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Abstract: In recent years, many numerical and analytical
attempts have been reported by the researchers to explore
the technological and industrial processes. Thermal man-
agement, hybrid-powered engine, microelectronics, heat
exchanger, solar systems, energy generators are some
recent applications of the heat and mass transfer flow. In
this article, we have theoretically analyzed the convection
flow of Walters-B fluid past a vertical extending surface.
The Walters-B nanofluid contains the gyrotactic microor-
ganisms and nanoparticles. The slip and convective condi-
tions are imposed on the velocity and temperature equations.
The modeled equations are reformed into the system of
ordinary differential equations. Further, the transformed
ordinary differential equations are solved analytically. The
analytical results are compared with numerical solution
and have found great resemblance to each other. The con-
vergence analysis of analytical solution is also presented in
this study. The impacts of the embedded factors on Walters-B
nanofluid have been presented and deliberated in detail.
The results show that the improvement in viscoelastic and
magnetic parameter declined the nanofluid motion for both
slip and no-slip conditions. The escalated mixed convection

parameter has augmented the nanofluid motion. Additionally,
at the surface of sheet, the slip condition reduces the fluid
motion, however, away from the stretching surface, an
increasing conduct up-to some points and then free stream velo-
city is found. The increased bioconvection Lewis number has
increased the microorganisms’ profile while the greater biocon-
vection Peclet number has increased the microorganisms’
profiles reduced. The streamline patterns for Newtonian, non-
Newtonian, magnetized, and non-magnetized cases have dif-
ferent behaviors. The flow factors have dominant impact on
velocity profiles for the case of slip condition.

Keywords: Walters-B nanofluid, gyrotactic microorgan-
isms, nanoparticles, MHD, mixed convection, bioconvection,
binary chemical reaction, Arrhenius activation energy, ana-
lytical and numerical approaches
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constants
B magnetic field
⌢

C nanoparticles’ concentrations
E activation energy
⌢

g gravitational force
Le bioconvection Lewis number
M magnetic field parameter
⌢

N microorganisms’ concentrations
Nb Brownian motion
Nc Rayleigh number
Nr buoyancy ratio term
Nt thermophoresis term
Nux Nusselt number
Pe Peclet number
Pr Prandtl number
Rd thermal radiation
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Shx Sherwood number
⌢ ⌢⌢=u a x

w
stretching velocity

α slip parameter
β viscoelastic parameter
ω chemical reaction parameter
⌢

T temperature
λ

C
concentration relaxation factor

λ
E

thermal relaxation factor
γ

1

thermal Biot number
γ

2

nanoparticles Biot number
γ

3

microorganisms Biot number
λ mixed convection factor
σ temperature difference

1 Introduction

The nonlinear connection between shear stress and defor-
mation rate at a given pressure and temperature charac-
terizes non-Newtonian fluids (NNFs). Such fluid flows are
widespread in a variety of industrial applications, including
thermal oil recovery, discharge of industrial pollutants,
food, polymer processing, etc. Non-Newtonian boundary
layer flows have numerous industrial uses, including fabri-
cation, cooling of metallic plates, layering onto rigid sub-
strates, aerodynamic extrusion of plastic sheets, and coating
application. Many studies have increasingly looked into
such flows, taking into account a variety of factors.
Turkyilmazoglu [1] investigated the viscoelastic flow of elec-
trically conducting fluid through an extending/shrinking
surface using porous media. Hosseini et al. [2] reported
the thermal and mass transmissions across NNFs flow.
They found that the increasing Reynolds number augments
the heat transfer rate. Abbasbandy et al. [3] documented the
magnetohydrodynamic (MHD) flow of Maxwell fluid flow.
Their consequences disclosed that augmenting magnetic
parameter has declined the velocity profile. Yang and Zhu
[4] scrutinized the fluid flow in an infinite long straight pipe.
They concluded that oscillations happen just before fluid
reaches the abovementioned asymptotic behavior, which
is really a regular phenomenon in viscoelastic fluids. Hayat
et al. [5] investigated the chemically reactive viscoelastic
fluid flow past an extending surface with Dufour and Soret
influences. Their results showed that the Dufour and Soret
numbers have opposite effects on the flow behavior. Hayat
et al. [6] considered the MHD micropolar fluid flow past an
extending surface with mixed convection phenomenon.
Their result disclosed that the strong concentration has a
parabolic impact on microrotation field. Jamil et al. [7] pre-
sented the comparative valuation of NNFs flow between two
coaxial circular cylinders. They found that the velocity of the

