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Abstract: In this article, we propose a novel new iteration
method and homotopy perturbation method (HPM) along
with the Elzaki transform to compute the analytical and
semi-analytical approximations of fractional Airy’s-type par-
tial differential equations (FAPDEs) subjected to specific
initial conditions. A convergent series solution form with
easily commutable coefficients is used to examine and com-
pare the performance of the suggested methods. Using
Maple graphical method analysis, the behavior of the esti-
mated series results at various fractional orders ς and its
modeling in two-dimensional (2D) and three-dimensional
(3D) spaces are compared with actual results. Also, detailed
descriptions of the physical and geometric implications of
the calculated graphs in 2D and 3D spaces are provided.
As a result, the obtained solutions of FAPDEs that are
subject to particular initial values quite closely match
the exact solutions. In this way, to solve FAPDEs quickly,
the proposed approaches are considered to be more accu-
rate and efficient.

Keywords: Elzaki transform, new iterative method, Caputo
derivative, homotopy perturbation method, fractional order
Airy’s-type equation

1 Introduction

Recent years have seen a significant increase in interest in
fractional calculus (FC) among scholars in various study
topics. The integration and differentiation are generalized
to any fractional order using FC [1]. The ideas of n-fold
integration and differentiation having integer order are
unified and generalized by the idea of integrals and derivatives
of arbitrary order. As the response of the fractional-order
system eventually converges to the integer-order equations,
the theory of fractional differentiation is currently receiving
a lot more attention.

Global features, which are not present in classical-
order models, are the most iterative aspect of these models.
Numerous areas of science, including financial mathe-
matics, fluid dynamics, ecology, solid mechanics, biological
diseases, and other fields, have given considerable atten-
tion to FC [2–8].

FC and fractional differential equations (FDEs) have
made numerous remarkable developments in recent years,
which have been studied. By creating models employing
the FC theory, some genuine phenomena that appear in
engineering and scientific areas can be convincingly
demonstrated in the studies by Li et al. [9] and and Jin
and Wang [10]. These include, but are not limited to,
time-fractional wave equations, time-fractional telegraphic
equations, time-fractional heat-like equations, fractional
Airy’s-type partial differential equations (FAPDEs), and
others. Solving such fractional differential equations is
quite easy because these equations are described by linear
and nonlinear differential equations and have so many
scientific applications [11,12]. The fundamental benefit of
FDEs is that they generate accurate and reliable solutions
because they are global operators [13]. Due to the signifi-
cance of this class of differential equations, we encourage
readers to review the work in [14–21] for some recent
results. Fractional partial differential equations (FPDEs)
are the most efficient kind of partial differential equations
(FDEs) for simulating a range of complex processes in
applied sciences. Two important models that are repre-
sented by FPDEs are the groundwater float and the El
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Nino-Southern oscillation mannequin. The mathematical
models of extended FPDE are essential for comprehending
natural processes. In order to determine the precise
dynamics of the described events, researchers have tried
to numerically or analytically solve these models [22–25].

George Biddell Airy, interested in optics, was the first
to use the name “Airy differential equation” [26]. Calcu-
lating the amount of light present near a caustic surface
also caught his attention. Many researchers agree that the
Airy equation, which is a traditional mathematical physics
equation, plays a crucial role in many different scientific
domains. Numerous applications of the Airy equation can
be found in many areas, especially in describing physical phe-
nomena. Although its use is not just restricted to optics, mod-
eling the diffraction of light and other problems is one of its
applications. One of the first models of water waves, Airy’s
partial differential equation, depicts a modest wave traveling
in “wave trains” in deep water. It is one of the linear partial
differential equations utilized in numerous real applications
[27]. A typical example of a linear dispersive equation is Airy’s
partial differential equation [28]. In the early days of mathe-
matical modeling of water waves, it was thought that the wave
height was small as compared to the water. Such equations
are somewhat satisfactory in this sense because their solutions
resemble waves moving along the water’s surface at a steady
speed and with a fixed profile, as one observes in nature [29].

