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Abstract: In this study, we investigated the effect of a
rotation field and magnetic field on a homogeneous
photo-thermoelastic nonlocal material and how its thermal
conductivity changes as a result of a linearly distributed
thermal load. The thermal conductivity of an interior par-
ticle is supposed to increase linearly with temperature
under the impact of laser pulses. Microelastic (microele-
ments distribution), non-local semiconductors are used to
model the problem under optoelectronic procedures, as
proposed by the thermoelasticity theory. According to the
microelement transport processes, the micropolar-photo-
thermoelasticity theory accounts for the medium’s micro-
elongation properties. This mathematical model is solved
in two dimensions using the harmonic wave analysis. Non-
local semiconductor surfaces can generate completely
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dimensionless displacement, temperature, microelonga-
tion, carrier density, and stress components with the
appropriate boundary conditions. The effects of thermal
conductivity, thermal relaxation times, magnetic pressure
effect, laser pulses, and rotation parameters on wave pro-
pagation in silicon (Si) material are investigated and gra-
phically displayed for a range of values.

Keywords: magnetic field, micro-elongation, optoelectronic,

laser pulsed, rotation field, thermal conductivity

Nomenclature

A u
Sn = (34 + 2w)dy,

elastic parameters
potential difference
reference temperature

Yy =3 +2uwa, volume thermal expansion

o microelongational stress tensor

p medium density

ay thermal expansion coefficient

e= % Z—V; dilatation in 2D

Ce specific heat of the microelongated
material

K thermal conductivity

D carrier diffusion

T lifetime

E, energy gap

e;j strain tensor

m'4 two scalar functions

Jo microinertia of microelement

ag, dg, Ag, X1 microelongational material parameters

70, Vo thermal relaxation times

(0] scalar microelongational function

mg microstretch vector

S = Sk stress tensor component

Sik Kronecker delta
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n unit vector in the direction of the y-axis

2=0n angular velocity

¢ length-related elastic nonlocal
parameter

l external characteristic length scale

a internal characteristic length

€ non-dimensional material property

ay, linear micro-elongation coefficient

1 Introduction

Nanostructured semiconductors are now under develop-
ment in the semiconductor industry, and their behavior
has become a major focus of research in recent years. The
physical, electrical, and optical characteristics of nanostruc-
tures are profoundly affected by the interplay between
property and structure. Nanostructures, which have dimen-
sions on the nanometer scale, have unique properties due to
their small size and large surface area. Thermodynamic and
elastic mechanisms within these materials have been better
understood because of the investigation of nanostructures.
Researchers have developed models to explore the impact of
nano-dimension and structural properties on the behavior
of nano-structures, and these models have been tested using
both experimental techniques and computer simulations.
Since scientists now have a better grasp on how nanostruc-
tures function, exciting new technology possibilities have
opened up. Electronics, optoelectronics, catalysis, energy
storage, sensors, and biomedical devices are just some of
the many applications that have benefited from nanostruc-
tured materials. They are of great interest in the creation of
high-tech materials with improved performance and useful-
ness because of their outstanding qualities. Traditional
continuum mechanics, which treat matter as continuous,
can only describe solids’ macroscopic mechanical behavior
because microelements determine microstructure. Continuity
mechanics must consistently account for microinertia
since macroscopic and microscopic scales are relevant.
In conclusion, semiconductors must be elastic to be consid-
ered thermoelastic. Due to the link between thermoelastic
and electronic deformation (TED and ED). The ED uses
semiconductor crystal lattice photo-generation theory.
Semiconductors microelongate because their internal resis-
tance decreases with temperature. Given this, investigating
how light thermal energy influences material microelonga-
tion and microinertia is critical. This discovery underpins
the photothermal (PT) theory, which states that surfaces
stimulate free electrons during transition phases.
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The traditional deformation medium hypothesis of
microelongation classifies micro-elongated media as follows:
gaseous or non-viscous fluid pores, solid-liquid crystals, and
elastic fiber composites. This suggests that microscopic mate-
rial particles undergo volumetric elongation. Material sites
in the deformation medium shrink and stretch indepen-
dently. The semiconductor’s internal structure changes due
to light’s thermal influence and microelongation parameters.
Microelongation requires thermal deformation, but micro-
polar deformation requires electron rotation [1]. This study
analyzed semiconductor materials using microstretch and
micropolar theories. Microstretch theory becomes microe-
longational for electrons with orthogonal and contracting
degrees of freedom. Eringen [2,3] introduced a micropolar
theory-based microstretch-thermoelasticity model to
account for solid medium microstructure. Microstretch ther-
moelasticity is used to examine elastic substances in many
applications [4-6]. Abouelregal and Marin [7,8] investigated
the nanobeam responses of a dipolar elastic body with tem-
perature-dependent properties. Numerous hydrodynamic
applications of microstretch theory are used to explore Casson
fluid flow in porous media [9,10]. In contrast, Ezzat and Abd-
Flaal [11] examined the flow layer in a viscoelastic porous
medium with a single relaxation time under various viscoe-
lastic conditions. Microelongated elastic media are studied,
and wave propagation is calculated using internal heat source
impact [12,13]. Ailawalia et al. [14-16] investigated the impact
of an internal heat source on plane strain deformation by
acquiring knowledge of microelongated elastic material equa-
tions. Micropolar theory of the elastic body is demonstrated in
the two-phase porosity medium [17,18].