Newtonian fluid is faster than the NNFs. Mustafa et al. [8]
offered the comparative flow of viscous and Casson fluids at
stagnation point past an extending surface. It has been con-
cluded that the magnitudes of surface drag force and velo-
city are dominant for the case of Casson fluid than viscous
fluid. Mushtaq et al. [9] examined the Maxwell fluid flow
with thermal radiation influence. It has been introduced
that the thermal radiation has augmented the temperature
of the Maxwell fluid flow. Hayat et al. [10] scrutinized the
NNFs flow across and extending sheet. Their results showed
that the energy curve of the third-grade fluid flow augment
with the augmenting electric field.

Viscoelastic fluids are a type of NNFs. These fluids
have both viscous and elastic properties. In the paper
and petroleum industries, geophysical fluid dynamics, and
chemical technologies, viscoelastic flow is becoming increas-
ingly important. Thus, Bhatia and Steiner [11] looked into
the instability of heat in a viscoelastic fluid when it rotates.
They found that the destabilizing impact of fluid flow.
Though, their model does not deliberate all the features
of a viscoelastic fluid. Walters-B fluid model is the best
model for describing such fluid because of its relevance.
Beard and Walters [12] presented the viscoelastic liquid at
a stagnation point. Sharma and Gupta [13] analyzed the MHD
viscoelasticWalters-B fluid through a stratifiedmedium. Nan-
deppanavar et al. [14] analyzed the thermal transmission
characteristics of the Walters-B fluid past an extending sheet.
Abdul Hakeem et al. [15] presented the thermal transmission
examination of Walters-B fluid flow across an extending
surface. They concluded that the fluid temperature decreases
for the combined effects of thermal radiation with elastic
deformation, viscoelastic field, Prandtl number, and Eckert
number. Makinde et al. [16] examined the electrically con-
ducting Walters-B fluid with velocity slip condition. Tahir
et al. [17] determined the exact solutions for the rotating
flow of Oldroyd-B, fractional Newtonian, and Maxwell fluids
through an annulus. Waqas et al. [18] addressed the Darcy–
Forchheimer fluid flow over an extending plate/cylinder with
mass and heat fluxes, motile microbes. It was assumed that
fluid velocity falloffs with the influence of mixed convection
and local inertia factor. Imran et al. [19] studied the impact of
thermal radiation and melting phenomena through biocon-
vective nanofluid flow with movable microbes across a
cylinder. It has been shown that enhancing the computed
value of a mixed convection improves the velocity. Ibrahim
et al. [20] discussed the MHD radiative stagnation point flow
across a stretching surface taking into account Brownian
and thermophoresis effect. Increases in the velocity and
magnetic constraints were discovered to dampen fluid velo-
city, whereas thermophoresis effect emphasizes specific
thermal properties. Kumar et al. [21] used the homotopy
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analysis method (HAM) approach to investigate the effect of
slip function on MHD flow of Casson nanoliquid across a
porous extending surface. It was discovered that increasing
the velocity slip factor causes an increase in fluid velocity,
whereas increasing the thermal slip factor causes a decrease
in the distribution of heat. Sekhar et al. [22] and Harish et al.
[23] reviewed the effect of MHD Casson nanoliquid flow
through a tilted extending sheet with heat source/sink,
thermal radiation, and Soret and Dufour effect. Swain et al.
[24] used the numerical perspective bvp4c package to inves-
tigate the impact of Joule heating and exponential heat source
on the nanofluid flow. Some recent reports onWalters-B fluid
are cited in the literature [25–34].