Several authors have described the analysis of the
solution of Airy’s-type differential equations (ADEs) using
various methods over the last few years, including com-
bining the knowledge of the mean and the variance and
the principle of maximum entropy [30], classical and non-
classical Lie symmetry analysis and some technical calcu-
lations [31], the variational iteration method (VIM) and the
steepest descent method [26]. The result of the solution to
ADEs equation based on the energy estimations utilizing
weighted Sobolev norms was also demonstrated [32], as
well as its existence, uniqueness, and regularity. All of
these techniques, though, have their own drawbacks. The
analytical and semi-analytical approximate solutions of the
FAPDEs, were found using two different techniques to
obtain around these problems:

(i) The FAPDEs of the form:
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In the current study, we use both the innovative itera-
tive approach offered by Daftardar-Gejji and Jafari [33] and
the homotopy perturbation transform method introduced
by Madani et al. [34] and Khan andWu [35]. Daftardar-Gejji
and Jafari introduced a new iterative method for finding
numerical solutions to nonlinear functional equations in
2006 [33,36]. Many nonlinear differential equations of integer
and fractional order [37] and fractional boundary value pro-
blems [38] have been solved using the iterative method. We
combine the iterative method with Elzaki transform (ET) [39]
in the first method. The traditional Fourier integral is the
source of the ET. Tarig Elzaki developed the ET to make it
easier to solve ordinary and partial differential equations in
the time domain. In a simple manner, the second strategy
combines the Elzaki transformation, the homotopy perturba-
tion method (HPM), and He’s polynomials. He [40,41] intro-
duced the HPM, which is a series expansion approach for
solving nonlinear partial differential equations. To ensure
convergence of the approximation series over a certain
interval of physical parameters, the HPM employs a so-called
convergence-control parameter. The importance of this
research is finding an approximate solution to the Airy’s-
type equation having fractional order using two novel
methods that are comparably new, as well as effective in
comparing the accurate solution of the proposed models to
fourth-order approximations for a range of fractional deri-
vative values. Researchers can use this study as a funda-
mental reference to examine these strategies and employ
it in many applications to obtain accurate and approxi-
mative results in a few easy steps. The unique aspect of
this work is the description of two novel techniques for
fractional Airy’s-type equation with minimal and consecu-
tive steps.

The following is our article’s outline: Section 2 pro-
vides the fundamental definitions of FC; Section 3 pre-
sents the fundamental concept of NITM, whereas
Section 4 provides the general approach of HPTM; In
Section 5, we discussed the uniqueness and convergence
results; to show the applicability of the technique under
consideration, numerical problems are given in Section 6;
in Section 7, conclusions of the main results are discussed
in brief.

2 Basic definitions

In this part, we show FC basic results related to our study.
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2.1 Definition

The fractional Abel–Riemann derivative is as follows
[42–44]:
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2.2 Definition

The fractional integration operator in Abel–Riemann sense
is given as follows [42–44]:
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2.3 Definition

The Caputo fractional derivative is given as follows [45]:
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2.4 Definition

The ET of a function is given as follows [42,43]:
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2.5 Definition

The Caputo operator ET is defined by the following equa-
tion [42,43]:
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3 Methodology of NITM

Here, the general solution of the FPDEs that are subjected
to a certain initial guess reads
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where N and M are, respectively, the linear and nonlinear
components.

On employing the ET to Eq. (8), we obtain
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By employing the inverse of the ET to Eq. (11), we obtain
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By iterative technique, we have
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and the nonlinear term N is decomposed as follows:
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Inserting Eqs (13)–(15) into Eq. (12), we have
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By means of an iterative formula, we have
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Finally, the series form solution to Eq. (8) for m-term is
given as
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4 Methodology of HPTM

Here, the general solution of the FPDEs that are subjected
to a certain initial guess reads
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By applying the ET to Eq. (21), we obtain
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Now in series form, the perturbation technique having
parameter ε is stated as follows:
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The calculation of nonlinear terms is as follows:
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Thus, ϕ λ,k� ( ) are easily calculated showing that
they easily lead to a convergent series. For →ε 1, we
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5 Applications

5.1 Example

Let us assume the 1D FAPDEs for =β 1:
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( ( ) )

(36)