The photoacoustic and photothermal (PT) theory has
been widely adopted in recent years for studies of semi-
conductor materials [19,20]. Numerous authors [21,22]
examined how to effectively personify photoacoustic
and PT technologies through the use of metaphors and
similes. We can investigate the interplay between PT and
thermoelasticity theories by deforming semiconductor
material in two dimensions [23]. According to ED, micro-
cantilever technologies are used to investigate the optical char-
acteristics of semiconductors [24,25]. Different researchers
have developed models that can be used to represent the
interplay of mechanical, optical, thermal, and elastic waves
following the photo-thermoelasticity theory of elastic semicon-
ductor media [26-28]. A photo-thermoelastic excitation model
in the two-temperature theory was investigated. This model
takes into account the dynamic thermal conductivity of elastic
semiconductor media. Abbas et al. [29] employed the dual-
phase delay model with PT interaction. The PT transport pro-
cesses in a semiconductor medium were analyzed by Mahdy
et al. [30] using the microstretch theory while the medium was



DE GRUYTER

rotated. However, the photo-microstretch theory for a semi-
conductor elastic media was investigated by Lotfy and El-Bary
[31] using electro-magneto-thermoelasticity.

Eringen and Edelen [32] developed the nonlocal elas-
ticity hypothesis by applying the principles of global bal-
ancing rules and the second law of thermodynamics in
their work. The theory of nonlocal elasticity [33] initially
focused on screw dislocations and surface waves in solids
as its primary areas of investigation. Chteoui et al [34]
conducted research to study the effect that Hall current
has on nonlocality semiconductor medium to get optical,
elastic, thermal, and diffusive waves. However, Sheoran
et al [3536] studied the nonlocality material using the
thermodynamical vibrations under the effect of magnetic
field with temperature-dependent properties. On the other
hand, Chaudhary et al. [37] investigated the PT interactions
of fiber-reinforced semiconductor material under a dual-
phase-lag model. Biswas [38-40] studied many problems to
obtain the behavior of surface wave propagation in non-
local thermoelastic porous media. Tiwari et al [41-43]
used the memory-dependent derivatives to study non-local
photo-thermoelastic media according to variable thermal
properties using the dual-phase-lag model and sinusoidal
heat source. Singhal et al [44] introduced a comparative
study to obtain the effect of piezoelectric and flexoelectric
effects on wave vibration of different thermoplastic mate-
rials. Nirwal et al. [45] used the piezo-composite medium to
study the secular equation of SH waves with flexoelectric.
Sahu et al [46] studied the surface wave propagation of
magneto-electro-elastic media with functionally graded
properties. On the other hand, Kaur and Singh [47,48]
investigated the memory-dependent derivative and frac-
tional order heat to obtain the wave propagation of a
nonlocality semiconductor medium in the context of photo-
thermoelasticity theory with forced transverse vibrations.
The functionally graded properties and Hall effect of nonlocal
thermoelastic semiconductor according to the Moore-
Gibson-Thompson photo-thermoelastic mode are studied
[49]. Sarkar et al. [50,51] used the dual-phase-lag thermoelastic
models to study the wave propagation of non-local vibrations
semiconducting elastic void medium according to the func-
tionally graded properties. Sharma et al. [52] investigated the
vibrations of a nonlocal thermoelastic with heat exchanger to
obtain the thermal performance. The theory of thermoelasti-
city according to the modified models with vibration analysis
of functionally graded properties is used to investigate the
nonlocal effect on thermoelastic materials [53].

This study investigated the TED and TE deformation
in a microelongated (microelements) stimulated medium.
This study investigated the effects of non-locality, rotational field,
altered thermal conductivity, and photo-thermomechanical
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phenomena under the influence of laser pulses and magnetic
field. By selecting the basic physical fields in a dimensionless
manner, the governing equations can be expressed with the
two-dimensional deformation of the space. Normal-mode ana-
lysis is performed to obtain thorough analytical solutions for the
main variables being studied, taking into account specific con-
ditions at the boundary of the nonlocal medium. Several gra-
phics are employed to compare the waves propagated by the
physical field variables in four different settings. The contexts
encompass the impact of laser pulses, rotational factors, the
effects of thermal memory, magnetic field, and the variation
in thermal conductivity.

2 Theoretical model and basic
equations

The dynamics of electric and magnetic fields, as well as
their interactions, are governed by Maxwell’s equations.
The development of charge and current, their genesis
and expansion, and their mutual impacts are all described
by the equations. In the presence of a main magnetic field

H, the presence of an induced electric field F anda mag-
netic field 7 will be shown by the basic equations. These
equations (without the charge density) express the simpli-
fied form of Maxwell’s equations, which describe the elec-
tromagnetic field in the electrodynamics of an elastic and
evenly conductive material under ideal temperature and
electrical conditions, given as [13,14]:

N - oF N oH
J =curlh - &—, curlE = —p;—,
ot ot 00

N ou N N
E- —yola—’; xH| divH =0, | = Hy0, e, 0),

where T is the current density, U, is the magnetic perme-
ability, and &, is the electric permeability. In this case, the
Lorentz’s force F of electromagnetic field can be obtained as:

Ey = poHow, Ey = 0, E, = —ugHott, H = (0, Hy, 0),

oh . oh ,
I = ‘[E + .UOHOSOW]Jy =0,J, = E UoHogoll,

oL de 5, 0%U gef. @
F=uJ xH)= HoHom - = EallgHo 7, 0, ~HoHo
02w

2172
R

There are four fundamental quantities introduced in
this problem, all of which are presented in Cartesian coor-
dinates (Figure 1): carrier density N (photo-electronic
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according to the plasma wave propagation), the gradient
temperature T (thermal distribution), elastic waves u; (dis-
placement), and the scalar microelongational function ¢.
Under the action of a uniform rotating field (2 = Qn),
directed with unitary n on the y-axis, the fundamental
equations of a non-local semiconductor medium are pro-
vided in a rounded two-dimensional (2D) form. For a body-
force-free semiconductor medium, the rotationally varying
thermal conductivity field equations and constitutive rela-
tions under the impact of magnetic field are as follows
[54,55]:

I) Non-local photo-thermoelastic microelongated consti-

tutive equations are as follows [12,24]:

N 0
o = (Ao@ + Ay, )6y + 2ty ; — V[1 + VOE]TSU

= ((3A + 2w)dnN )6y,
m; = app;, (1 - &Vhay = oy,
.3
s = (1-&VHo' = Aoty = P

)
1+ voa]T—((BA

+ 20dN )8 + Mo,

II) The equation for waves in a connected plasma (2) can
be written as [23]:

@

III) The processes involving microelements determine the
equation of motion and the microelongation equation
for non-local medium under the effect of the magnetic
field, which can be written as [56]:

Conduction band Ec

Fermilevel E 5

Valence band E
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T;- 6pN

)

. d
A+ w5 + pui i + A09; = y[l * oy,
+E = p((1 - &v3i; + {Qx(@xi)};

+ 22x10)y)

1
=Zjpg. (6
ot T PP ®)

R (7]
aogqﬁ - /‘{1(/) - Aouj,j + )/1[1 + Vo —

IV) The non-local model of the heat equation can be expressed
without the presence of a heat source as [16]:

(KT )i - pG|n +13]T'— pTo|n +nri]u~-+ %N
)i — PCgINyg Oat Vol OOat i,i T (7)
= ﬁ]jb(p;
: o ang T a0
where [J = -, p; = 34 + 21y, Kk = #;, and [J; = e

Temperature affects thermal conductivity in a non-local
microelongated semiconductor material. Thermal conduc-
tivity is proportional to temperature, as shown by a linear
function. In this situation, light beams’ thermal influence
simplifies thermal conductivity [57]:

K = Ky(1 + niT), 8

where 7 < 0 is a negligible constant. The reference thermal
conductivity for a temperature-independent medium is
the physical constant K;. The nonlinear components in
thermal conductivity can be transformed into linear ones
using the integral form of Kirchhoffs transform theory of
temperature [57]:

T
1

= — 9

©] K(){K(%)d%. (€)]

¥
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\ H o, (Magnetic field)

Energy band in n-type Silicon material
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v
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F

Carrier propagation

E (Electric field)

“

Figure 1: Geometry of the problem.
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It is possible to express the 2D deformation in terms
of the following quantities in space (xz-plane) and time
coordinates (t) as: U = (u, 0, w)(x,z,t); ¢ = o(x,z,t).

Two-dlmensmnal (2D) basic Egs. (4)-(6) can be simpli-
fied as:

o, P, [, o
Mlaxz * oxoz ox*  9z%
ago 9)oT _ _oN
+ A T _% R 5 (10)
P V[ Yot Jax T “"ox
2u ow
- pla - v 2l - g+ 209
P[( &V YD ot ]
ou  o*w 2w o*w
A+ B 3xaz a_] e
+ Ag— - + -8— |
Aoz V[1 at]az "oz
2w ou
= pla - v %Y g, - 0%
P[( &V Yo w 6t]
9% 62(p] d
— A Age + + vo—|T
(i 2 1@ — Ao V1[ 0 ]
ox 262 ot 12)
_ 1. 0%
= Pa

Different photo-thermoelasticity models (coupled-
dynamical, n =1, ng=17=vy =0, Lord and Shulman
[n1=np=1vy=0,7>0], and Green and Lindsay [GL,
n =1, ny=0,v 27 > 0] are governed by the specified
parameters n; and ng at the thermal relaxation durations
Vo and 7y [58-60]. Incorporating the thermal conductivity
variable into computations can be done by using Egs. (8)
and (9), as shown by the following differentiation
relations:

69
K@ ; = K(T)T i, Ko— Y 3

K T l!
( " (13)

KO ;i = (K(T)T ).