Farooq et al. [35,36] studied the three-dimensional flow
of a hybrid nanofluid composed of Nichrome 80% Ni, 20%
Cr, and TC4 (Ti–6A–14V) nanoparticles combined within
engine oil to improve the mass and heat exchange rate.
Wakif et al. [37] conducted a systematic review on the
consequences of tiny particles that are subjected to ther-
mophoretic effect and realized that the effect of thermal
radiation has a significant impact on the relevance of tiny
particle migration through the fluid flow. Manigandan and
Satya Narayana [38] and Madiha Takreem and Satya Nar-
ayana [39] numerically investigated the mixed convection
steady (SWCNT +MWCNT/H2O) hybrid nanoliquid flow with
the effect of variable thermal conductivity, slip boundary
conditions, thermal radiation, and heat generation through
prolonging surface. The results of the thermal slip evalua-
tion towards an elastic sheet demonstrate that the hybrid
nanoliquid advances the efficiency of heat dissemination by
4.33%. Harish Babu et al. [40,41] assessed the effects of
thermal heat flux, velocity slip, and an inclined magnetic
field on the hybrid nanofluids flow across an exponentially
extended sheet. Venkateswarlu and Satya Narayana [42]
assessed the impact of radiating Coriolis force and wall
velocity on the convective flow across an impermeable ver-
tical sheets in a spinning fluid induced by a viscous dissipa-
tion and magnetic field. Zhang et al. [43] evaluated the 2D
flow and thermodynamic properties of a radiated consistent
hybrid nanoliquid across a fixed wedge, using an applica-
tion of Falkner–Skan flows. Wakif and Shah [44] quantita-
tively characterized the various physical highlights of MHD
steady flow over a spinning disc. Ragupathi et al. [45]
reported the heat transfer and bio-convective MHD flow of
nanoliquid caused by the floating of gyrotactic organisms
across a conical pulled sheet. The dispersion of motile
microbes toward the curvature factor was shown to be
reducing extensively. Rasool et al. [46] and Areekara et al.
[47] calculated the heterogeneous hybrid nanoliquid flow
consisting of water, silver, and molybdenum oxide fine
particles on a rigid wedge surface embedded in a Darcy

medium. The amplification of radiative heat flux was shown
to greatly enhance the surface heat dissipation rate.

Inspired by the above uses, applications, and studies
based on different physical phenomena, the aim of the
current analysis is to consider the mixed convection flow
past a vertical stretching surface. In the present analysis, we have
considered the impacts of binary chemical reaction, magnetic
field, Brownian motion, and thermal radiation. Additionally,
the velocity slip condition, and convective conditions are
taken into consideration. The Cattaneo–Christov heat and
mass flux model is also considered in the present investiga-
tion in order to investigate the heat and mass transfer flow.
Section 2 presents the mathematical model for the proposed
model. Section 3 shows the semi-analytical solution of the
proposed model. The outcomes of the present analysis and
their physical discussion are presented in Section 4. The
final outcomes of the present analysis are listed in Section 5.

2 Problem formulation

Assume the steady and laminar flow of Walters-B fluid past
an elongating sheet. The stretching velocity ⌢ ⌢⌢=u a x

w
is

taken along ⌢-x direction. The gravitational force repre-
sented by⌢

g , is performed in downward direction as shown
in Figure 1. The temperature of the sheet is represented by
⌢

T . Furthermore, the nanoparticles and gyrotactic microor-

ganisms’ concentrations are denoted by ⌢

C and ⌢

N . In
⌢ -y direction the magnetic field of strength B

0
is applied.

The convective and slip conditions are also considered.

Figure 1: Geometrical representation of the flow problem.
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The Cattaneo–Christov heat and mass flux model is also
considered in the present investigation in order to investi-
gate the heat and mass transfer flow. Based on the above
assumptions, the problem is formulated as [25–28] follows:
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with boundary conditions [48,49]
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The similarity transformations are defined as [49]
follows:
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Using the above similarity transformations, we obtain
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with boundary conditions

( )

( ) ( ) ( )

( )

( ( )) ( )

( )

( ( )) ( )

( )

( ( )) ( )

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪⎪

=
∂

∂
= +

∂
∂

∂ ∞
∂

→

∂
∂

= − − ∞ →

∂
∂

= − − ∞ →

∂
∂

= − − ∞ →

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪⎪

f

f

ξ

α

f

ξ

f

ξ

θ

ξ

γ θ θ

ϕ

ξ

γ ϕ ϕ

χ

ξ

γ χ χ

0 0,

0

1

0

, 0,

0

1 0 , 0,

0

1 0 , 0,

0

1 0 , 0.

2

2

1

2

3

(13)

The embedded parameters and their default values
are defined in Table 1.

