, we obtain
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By applying the inverse Elzaki transform, we obtain
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On applying the HPM,
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The nonlinear term find by He’s polynomial ( )H θk is
defined as:
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Some He’s polynomial terms are calculated as:
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By comparing the coefficients ϱ, we obtain
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Figure 1: Analytical solution of three-dimensional graphes of Problem 1.
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Thus, the analytic result is achieved by applying the trun-
cate series as:
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5 Graphical discussion

The results obtained in this research provide a deeper
understanding of the dynamics governed by the fractional
BME and demonstrate the efficacy of the HPTM in solving
such equations. The methodology’s accuracy and reliability
were affirmed through comparisons with existing
approaches and numerical simulations. To visually
represent our findings, we present three-dimensional
graphs of the analytical solutions for three different pro-
blems in Figures 1–3. These graphs illustrate the beha-
vior of the solutions and provide insights into the
dynamics of the BME. Overall, this study contributes to
the growing body of research on fractional differential
equations and their applications. It highlights the poten-
tial of HPTM as a valuable tool for addressing complex
mathematical models involving the Caputo operator,
paving the way for further advancements in the analysis
of fractional systems in various scientific and engi-
neering domains.

Figure 2: Analytical solution of three-dimensional graphes of Problem 2.
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6 Conclusion

In this study, we applied the HPTM to rigorously investi-
gate the fractional BME, considering the Caputo operator.
The utilization of HPTM allowed us to tackle this complex
fractional equation, which is known for its significance in
modeling various physical and engineering phenomena.
Through systematic mathematical transformations and per-
turbation techniques, we successfully derived analytical solu-
tions and gained valuable insights into the behavior of the
BME. The results obtained in this research provide a deeper
understanding of the dynamics governed by the fractional
BME and demonstrate the efficacy of the HPTM in solving
such equations. The methodology’s accuracy and reliability
were affirmed through comparisonswith existing approaches
and numerical simulations. Overall, this study contributes to
the growing body of research on fractional differential equa-
tions and their applications. It highlights the potential of
HPTM as a valuable tool for addressing complex mathema-
tical models involving the Caputo operator, paving the way

for further advancements in the analysis of fractional systems
in various scientific and engineering domains.
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