The effects of the map transformation and differentia-
tion allow us to rewrite Eq. (4) as:

- 5
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The non-linear variables were disregarded when sol-
ving for the missing piece of the previous Eq. (13) using the
Taylor expansion:

kK, 00 KKy 00 kK 90
— == —(1+ al)1—
™K 0x; Kot +nT)ox; 7 0x;

K

=—(1-naT+ @I} - .)o—=

T( aT + (nT) )ax] (15)
K90 Kk .06 K 1000 K20
T 0% oxp T ax; T T ox

By applying Eq. (15) to the result of integrating Eq. (14),
we obtain the following:

L DN - (16)

1N+£6)
ot T T

In this scenario, the map transform (9) can be used to
simplify the non-local microelongated heat Eq. (7) as follows:

0~ —|m + Toi]@ - %[nl + noToi]llii + EN
’ k ot) ot Ko ot) ” K()T 17
_ Wl
= 70(p’

where the thermal diffusivity of the nonlocality medium
13% ‘;E.
0

The following non-dimensional quantities provided
help make broad strokes with the numerical simulations:

_ 6y
N_2y+)lN’ (be u)_ (Xl)Eu)
t 5
7 T ) = LW
2u +A _ )’/\@ _ 0jj
2_ =
CT p ;) @ 2[1+A’ l] !,l+)l’ (18)
__pCt . K
§="T0, w=—1s,
Ly pGCr
oLy o, ou
1,0) = = CE= = Q= wQ
W= ey @™ p

With the dimensionless Eq. (18) (without the super-
scripts), the fundamental equations can be rearranged as
follows:

4 oN
at ax,

9 ON
at ax,

9 ON
at ax,

ON ;i

E
0%

ON ;i

E
2%

ON ;

E
2

10N

Tax,

10N

Tax,

10N

Tax,

L Kor
T 0X;’
KKO 00
™K ax]
L K20
T 0X;

(14)

F)
[V2 -&- 82—]N +£0 =0, (19)
ot
272 2 ow
(1- &2+ eoyOHO)— - Qu+ 20—
1
= ﬁ((l + ) - ﬂoH()Z)_ . (0)
o Mgy 4 Tk 09 0196 _oN
pCE (pC3)% ox Yat)ax ~ ax
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ou
(1-8&W2+¢ yOHO)— - Qw ZQE
1 de
= E((A ) - HoHoz)_ , (1)
ToyAg 0 0100 ON
L2v2 + 0)/202 9 [ + Vo_]_ -
pCy (pCr)- 0z ot)oz o0z
62 0
-C3- oy (e Gse + Cgl1 + Vo @ 0, (22)
V2o - n+ra]%—s[n nra]a—+5N
ERFTIFY: 0%¢ ot @3)
- 09
Yot

The displacement components can be introduced in
terms of the potential scalar II(x,z,t) and the vector
space-time ¥(x, z, t) functions as: ¥ = grad IT + curl ¥.
In this case, the system of Eqs. (20)-(23) can be expressed as:

92 92 oY
+ F2—_ vZ + Q2 - + 20—
4 E at2 ot
(24)
‘1+v0a O+ amp-N=0,
0% 92 oI
[[1 + EZF]VZ - a392 - ag[RHﬁ]w - 613 ot =0, (25)
V2 - G- C4a—2 [/ C5V2H + C(;[l + Vgi]@ =0, (26)
ot? ot ’
V2 - |n T i ¢] ena+nra V2T + &N
Yot~ ot Yot~ " %¢2
27)
09
-, =0
Yot

It is possible to rewrite the constitutive relations in 2D
and dimensionless as [24]:

ou ow 0
_ £22 -
(1 E Y )Gxx ox + aQy— oz -1+ Voa ]9 N+ @,
ou ow
1-EWVdo, =a— + — - |1+ vy— ]@ N+ ap,;. (28)
ox 0z
ou ow
1-8VH0, = ay|— + — |,
( E ) Xz 4 oz ax

DE GRUYTER
where
al = Tb),/\AO aZ = L a3 = p_C"Iz‘ E = —)’)zw*]-b
(pCH® ™ pCt’ w’ Kp ’
Pip?w Ty wCt
= ,E = , @ * = 2Qa y
KpQu+ )’ Dp ’
u piC; wCt Kdnw?p
ay = —, G = , &= , € = ,
¢ CTZ 4 2(10 3 D¢ 4 TDray
. Egpw*C} _ MChw*? ) AopCrw™
T K, a aoToy
p.pw* 2T H?
C - VP 0 Ri=1+ equlHlp, a=1+ HoHo

yao pwCr’

3 Normal-mode technique

The following formula can be used to express the solutions
for the considered physical variables M(x, z, t)in terms of
normal modes [39]:

M(x, z, t )= M(x)ebzewt, (29)

The value of I represents the amplitude of M with the
wave number in the z-direction b and i = v/~1. The com-
plex frequency denotes w = wy + i{, where w, and { are
the arbitrary factors. The basic Eqs. (19) and (24-27) are
rewritten as follows using Eq. (29):