The engineering interest quantities are stated as follows:
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Using Eq. (8), Eqs. (14)–(17) are reduced as follows:
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Table 1: Embedded parameters and their default values

Parameter Name Default
value

⌢

⌢
=M

σ B

aρ

0

2 Magnetic parameter 1.5

⌢

=γ
h

k

υ

a
1

f
f Thermal Biot number 0.2

⌢
⌢⌢

=γ

h

D

υ

a
2

B

g

f
Nanoparticles Biot number 0.2

⌢

⌢
⌢

⌢

⌢

=γ
h

D

υ

a
3

m

m

f
Microorganisms Biot number 0.2

⌢

(

⌢ ⌢

)

⌢⌢
=λ

gβ T T

a u

‒
f

w

Mixed convection factor 0.5

⌢
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)(
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)(
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)

⌢
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M ρ ρ C C

ρ ρ β T T

‒ ‒

‒

p
p f

f ∞

p
f ∞

Buoyancy ratio term 0.4

⌢

⌢=λ a δ
CC

Concentration relaxation
factor

0.5

⌢

⌢=λ a δ
TE

Thermal relaxation factor 0.5
⌢

(

⌢ ⌢

)

⌢

⌢

=Nt

τD T T

T υ

‒T f ∞

∞ f

Thermophoresis factor 0.5

⌢

(
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τM D C C

ρ υ

‒Bp f ∞

p f

Brownian motion factor 0.5
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3

⁎
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3

⁎

Thermal radiation factor 0.2

(

⌢
⌢

)

⌢
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ρ C υ

k

p f

Prandtl number 6.0

⌢

⌢
=ω

k

a

r

2 Chemical reaction parameter 0.1

⌢

(

⌢
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⌢
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=Le

k

ρ C D Bp

Bioconvection Lewis number 0.2

(

⌢ ⌢
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⌢
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T T

T

‒
f ∞

∞

Temperature difference
parameter

0.6

⌢

⌢ ⌢
⌢

͡=E
E

k T

a

B ∞

Activation energy parameter 0.3

⌢

⌢

⌢

⌢

=Pe

b W

Dm

c c

Bioconvection Peclet number 0.2

⌢

=α Δ
a

υ
1

f

Slip parameter 0.2

⌢

⌢
=β

k a

μ

0
Viscoelastic parameter 0.4
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3 HAM solution

First presented by Liao [50], the HAM is a general approx-
imate analytical technique for solving series of nonlinear
problems of different kinds, such as ordinary differential
equations, differential–integral equations, coupled equa-
tions, differential–difference equations, algebraic equa-
tions, and partial differential equations. This approach is
applicable to any nonlinear problems, regardless of how
many physical factors are involved, which is basically
necessary for perturbation approaches. More crucially,
the HAM gives us a choice to select appropriate base func-
tions for approximation of a nonlinear problem and a
straightforward method to guarantee the convergence of
the solution series, unlike all perturbation and conven-
tional non-perturbation methods. To solve the proposed
model, the initial guesses are taken as follows:
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where�
1
,�

2
, �

3
, …,�

9
are the constants in general solution.

3.1 Convergence of HAM

The −ℏ curve, also identified as factor for convergence
controlling, was familiarized by Liao [51–53]. In Figure 2,

we have fixed the convergence regions of ( )∂
∂
f

ξ

0

2

2

, ( )∂
∂
θ

ξ

0 , ( )∂
∂
ϕ

ξ

0 ,

and ( )∂
∂
χ

ξ

0 . The respective convergence regions of ( )∂
∂
f

ξ

0

2

2

, ( )∂
∂
θ

ξ

0 ,
( )∂

∂
ϕ

ξ

0 , and ( )∂
∂
χ

ξ

0 are − ≤ ≤3.0 ℏ 0.0f , − ≤ ≤3.5 ℏ 0.5θ , − ≤3.0

≤ℏ 0.2ϕ , and − ≤ ≤3.0 ℏ 0.2χ . Additionally, the squared

residual error along with CPU time for ( )∂
∂
f ξ

ξ

2

2

, ( )∂
∂
θ ξ

ξ

, ( )∂
∂
ϕ ξ

ξ

,

and ( )∂
∂
χ ξ

ξ

are displayed in Table 2. Furthermore, the HAM

is compared with numerical technique and a great agree-
ment has been found between both techniques as shown in
Tables 2–5.