By implementing the HPTM, we obtain

∑

∑

= +

+
⎧
⎨
⎩

⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥
⎞

⎠
⎟
⎫
⎬
⎭

=

∞

−

=

∞

ε w ϕ λ πϕ e

ε E s E ε H w

, cos

.

n

n
n

πϕ

ς

n

n
n

0

1

0

( ) ( ( ) )

( )

(37)

Thus, by equating equivalent powers of ε yields

= +
=

=
+

+
=

=
− −

+
=

=
− −

+
⋮

−

−

−

ε w ϕ λ πϕ e

ε w ϕ λ E s E H w

π πϕ e λ

ς

ε w ϕ λ E s E H w

π πϕ e λ

ς

ε w ϕ λ E s E H w

π πϕ e λ

ς

: , cos ,

: ,

sin

Γ 1

,

: ,

cos

Γ 2 1

,

: ,

sin

Γ 3 1

,

πϕ

ς

πϕ ς

ς

πϕ ς

ς

πϕ ς

0

0

1

1

1

0

3

2

2

1

1

6 2

3

3

1

2

9 3

( ) ( )

( ) [ { ( ( ))}]

( ( ) )

( )

( ) [ { ( ( ))}]

( ( ) )( )

( )

( ) [ { ( ( ))}]

( ( ) )( )

( )

(38)

So, the series solution takes the following form:

∑=
=

∞

ϕ λ ε w ϕ λ, , .

n

n
n

0

�( ) ( ) (39)

Hence,

= + +
+

+

−
−
+

−
−
+

+ ⋯

ϕ λ πϕ e
π πϕ e λ

ς

π πϕ e λ

ς

π πϕ e λ

ς

, cos

sin

Γ 1

cos

Γ 2 1

sin

Γ 3 1

.

πϕ

πϕ ς

πϕ ς

πϕ ς

3

6 2

9 3

�( ) ( )
( ( ) )

( )

( ( ) )( )

( )

( ( ) )( )

( )

(40)

For =ς 1, we obtain

= + +
+

−
−

−
−

+ ⋯

ϕ λ πϕ e
π πϕ e λ

π πϕ e λ

π πϕ e λ

, cos

sin

1!

cos

2!

sin

3!

.

πϕ

πϕ

πϕ

πϕ

3

6 2

9 3

�( ) ( )
( ( ) )

( ( ) )

( ( ) )

(41)

(Figure 1)
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5.2 Example

Let us assume the 1D FAPDEs for = −β 1:

∂
∂

= −
∂

∂
ϕ λ

λ

ϕ λ

ϕ

, ,

,

ς

ς

3

3

� �( ) ( )
(42)

having initial guess

=ϕ ϕ, 0 sin .�( ) ( ) (43)

On employing the ET to Eq. (31), we have

= + ⎡
⎣⎢
−

∂
∂

⎤
⎦⎥

E ν ϕ λ s ϕ s E
ϕ λ

ϕ
, sin

,

.

ς2

3

3

�
[ ( )] ( ( ))

( )
(44)

By applying the inverse of the ET, we obtain

= +
⎡
⎣⎢

⎡
⎣⎢
−

∂
∂

⎤
⎦⎥
⎤
⎦⎥

−ν ϕ λ ϕ E s E
ϕ λ

ϕ
, sin

,

.

ς1

3

3

�
( ) ( )

( )
(45)

By applying the NITM, we obtain

=

=
⎡
⎣⎢

⎧
⎨
⎩
−

∂
∂

⎫
⎬
⎭
⎤
⎦⎥

=
+

−

ϕ λ ϕ

ϕ λ E s E
ϕ λ

ϕ

ϕ λ

ς

, sin ,

,

,

cos

Γ 1

,

ς

ς

0

1

1

3

0

3

�

�
�

( ) ( )

( )
( )

( )

( )

=
⎡
⎣⎢

⎧
⎨
⎩
−

∂
∂

⎫
⎬
⎭
⎤
⎦⎥

=
−

+

−ϕ λ E s E
ϕ λ

ϕ

ϕ λ

ς

,

,

sin

Γ 2 1

,

ς

ς

2

1

3

1

3

2

�
�

( )
( )

( )( )

( )