(D2 - a1)1\7 + 846 =0, (30
(D% - ADIT + Ag) + A6 + a;d - ;N =0, (3D
(D* = As)Yp — Ayl = 0, (32)
(D* - A4)@ - C5(D* - bHIT + A0 = 0, (33)
(DZ - Aﬁ)é - A7(D2 - bZ)ﬁ + 85]\7 -Agp =0, (34)
(1 - EX(D? - b*)3yx = D + ibayv — A0 - N + a1,
1- EZ(DZ - bz))ﬁzz = aDu + ibw - Az@ -N+ 0,1 (35)
(1 - E¥(D? - b?))oy, = au(ibit + DW).
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where (A3 = Ag)b? = A3Ag)y + (—AsAg + €485)b?
R yw? + A3e485)Cs + (D% AsA; — AsAsAr)ay—
(11=b2+£3+€20),A1=ab2+%—92, N
a+ o AsAsAgb)ay + (b*ArAs + ArAsAAg)m
2 2 *
Ay = b LTH;U)’ o= &22 + (AyAsAg — Age)b® — AjAge))Cs+
+ +
d e oo ((mA2A3A7 = AyA4AD* + A1AsAg + AlA4Ag
D=gr4a= b + G + Cu?, As = Ge(1 + vow), (36) By = | +AAsAg + As(A1As + AsAg) + AgAgAyy |
1t vw 1 +(A3A4 + AgA)As — AAsALA)m
2 = y Uy — )
a+ &’ a+ & + (—AyA3sAsAy + (A3h; + Ayhr)es)b?
Ag = D* + (mw + ngow?), A7 = e(uw + neTow?), + Ay As (A, Ag+
2Qw a X
Ag = e, Ay = ———, 4 = ﬁ AsAg) + (AyAgAg + AsAgAg)Ay + (A3A4Aqa,
a+ &w a+ &w
+ (~AA; - AlAy - A3Ay — AgAyp)Es)ey

The solution to the system of Eqgs. (30)—(34) is obtained

as follows: ((A3AsA; + A3AsCs)b’ay — b*AsCseseq)ay
{D - B,D8 + B,D — ByD* + B,D? @ ) + (AAsAsAy - AA3AgCs)b*-
- Bs}(@,N,6,11,7) = 0, Bs = ) A143(A446 + AsAg) — (A4Ag + a3A5Ag)AgAr)at |-
where + (Ag(A14s + AgAyg)est
(—A3A447 + A3AgCs)bP)e,

By = ~{AA + Gsay — Ay — A3 — Ay — @A - @i},
To facilitate the process, it is advantageous to simplify
(447 - Csaf + Ay + A3 + Ay + Ag)a + ((-b* - A3|  Eq. (37) with the roots: k2 (n =1, 2, 3, 4, 5: Re(k, )> 0) by

= Ag)Cs — AsA7)ay + AyAgCy + AsAg+

B, = . @ RD - D - kD - kD? - kO, oo
—b*Ay — AyAs — AyAy + £)A7 + (A + A3 + AYA - o- -
( 2 2413 2414 4) 7 ( 1 3 4) 6 N, H, ?, w}(x) = 0.
+ay(Ar + A3)Ay + A1Az + AgAyp — €485
The solution expressed in linear form for Eq. (37) is as
(-Gsaj + Ay + Az + Ay)eses + (A(-b* - A follows:
- Ay) + AgCoe + (mAA3Ag + AsAsay+ [6, ¢, I, N, ¥](x)
—A3Ay — Ag(As + Ay) — AgAyy — AsAga, 5 39)
(“AsAls = As(ds + As) = Aot = Aol = 3 [1, b, hoi By, hallQu(h, we.
+ A7(Asay + AyAz + AyAL)+ i=1
B, = - AArb? + (D’a) - AsAs + Azt + Aga))Cs — ArAy The unknown quantities Q; can be formulated when

- AAg - AlA3)ay — AjALAg- the other parameters are in the following form:

A3AsAg — A1AsAg — AgAsAina; — AyAgAy ((AyCs+As)kE + cskit + cok? + ap)

+ A7(A2A3A4 + A3A5a1*) - az*AlAgAG_ = (kis + C4ki6 + Cgki4 + Cekiz + C7) ’
A3AyAg + Ar(ArAs + AyAy + Asap)b? + (—AyAs (Ak{ + ok + ok + ¢3)
hyi = — 6 4 2 )
+ (43 + Ag)al*)bz)Cg - A1A3A, (kl + C4ki + CSki + CGki +¢)
hy; = (&4) _ (AArki + cuk? + c)
i =

_ 5=
(kZ-e) " (kE+ cakf + okt + ok + )
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G = (443 — DAy - Ay — Asay + &),

G = (AhAsAg + Ahsay + ApAsay + AsAsay + Asauty — Aséy
= Ag&y),

G = ~AAsAsay — AsAsayin + AzAgé€y,

€ =G~ Ay — A5 — Ay —

C5 = —b2Cay — AsGsyy — Csaqay + AAs + AjAy + Ajay + AsAy
+ Az + Agay + AgAy,

Cs = DPACsaq + b2Csmmy + AsCsmay — AAsAy — A3
- AAy0 — A3Agen — AgAghy — AgAya,

¢ = ~b?A;Csayay + ArAsAga + AgAgAyay,

Cg = —b2A2C5 - A)A3Cs — AyCsay — A1As — A3As — Asay
+ Cs€y,
Cy = b2A2A3C5 + b2A2C5(11 = b2C584 + AyA3Csay + A1AzAs
+ AAsaq + AzAsay — A3Csey + AsAAgAy,
Go = —b*ArAsCsay + b*AsCsey — AAsAsan — AsAgAypa,

o1 = Ap(—A2A4 — Ayay — Asayt+ey),
G2 = Ap(A A+ Asaay — Ayey).