4 Results and discussion

The physical interpretation of the Walters-B nanoliquid
past a linearly extending sheet with slip and convective
conditions has been presented and discussed in detail in
Figures 3–23 and Tables 3–7. The slip condition is imposed
on velocity field to investigate the nanofluid motion. The
Walters-B nanofluid contains the gyrotactic microorgan-
isms and nanoparticles. The mixed convective phenom-
enon along with magnetic field impact is taken into
consideration.

4 3 2 1 0 1

2

1

0

1

hf , , ,

2 f
0 2
,

0
,

0
,

0

0

0

0

2f 0
2

Figure 2: ℏ curves for
( )f

ξ

∂ 0

∂

2

2

, ( )θ

ξ

∂ 0

∂

,
( )ϕ

ξ

∂ 0

∂

, and
( )χ

ξ

∂ 0

∂

.

Table 2: Squared residual errors at dissimilar direction of estimations

Approximation order CPU time (s) Velocity profile Temperature profile Concentration profile Density profile

1 0.140631 2.73417 × 10−7 0.000010 2.17824 × 10−6 0.000214
5 0.921921 2.0221 × 10−9 4.14596 × 10−6 7.64851 × 10−8 0.000081
7 2.875159 2.7662 × 10−11 2.80687 × 10−6 3.0774 × 10−9 0.000034
9 7.32851 2.29879 × 10−13 1.85264 × 10−6 1.47975 × 10−10 0.000014
11 17.1884 3.48909 × 10−15 1.53309 × 10−6 8.69921 × 10−12 7.33828 × 10−6

13 44.096 1.84024 × 10−17 1.13897 × 10−6 6.21891 × 10−13 4.21847 × 10−6

15 117.553 7.3059 × 10−20 9.681 × 10−7 5.10918 × 10−14 2.85843 × 10−6
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4.1 Velocity profiles

Figures 3 and 4 show the variation in ( )∂f ξ

ξ

via β and M ,

respectively, for the both =α 0.2 and =α 0.0. The enhan-
cing β and M have reduced ( )∂f ξ

ξ

. When β increases, the

velocity boundary layer becomes weak. As β increases,
tensile stresses increase which impedes momentum

transport as indicated in Figure 3. The greater M reduces
( )∂f ξ

ξ

. This effect is due to the Lorentz force, which always

retarded the fluid motion. Thus, decreasing impact is found
here. On the other hand, considering velocity-offset and no-
velocity-offset conditions, impressions of β and M are
dominant for the case of velocity-offset condition. Addi-
tionally, the impacts of these parameters are dominant
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Figure 4: Impact of M on
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Figure 5: Impact of λ on
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Figure 6: Impact of Nc on
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Figure 7: Impact of Nr on
( )f ξ

ξ

∂

∂

.

0 1 2 3 4 5
0.00

0.05

0.10

0.15

Nb 4.0

Nb 3.0
Nb 2.0
Nb 1.0

Figure 8: Impact of Nb on ( )θ ξ .
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for =α 0.2. Figure 5 indicates the impact of λ on ( )∂f ξ

ξ

for

both =α 0.2 and =α 0.0. The augmenting λ augments the
nanofluid motion for both =α 0.2 and =α 0.0. The
increasing λ strengthens the buoyancy force which results
in the augmenting conduct in nanofluid motion. Thus, the
boosting impact is observed here. Additionally, the slip

condition reduces the fluid motion, say < <ξ0 0.5. How-
ever, away from the stretching surface say < < ∞ξ0.5 ,
an increasing conduct up to some points and then free
stream velocity is found. Figure 6 indicates the impact
of Nc on ( )∂f ξ

ξ

for both =α 0.2 and =α 0.0. The augmenting
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Figure 9: Impact of Nt on ( )θ ξ .
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Figure 10: Impact of λ
E
on ( )θ ξ .
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Figure 11: Impact of Rd on ( )θ ξ .
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Figure 12: Impact of λ
C
on ( )ϕ ξ .