=
⎡
⎣⎢

⎧
⎨
⎩
−

∂
∂

⎫
⎬
⎭
⎤
⎦⎥

=
−

+

−ϕ λ E s E
ϕ λ

ϕ

ϕ λ

ς

,

,

cos

Γ 3 1

,

ς

ς

3

1

3

2

3

3

�
�

( )
( )

( )( )

( )

⋮

Thus, the series solution takes the following form:

Figure 1: Plot of numerical solution vs ϕ vs λ using some different values of ς and caption of subfigure can be (a) =ς 1, (b) =ς 0.75, (c) =ς 0.50, and
(d) =ς 0.25.
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= + + +

+ ⋯

= +
+

−
+

−
+

+ ⋯

ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ

ϕ λ

ϕ λ ϕ
ϕ λ

ς

ϕ λ

ς

ϕ λ

ς

, , , , ,

, ,

, sin

cos

Γ 1

sin

Γ 2 1

cos

Γ 3 1

.

n

ς

ς ς

0 1 2 3

2 3

� � � � �

�

�

( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( )

( )

( )( )

( )

( )( )

( )

(46)

For =ς 1, we obtain

= ⎡
⎣⎢

− + + ⋯ ⎤
⎦⎥

+ ⎡
⎣⎢

− + + ⋯ ⎤
⎦⎥

ϕ λ ϕ
λ λ

ϕ λ
λ λ

, sin 1

2! 4!

cos

3! 5!

.

2 4

3 5

�( ) ( )

( )

(47)

By implementing the HPTM, we obtain

∑ ∑= +
⎧
⎨
⎩

⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥
⎞

⎠
⎟
⎫
⎬
⎭=

∞
−

=

∞

ε w ϕ λ ϕ ε E s E ε H w, sin .

n

n
n

ς

n

n
n

0

1

0

( ) ( ( )) ( ) (48)

Thus, by equating equivalent powers of ε yields

=

= =
+

= =
−

+

= =
−

+
⋮

−

−

−

ε w ϕ λ ϕ

ε w ϕ λ E s E H w
ϕ λ

ς

ε w ϕ λ E s E H w
ϕ λ

ς

ε w ϕ λ E s E H w
ϕ λ

ς

: , sin ,

: ,

cos

Γ 1

,

: ,

sin

Γ 2 1

,

: ,

cos

Γ 3 1

,

ς

ς

ς

ς

ς

ς

0

0

1

1

1

0

2

2

1

1

2

3

3

1

2

3

( ) ( )

( ) [ { ( ( ))}]
( )

( )

( ) [ { ( ( ))}]
( )( )

( )

( ) [ { ( ( ))}]
( )( )

( )

(49)

So, the series solution takes the following form:

∑=
=

∞

ϕ λ ε w ϕ λ, , .

n

n
n

0

�( ) ( ) (50)

Hence,

= +
+

−
+

−
+

+ ⋯

ϕ λ ϕ
ϕ λ

ς

ϕ λ

ς

ϕ λ

ς

, sin

cos

Γ 1

sin

Γ 2 1

cos

Γ 3 1

.

ς ς

ς

2

3

�( ) ( )
( )

( )

( )( )

( )

( )( )

( )

(51)

Figure 2: Plot of numerical solution vsϕ vs λ using some different values of ς and caption of subfigure can be (a) exact solution, (b) proposed method
solution, (c) 3D behavior of the proposed method solution when =ς 1, 0.8, 0.6, 0.4, and (d) 2D behavior of the proposed method solution
when =ς 1, 0.8, 0.6, 0.4.
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For =ς 1, we obtain

= ⎡
⎣⎢

− + + ⋯ ⎤
⎦⎥

+ ⎡
⎣⎢

− + + ⋯ ⎤
⎦⎥

ϕ λ ϕ
λ λ

ϕ λ
λ λ

, sin 1

2! 4!

cos

3! 5!

.

2 4

3 5

�( ) ( )

( )

(52)

The exact solution reads

= +ϕ λ ϕ λ ϕ λ, sin cos cos sin�( ) ( ) ( ) ( ) ( ) (53)

(Figure 2 and Table 1, Table 2)

5.3 Example

Let us assume the 1D FAPDEs as follows:

∂
∂

=
∂

∂
ϕ λ

λ
ϕ λ

ϕ λ

ϕ

,

,

,

,

ς

ς

3

3

�
�

�( )
( )

( )
(54)

having initial guess

= −ϕ ϕ, 0 1 .