The components of displacement can be reformulated:

5
- ZQn(knth + ibhyy)e X,

ax) =

5n=1 (40)
W(X) = Y Qn(ibhy, = knhan)e .

n=1

It is possible to write the constitutive Eq. (35) as:
a.XX
5
= 2Qn
n=1

e‘knx,

(hon(k? = D?*ay) = Ay = h3n + ashyy, — ibkahun(az - 1))
1~ EXk} - b?)

% , , C:
_ ZQ (han(agky - bz) = Ay = hsp + amhy, - ibkhan(1 - ay))
- n

1-&4(ki - b%)

n=1
g‘an,

5 . . .
— lb(knth + lbh4n) + kn(lthn - knh4n)

Oy = — ) a,Q e
Xz ngl 4%<n 1- Ez(kr% - bZ)

~knx

4 Applications

When applying specific boundary restrictions to the
free non-local microelongated surface, it is possible to
evaluate arbitrary parameters. Choose your boundary

DE GRUYTER

conditions at [46], and then implement them in one of
the following ways:

Mechanical boundary conditions can be selected, which
can be represented by the normal stress on the non-local
surface x = 0 as [43]:

0-XX(()y Z, t) = _Y7 (42)

where Y is the load force falling on the surface.
For the tangential stress at x = 0, the other mechanical
condition can be picked at will as:

Oxz = 0= 0y, =0. (43)

Because the temperature changes so rapidly (or at
least in a short amount of time) in response to pulsed laser
stimulation, relatively little heat is lost to the environ-
ment. Therefore, pulsed laser excitation is useful for
absorption studies. Some energy-dependent physical
reactions are also possible when a laser beam shines on
a solid surface. A portion of the laser’s energy is con-
verted to heat when it strikes a material. When this hap-
pens, heat waves travel through the material and have
their unique consequences. Consideration is also given to
the fact that laser pulses are incident upon the medium’s
surrounding plane (x = 0). The following temperature
scenario is applicable here [44]:

O(x, z, D)lx=0 = L(z, t) = I®(1 - R)h(2)g(t), (44)
= L —_9,2/DG
h(z) = N3G exp(-2z/R"%),
83 @9
g = WeXp(—th/Vz),

where I represents the laser pulse energy per unit length,
R expresses the surface reflectivity, ¢ is the extinction
coefficient, R¢ denotes the radius of the Gaussian laser
beam, and V represents the rise-time of the laser pulse.

An expression for the elongation condition of the
scalar function could be:

@ =0. (46)

After some time, the carriers will disperse close enough
to the surface of the sample to be subject to recombination.
This allows us to formulate the following expression for the
carrier density boundary condition [47]:

a _ _ﬂ’ 47
dx Dg
where § is the recombination speed of the carrier charge.
Using the values of 8, G, Gy, @, and N, yields:
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i 0 (hon(k? = bPaz) — Ay — hgn + @ihun — ibkghun(az - 1)
b 1- &k - b)
= Y(s),
5
Y bQka(hy - 1) + (1 + kHAs = 0,

n=1

5
Y —knQu(b, ) = L(z, 1),

n=1

5
Z hinQn(b, w) = 0,

n=1

. (48)

5
Y hanknQu(b, ) = =2

n=1 Dg

5 Particular cases

1) The non-local magneto-thermoelasticity theory of rotating
microelongation is derived by taking into account the mod-
ification of thermal conductivity and ignoring the effect of
photo-electronic plasma (ie., N = 0) [14,15].

2) When the elongation parameters ag, Ay, and A, are dis-
regarded, the action of the magneto-photo-electronics plasma
impact yields the rotational non-local photo-thermoelasticity
theory with the variable thermal conductivity.

3) When the non-local component (i.e. £ = 0). is removed,
models of rotating magneto-photo-thermoelasticity are
derived, which include elongation and temperature-
dependent thermal conductivity.

4) When the angular velocity is ignored, the non-local
magneto-photo-thermoelasticity theory predicted by the
variable thermal conductivity is confirmed by observa-
tions of elongation (i.e. 2 = 0) [20,22].

5) In the presence of the parameter H, in this case, the
problem is studied with the effect of a magnetic field and
the rotational non-local photo-thermoelasticity model
appears under the effect of a laser pulse.

6) When the thermal conductivity of the medium does not
vary on temperature, the elongation rotational non-
local magneto-photo-thermoelasticity model is obtained
(i.e. m = 0, and hence, K = Kj).

Maps can be used to represent temperatures hefore

conversion, and the relationship between and the maps’
transform is represented by Eqgs. (8) and (9) as:
17 n oxl. 1f 1
= — + =T+=T2= =T+ —| - — 49
0 KO_([KO(l AT = T+ T Z[T n] o 49

or

1 1 T
T= 5[1/1 +210 - 1] = E[W -1]. 50)
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6 Discussions of the numerical
results

To gain a deeper understanding of the issue and to shed
light on how relaxation durations, rotation, non-local para-
meters, and thermal conductivity influence the physical
field variables under the propagating waves, a numerical
analysis is performed with the help of MATLAB (2022a)
software. For our numerical calculations, we have settled
on a polymer silicon (Si, n-type) semiconductor material.
The physical constants of Si media, shown above, are
expressed in SI units [30,31]:

A =3.64 x 10%° N/m?, U = 5.46 x 101° N/m?, p=
2,330 kg/m®, Ty = 800K, 7=5x1075s,d, = -9 x10731 md,
Dp=25%x103m%s, E;=111eV, 3§=2mfs, G=
695 J/(kg K), ay, = 0.04 x 103K, ay, = 0.017x 103 K, K =
150 Wm™ K™, Ay = 0.5 x 10°° Nm™2, t = 0.001,

j=02x101Pm? y=0779x10°N, k=10""Nm™>,
fig =100 m=3, A =05x10°Nm=2, q,=0.779 x 107 N,
7 = 0.00005, v, = 0.0005, RS =045mm, V=10ns, ¢ =
0.001m™, I =10], g, = 47 x 107 H/m.