1

2�( ) ( )( ) (55)

By employing the ET to Eq. (54), we have

= − + ⎡
⎣⎢

∂
∂

⎤
⎦⎥

E ϕ λ s ϕ s E ϕ λ
ϕ λ

ϕ
, 1 ,

,

.

ς2

3

3

1

2� �
�

[ ( )] (( ) ) ( )
( )

( ) (56)

By applying the inverse of the ET, we obtain

= − +
⎡
⎣⎢

⎡
⎣⎢

∂
∂

⎤
⎦⎥
⎤
⎦⎥

−ϕ λ ϕ E s E ϕ λ
ϕ λ

ϕ
, 1 ,

,

.

ς1

3

3

1

2� �
�

( ) ( ) ( )
( )

( ) (57)

By applying the NITM, we obtain

Table 1: Error comparison of HPTM and NITM solution for Example 2

ϕ λ ∣∣ ∣∣Exact‒NITM ∣∣ ∣∣Exact‒NITM ∣∣ ∣∣Exact‒HPTM ∣∣ ∣∣Exact‒HPTM

0.5 ×1.45796785 10

‒02 ×2.0000000 10

‒10 ×2.86844810 10

‒03 ×2.0000000 10

‒10

1 ×8.85201540 10

‒03 ×1.0000000 10

‒10 ×1.76023770 10

‒03 ×1.0000000 10

‒10

1.5 ×9.57070100 10

‒04 ×2.0000000 10

‒10 ×2.21059600 10

‒04 ×2.0000000 10

‒10

2 ×7.17219920 10

‒03 ×2.0000000 10

‒10 ×1.37224160 10

‒03 ×2.0000000 10

‒10

2.5 ×1.35454641 10

‒02 ×1.0000000 10

‒10 ×2.62957010 10

‒03 ×1.0000000 10

‒10

0.1 3 ×1.66023269 10

‒02 ×2.0000000 10

‒10 ×3.24308820 10

‒03 ×2.0000000 10

‒10

3.5 ×1.55943611 10

‒02 ×2.0000000 10

‒10 ×3.06258530 10

‒03 ×2.0000000 10

‒10

4 ×1.07683518 10

‒02 ×1.0000000 10

‒10 ×2.13225460 10

‒03 ×1.0000000 10

‒10

4.5 ×3.30587450 10

‒03 ×2.0000000 10

‒10 ×6.79873600 10

‒04 ×2.0000000 10

‒10

5 ×4.96599630 10

‒03 ×1.0000000 10

‒10 ×9.38964100 10

‒04 ×1.0000000 10

‒10

0.5 ×2.15888208 10

‒02 ×1.100000 10

‒09 ×4.76073760 10

‒03 ×1.1000000 10

‒09

1 ×1.30065763 10

‒02 ×7.0000000 10

‒10 ×2.91378210 10

‒03 ×7.0000000 10

‒10

1.5 ×1.23986850 10

‒03 ×1.0000000 10

‒10 ×3.53431300 10

‒04 ×1.0000000 10

‒10

2 ×1.08304025 10

‒02 ×6.0000000 10

‒10 ×2.29345200 10

‒03 ×6.0000000 10

‒10

2.5 ×2.02490132 10

‒02 ×1.0000000 10

‒09 ×4.37881820 10

‒03 ×1.0000000 10

‒09

0.2 3 ×2.47099594 10

‒02 ×1.3000000 10

‒09 ×5.39209700 10

‒03 ×1.3000000 10

‒09

3.5 ×2.31210456 10

‒02 ×1.3000000 10

‒09 ×5.08520240 10

‒03 ×1.3000000 10

‒09

4 ×1.58712935 10

‒02 ×8.0000000 10

‒10 ×3.53327290 10

‒03 ×8.0000000 10