To acquire wave propagations of the relevant physical
variables in 2D according to a tiny value of time, numerical
computations are performed here using the dimensionless
fields. Numerical calculations necessitate the inclusion
of extra problem constants such as z=-1, b=1, L =1,
(= 0.05,Y = 2, and wp = 2.5 in the range 0 < x < 5.

6.1 Impact of variable thermal conductivity
parameter

Figure 2 (composed of six subfigures) depicts the influence
of various non-positive parameters 77 on the wave propa-
gation of the main physical field distributions vs the hor-
izontal distance for the range of 0 < x < 10. This diagram
compares three different scenarios. The first is met when
the medium is temperature independent, denoted when
7= 0(K = Kp) [61]. When 7 =-0.3 and 7 = -0.6, respec-
tively, the second and third scenarios illustrate how the
medium responds to a change in temperature. The GL
model dictates a periodic propagation of thermal, non-local
elongation, elastic, plasma, and mechanical waves when
t=0.001 and 2 = 0.5 under the influence of laser pulses
when V=12 and magnetic fields according to the GL
model. In the case of temperature, the thermal wave is
initially positive at the free surface, before increasing in
the initial range towards the edge and eventually reaching
its maximum value as a result of the thermal loads
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Figure 2: Variation of main quantities versus horizontal distance and different values of variable thermal conductivity when the laser pulse rise-time
V = 1.2 under the impact of magnetic field according to the GL model for rotational non-local medium.

introduced by the laser beams and mechanical load. As a
result, the thermal wave steadies when it reaches the
minimum value in the second range and aligns with the
zero line. As the parameter is raised, a large increase is
observed in the magnitude of the temperature distribution.
Plasma waves, which have a carrier density with an optoe-
lectronic distribution, share the same properties as thermal

waves. In contrast, increasing the parameter reduces the
magnitude of the dispersion of plasma waves, which agrees
with experimental results [62]. The second inset shows that
for all three values of the parameter 77, the microelongation
distribution begins at zero at the boundary. Microelongation
function obtains its maximum value early on, close to the
non-local surface, and then its magnitude of profile begins to
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diminish with increasing distance, as seen in the inset
figure. As distance is increased, the elastic wave (displace-
ment) solution curves begin in each case with a different
initial magnitude. Normal displacement is highly sensitive
to the variable thermal conductivity parameter, as seen by a
decrease in numerical values as the parameter’s value is
increased. The normal stress fluctuations with distance
are depicted in the fifth inset for all three cases (7 = 0,
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7 =-0.3, and 7 = —0.6). The mechanical loaded boundary
conditions of the problem are accounted for by the fact that
the normal stress magnitudes start positive, increase to their
maximums, then decrease and increase again to their zero-
point values. In all cases, normal stress values are greatest
close to the source and decrease steadily to zero thereafter.
The sixth subfigure uses three different values of variable
thermal conductivity (7 = 0, 7 = —0.3 and 7 = —0.6) to show

1
N

Microelongation (¢)

0 2 4 6 8

Distance(x)

10

N

©
o

Carrier density (N)

Distance(x)

XZ)

Tangent stress (o

0 2 4 6 8

Distance(x)

10

Figure 3: Variation of main quantities versus horizontal distance of different values of photo-thermoelasticity models under the effect of magnetic
field and laser pulse rise-time V = 1.2 when 7 = 0.6 for rotational non-local medium.
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how the tangential stress varies with the distance. The non-
local boundary condition ensures that the tangential stress
always begins at zero magnitude. In the inset, we can see
that as the values of the variable thermal conductivity are
increased, the tangential stress also rises numerically.
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6.2 Photo-thermoelasticity models

The variations of the fundamental physical variables are
shown with distance in Figure 3, and the numerical calcu-
lations are carried out under the influence of laser pulses

Microelongation (¢)

0 2 4 6 8 10

Distance(x)

Carrier density (N)

Distance(x)

0 2 4 6 8 10
Distance(x)

Figure 4: Variation of main quantities versus horizontal distance and different values of the laser pulse rise-time V when 7 = 0.6 under the impact of

magpnetic field according to the GL model for rotational non-local medium.
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Figure 5: Variation of main quantities versus horizontal distance in the absence and presence of magnetic field under the effect of laser pulse rise-time
V =12 when 7 = 0.6 according to the GL model for rotational non-local medium.