‒10

4.5 ×4.73569530 10

‒03 ×3.0000000 10

‒10 ×1.11627500 10

‒03 ×3.0000000 10

‒10

5 ×7.55936640 10

‒03 ×4.0000000 10

‒10 ×1.57402600 10

‒03 ×4.0000000 10

‒10

0.5 ×2.70534724 10

‒02 ×4.0000000 10

‒09 ×6.37209510 10

‒03 ×4.0000000 10

‒09

1 ×1.61930500 10

‒02 ×2.4000000 10

‒09 ×3.89044970 10

‒03 ×2.4000000 10

‒09

1.5 ×1.36800430 10

‒03 ×3.0000000 10

‒10 ×4.56286500 10

‒04 ×3.0000000 10

‒10

2 ×1.37919766 10

‒02 ×1.9000000 10

‒09 ×3.08959160 10

‒03 ×1.9000000 10

‒09

2.5 ×2.55752007 10

‒02 ×3.6000000 10

‒09 ×5.87902990 10

‒03 ×3.6000000 10

‒09

0.3 3 ×3.10967236 10

‒02 ×4.5000000 10

‒09 ×7.22907660 10

‒03 ×4.5000000 10

‒09

3.5 ×2.90046840 10

‒02 ×4.3000000 10

‒09 ×6.80919330 10

‒03 ×4.3000000 10

‒09

4 ×1.98112863 10

‒02 ×3.0000000 10

‒09 ×4.72218190 10

‒03 ×3.0000000 10

‒09

4.5 ×5.76739480 10

‒03 ×1.0000000 10

‒09 ×1.47901590 10

‒03 ×1.0000000 10

‒09

5 ×9.68855610 10

‒03 ×1.3000000 10

‒09 ×2.12626490 10

‒03 ×1.30000000 10

‒10
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= −

=
⎡
⎣⎢

⎧
⎨
⎩

∂
∂

⎫
⎬
⎭
⎤
⎦⎥

=

⎛
⎝

⎞
⎠

+ −

−

−

ϕ λ ϕ

ϕ λ E s E ϕ λ
ϕ λ

ϕ

λ

ς ϕ

, 1 ,

, ,

,

Γ 1 1

,

ς

ς

0

1

1

0

3

0

3

3

8

2

1

2�

� �
�

( ) ( )

( ) ( )
( )

( )( )

( )

=
⎡
⎣⎢

⎧
⎨
⎩

∂
∂

⎫
⎬
⎭
⎤
⎦⎥

=

⎛
⎝

⎞
⎠

+ −

−

−

ϕ λ E s E ϕ λ
ϕ λ

ϕ

λ

ς ϕ

, ,

,

63

Γ 2 1 1

,

ς

ς

2

1

1

3

1

3

3

8

2

2

9

2

� �
�

( ) ( )
( )

( )( )

( )( )( )

⋮

Thus, the series solution takes the following form:

= + + +

+ ⋯

= − +

⎛
⎝

⎞
⎠

+ −

+

⎛
⎝

⎞
⎠

+ −
+ ⋯

−

−

ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ

ϕ λ

ϕ λ ϕ

λ

ς ϕ

λ

ς ϕ

, , , , ,

, ,

, 1

Γ 1 1

63

Γ 2 1 1

.

n

ς

ς

0 1 2 3

3

8

2

3

8

2

2

1

2

9

2

� � � � �

�

�

( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( )( )

( )( )

( )( )

( )

( )

(58)

For =ς 1, we obtain

Table 2: Error comparison of reduced differential transform method (RDTM) with proposed methods for Example 2