and magnetic field. These fluctuations are displayed for
three distinct values of the relaxation times according to
the photo-thermoelasticity models. The non-local boundary
condition is satisfied for the rotation (2 = 0.5) when the
elongation-nonlocality qualities exhibit the same pattern

of variations when the solution curves for the three dif-
ferent relaxation time values originate from the surface
(0 < x <10) when 7 = -0.6. In Figure 3, all of the solution
curves coincide with a line with zero magnitudes,
even though the distances between the three values



14 — Merfat H. Raddadi et al. DE GRUYTER

Microclongation (@)

Temperature (T)

Displacment (u)
Carrier density (N)

0.4

XX
o
o N
X7

o
(V)

Normal Stress (o
Tangent stress (o

°
W n
¥

Figure 6: Changes in the fundamental physical fields as a function of horizontal and vertical distances, as well as changing thermal conductivity
according to the DPL model under the effect of magnetic field and laser pulse.

and the equilibrium state are getting further apart. It 6.3 Impact of the laser pulse rise-time
should come as no surprise that the relaxation times

have a significant impact on the dispersion of the waves The maximal laser energy density at the silicon surface is
that were studied. related not only to the pulse energy and the spot size of the



DE GRUYTER

picosecond laser pulses but also to the rise-time of these
pulses. The third group (Figure 4) displays, under the influ-
ence of a magnetic field, the influence of the laser pulse
rise-time parameter V on the investigated system variables
versus location when @ = 0.5 under the effect magnetic
field according to the GL model for three different values
of V equal to 0.1, 0.2, and 0.3. As can be seen in the inset
subfigures, the boundary conditions for all physical quan-
tities are satisfied, and all curves coincide as x tends to
infinity. We discover that the rise-time parameter V of
the laser pulse has a significant effect (PT influence) for
distances x between 0 and 10. The greatest temperature of
the structure is consistently found in the front of the heat
wave, and it decreases progressively with increasing depth
within the medium, as shown by the numerical data. An
unusual mechanical force is generated by the femtosecond
laser. High-quality surfaces can be made with femtosecond
lasers with minimal collateral damage compared to other
methods, such as continuous or long-pulse laser heat gen-
eration. This is because of the mechanisms behind the gen-
eration of mechanical forces and the rapid deformation of
lattices. The ultrafast PT response over a range of around
three orders of magnitude can be explained by the PT
mechanical model, which accounts for all of these effects
starting in the femtosecond timescale, where electron-to-phonon
interactions predominate. Furthermore, it can account for such
behavior on timescales of tens of picoseconds, where phonon-to-
phonon interactions predominate.

6.4 Impact of the magnetic field

Figure 5 is a scatter plot used to analyze the effect of the
magnetic field on all of the distributions in the medium.
Within the entire study region, we compare two examples
(without and with magnetic field) at the small-time scale
according to the GL theory for rotational media when
under the action of the laser pulse. Figure 5 (which consists
of six subfigures) depicts qualitative behavior that has
been demonstrated. Figure 5 shows that the action of the
magnetic field leads to an increase in all the field variables
measured. Those two areas are the optoelectronics subfield
and the elongation function. There is a greater impact of
the external magnetic field on all distributions.

6.5 The 3D representation

The changes in the nonlocality of fundamental physical
fields as a function of horizontal and vertical distance
are depicted in a three-dimensional plot shown in Figure 6.

Optoelectronic-thermomagnetic effect of a semiconductor = 15

These simulations were performed to investigate the effect of
magnetic field and laser pulse on the interaction between
mechanical-plasm—elastic waves in silicon according to the
GL model under the effect of rotation. All of these distribu-
tions tend to shrink as the time and space window widens,
eventually settling into a new equilibrium. Elastic—thermal
plasma and mechanical waves are particularly sensitive to
the magnetic field and laser pulse effect on the interaction
between electron and hole charge carrier fields in the initial
region near the boundary.

7 Conclusion

Two-dimensional deformation of a homogeneous, isotropic,
microelongated semiconducting half-space is the primary
focus of the mentioned research, which is conducted within
the context of photo-thermoelasticity. The models in this
work allow for a range of thermal conductivities, and the
authors hope to learn more about how changing this para-
meter, along with thermal relaxation times, time rise of
laser pulse and magnetic field, affects other physical quan-
tities. A thermoelastic model was employed to make these
predictions because of the laser source’s finite width and
lifetime. The laser pulse was employed to heat the semicon-
ductor material, and its time-dependent behavior con-
cerning its long-range thermoelastic characteristics was studied.
The results indicate that the thermal conductivity parameter
has a significant impact on the wave propagation behavior of
the physical quantities over a broad range. Variations in the
thermal relaxation time are found to increase the magnitudes
of the principal physical fields. In addition, there is a natural
tendency for all waves traveling within the fundamental fields
to balance out. The distribution of physical quantities within a
nonlocality medium is profoundly affected by the existence of a
magnetic field in the microelongated semiconductor medium,
together with different values of relaxation time. It is also dis-
covered that the analyzed physical variables wave propagation
is significantly affected by the time rias of laser pulse para-
meter. It was determined that the laser pulse’s rising time is
a significant factor that meaningfully influences all other fields.
Microelongated semiconductor silicon is worth investigating
further because of its potential applications in modern elec-
tronic devices like smartphones, sensors, computer processors,
medical equipment, diodes, accelerometers, inertial sensors,
and electric circuits.
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