ϕ λ RDTM NITM HPTM
==ς 1 ==ς 1 ==ς 1

0.5 ×1.6125789000 10

‒08 ×2.0000000 10

‒10 ×2.0000000 10

‒10

1 ×6.1317061000 10

‒08 ×1.0000000 10

‒10 ×1.0000000 10

‒10

1.5 ×4.3621745000 10

‒07 ×2.0000000 10

‒10 ×2.0000000 10

‒10

2 ×1.6588950200 10

‒07 ×2.0000000 10

‒10 ×2.0000000 10

‒10

2.5 ×4.8456311000 10

‒07 ×1.0000000 10

‒10 ×1.0000000 10

‒10

0.1 3 ×2.0470878500 10

‒07 ×2.0000000 10

‒10 ×2.0000000 10

‒10

3.5 ×1.7918592000 10

‒08 ×2.0000000 10

‒10 ×2.0000000 10

‒10

4 ×7.5713342000 10

‒08 ×1.0000000 10

‒10 ×1.0000000 10

‒10

4.5 ×2.9603994048 10

‒08 ×2.0000000 10

‒10 ×2.0000000 10

‒10

5 ×2.3733505759 10

‒07 ×1.0000000 10

‒10 ×1.0000000 10

‒10

0.5 ×3.8791346860 10

‒09 ×1.100000 10

‒09 ×1.1000000 10

‒09

1 ×7.8076524100 10

‒09 ×7.0000000 10

‒10 ×7.0000000 10

‒10

1.5 ×2.7814445650 10

‒07 ×1.0000000 10

‒10 ×1.0000000 10

‒10

2 ×3.64653597841 10

‒07 ×6.0000000 10

‒10 ×6.0000000 10

‒10

2.5 ×5.5982968930 10

‒07 ×1.0000000 10

‒09 ×1.0000000 10

‒09

0.2 3 ×2.7371653580 10

‒07 ×1.3000000 10

‒09 ×1.3000000 10

‒09

3.5 ×5.4189576320 10

‒07 ×1.3000000 10

‒09 ×1.3000000 10

‒09

4 ×3.8173772900 10

‒09 ×8.0000000 10

‒10 ×8.0000000 10

‒10

4.5 ×7.5575220640 10

‒09 ×3.0000000 10

‒10 ×3.0000000 10

‒10

5 ×5.5426847543 10

‒07 ×4.0000000 10

‒10 ×4.0000000 10

‒10

0.5 ×2.1862474647 10

‒08 ×4.0000000 10

‒09 ×4.0000000 10

‒09

1 ×1.6487275658 10

‒07 ×2.4000000 10

‒09 ×2.4000000 10

‒09

1.5 ×2.8831254647 10

‒06 ×3.0000000 10

‒10 ×3.0000000 10

‒10

2 ×2.9831257369 10

‒06 ×1.9000000 10

‒09 ×1.9000000 10

‒09

2.5 ×2.0962494632 10

‒08 ×3.6000000 10

‒09 ×3.6000000 10

‒09

0.3 3 ×1.7287638302 10

‒07 ×4.5000000 10

‒09 ×4.5000000 10

‒09

3.5 ×2.990390826 10

‒08 ×4.3000000 10

‒09 ×4.3000000 10

‒09

4 ×2.3333502823 10

‒07 ×3.0000000 10

‒09 ×3.0000000 10

‒09

4.5 ×3.9659274738 10

‒06 ×1.0000000 10

‒09 ×1.0000000 10

‒09

5 ×3.9759208942 10

‒06 ×1.3000000 10

‒09 ×1.30000000 10

‒10
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⎜

⎜ ⎟= − +

⎛

⎝

⎜
⎜⎜

⎛
⎝− ⎞

⎠
⎞

⎠

⎟
⎟⎟

⎛
⎝ −

⎞
⎠

+

⎛

⎝

⎜
⎜
⎜

⎛
⎝− ⎞

⎠
⎞

⎠

⎟
⎟
⎟

⎛

⎝ −

⎞

⎠
⎟ + ⋯

ϕ λ ϕ
ϕ

λ

ϕ

λ

, 1

1!

1

1

2!

63

1

.

3

8

2

3

8

2

2

1

2

9

2

�( ) ( )
( )

( )

( )

( )

(59)

By implementing the HPTM, we obtain

∑

∑

= −

+
⎧
⎨
⎩

⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥
⎞

⎠
⎟
⎫
⎬
⎭

=

∞

−

=

∞

ε w ϕ λ ϕ

ε E s E ε H w

, 1

.

n

n
n

ς

n

n
n

0

1

0

1

2( ) (( ) )

( )

( )

(60)

The polynomials H wn( ) serve as a representation for the
nonlinear terms. For instance, the recursive relation

= ∂
∂H w ϕ λ,n

ϕ λ

ϕ

,

3

3
�

�
( ) ( )

( ) ∀ ∈n N is used to obtain the

elements of He’s polynomials. Thus, equating the equiva-
lent power of ε yields us the following result:

= −
=

=

⎛
⎝

⎞
⎠

+ −
=

=

⎛
⎝

⎞
⎠

+ −
⋮

−

−

−

−

ε w ϕ λ ϕ

ε w ϕ λ E s E H w

λ

ς ϕ

ε w ϕ λ E s E H w

λ

ς ϕ

: , 1 ,

: ,

Γ 1 1

,

: ,

63

Γ 2 1 1

,

ς

ς

ς

ς

0

0

1

1

1

0

3

8

2

2

2

1

1

3

8

2

2

1

2

9

2

( ) ( )

( ) [ { ( ( ))}]

( )( )

( ) [ { ( ( ))}]

( )( )

( )( )

( )

( )

(61)

Hence, we obtain a solution in series form as follows:

∑=
=

∞

ϕ λ ε w ϕ λ, , .

n

n
n

0

�( ) ( ) (62)

Hence,

Figure 3: Plot of numerical solution vs ϕ vs λ using some different values of ς and caption of subfigure can be (a) =ς 1, (b) =ς 0.75, (c) =ς 0.50, and
(d) =ς 0.25.
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For =ς 1, we obtain
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(Figure 3)

5.4 Example

Let us assume the 1D FAPDEs as:

∂
∂

=
∂

∂
ϕ λ

λ
ϕ λ

ϕ λ

ϕ

,

,

,

,

ς

ς

3

3

�
�

�( )
( )

( )
(65)

having initial guess

=
−

ϕ e, 0 .

ϕ

3�( ) ( ) (66)

On employing the ET to Eq. (65), we have

= + ⎡
⎣⎢

∂
∂

⎤
⎦⎥

−
E ϕ λ s e s E ϕ λ

ϕ λ

ϕ
, ,

,

.

ς2

3

3

ϕ

3� �
�

[ ( )] ( ) ( )
( )

( ) (67)

By applying the inverse of the ET, we obtain

= +
⎡
⎣⎢

⎡
⎣⎢

∂
∂

⎤
⎦⎥
⎤
⎦⎥

−−
ϕ λ e E s E ϕ λ

ϕ λ

ϕ
, ,

,

.

ς1

3

3

ϕ

3� �
�

( ) ( )
( )

( ) (68)

Figure 4: Plot of numerical solution vs ϕ vs λ using some different values of ς and caption of subfigure can be (a) =ς 1, (b) =ς 0.75, (c) =ς 0.50, and
(d) =ς 0.25.
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By applying the NITM, we obtain
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Thus, the series solution takes the form
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For =ς 1, we obtain
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By implementing the HPTM, we obtain
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The polynomials H wn( ) serve as a representation for
the nonlinear terms. For instance, the recursive relation

= ∂
∂H w ϕ λ,n

ϕ λ

ϕ

,

3

3
�

�
( ) ( )

( ) ∀ ∈n N is used to obtain the ele-
ments of He’s polynomials. Thus, equating the equivalent
power of ε yields us the following result:
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So, the series solution takes the following form:
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Hence,
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For =ς 1, we obtain
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(Figure 4)

6 Conclusion

In this study, both the NITM and HPTM have been applied
to examine both the approximate analytical and semi-
analytical solutions to the FAPDEs. These results demon-
strate that the complexity in evaluating some particular
integrals while solving FAPDEs is resolved by using the
suggested procedures. Furthermore, it points out that no
symbolic computing is necessary, which can be challenging,
particularly in nonlinear situations. When implemented in
FAPDEs, both convergence approaches were demonstrated
analytically and visually, demonstrating the method’s
dependability and effectiveness. By using specific instances,
the physical and geometrical illustrations have been shown,
and their graphs indicate the accurate solutions within cer-
tain approximation errors. As a result, the suggested tech-
niques are strong, trustworthy, and effective to determine
the analytical approximations of solutions for fractional
order differential equations of Airy’s-type. The suggested
methods can be applied for analyzing many evolution equa-
tions that are used in describing several nonlinear struc-
tures in a plasma.
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