0 1 2 3 4
0.0
0.1
0.2
0.3

0.4
0.5
0.6

0.7

Nb 0.7

Nb 0.5
Nb 0.3
Nb 0.1

Figure 13: Impact of Nb on ( )ϕ ξ .
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Figure 14: Impact of Nt on ( )ϕ ξ .
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Nc decreases the nanofluid motion for both =α 0.2 and
=α 0.0. The reducing impact of Nc on ( )∂f ξ

ξ

is dominant

for =α 0.2 as compared to =α 0.0. Figure 7 indicates the
impact of Nr on ( )∂f ξ

ξ

for both =α 0.2 and =α 0.0. The esca-

lating Nr reduces ( )∂f ξ

ξ

for both =α 0.2 and =α 0.0. The
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Figure 15: Impact of ω on ( )ϕ ξ .
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Figure 16: Impact of E on ( )ϕ ξ .
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Figure 19: Impact of δ on ( )χ ξ .
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Figure 20: Streamline patterns for Newtonian case.
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reducing impact of Nr on ( )∂f ξ

ξ

is dominant for =α 0.2 as

compared to =α 0.0.

4.2 Temperature profiles

Figure 8 signifies the impact of Nb on ( )θ ξ . The increase in
Nb augments ( )θ ξ . The random motion of particles is

known as Brownian motion. As Nb increases, the particles
start colliding due to random motion, which eventually
increases the fluid temperature. Thus, the increasing impact
of Nb on ( )θ ξ is reported. Figure 9 signifies the impact of Nt

on ( )θ ξ . The increase in Nt augments ( )θ ξ . Physically, the
increase in Nt moves the nanofluid nanoparticles from
warm region to cold region, which consequently augments
the temperature layer thickness and thermal profile. Figure
10 indicates the impact of λ

E
on ( )θ ξ . The λ

E
parameter

reduces ( )θ ξ . When λ
E
is increased, the temperature drops

and the profile smoothly descends to zero at a closer dis-
tance from the sheet. When the relaxation period for heat
flux is longer, the thermal boundary layer will be thinner.
As temperature relaxation parameter increases, the profile
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Figure 21: Streamline patterns for non-Newtonian case.
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Figure 22: Streamline patterns for non-magnetized case.
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Figure 23: Streamline patterns for magnetized case.

Table 3: Comparison of the present results of
( )

‒

f

ξ

∂ 0

∂

2

2

with previously
published results, when =λ 0.0, =Nr 0.0, =Nc 0.0, and =α 0.0

β Pillai et al. [54] Mahantesh et al. [14] Present results

0.0 1.00000 1.00000 1.05040
0.0001 1.00005 1.00005 1.05046
0.001 1.00050 1.00050 0.05059
0.005 — 1.00251 1.05121
0.01 1.00504 1.00504 1.05200
0.03 — 1.01535 1.05533
0.05 — 1.02598 1.05896
0.1 1.05409 1.05409 1.05954
0.2 1.11803 1.11803 1.10654
0.3 1.19523 1.19523 1.17411
0.4 1.29099 1.29099 1.27307
0.5 1.41421 1.41421 1.40194
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progresses steeper in the neighborhood of the boundary,
indicating that the temperature wall slope is increasing.
Figure 11 shows the impact of Rd on ( )θ ξ . The higher Rd

augments ( )θ ξ . Physically, when we apply Rd effect, the
surface heat flux increases; consequently, the heat flux
becomes the key point to increase the temperature curve.
Thus, an increasing conduct is found here.

4.3 Concentration profiles

Figure 12 indicates the impact of λ
C
on ( )ϕ ξ . The higher λ

C

reduces ( )ϕ ξ . When λ
C
is increased, the concentration

drops and the profile smoothly descends to zero at a closer
distance from the sheet. When the relaxation period for
mass flux is longer, the concentration boundary layer will
be thinner. As λ

C
, the profile progressively steeper in the

neighborhood of the boundary, indicating that the concen-
tration wall slope is increasing. Figure 13 signifies the
impact of Nb on ( )ϕ ξ . The escalating Nb reduces ( )ϕ ξ .
When nanoparticles are incorporated into a fluid, Brow-
nian diffusion and thermophoresis parameters develop.
Brownian diffusion and thermophoresis characteristics are
useful in determining how nanoparticles move in a fluid. It
has been established that greater Brownian motion values
are the fundamental reason for the increase in random
motion. The fluid’s mass decreases as a result of this. On
the other hand, the escalatingNt augments ( )ϕ ξ as shown in

Table 6: Numerical outcomes of the Sherwood number

Le Nb Nt λC E ω (( ))∂ϕ

∂ξ

0

0.1 0.1 0.1 0.1 0.1 0.089739
0.2 0.090294
0.3 0.090849
0.1 0.2 0.090904

0.3 0.090922
0.4 0.090931
0.1 0.2 0.090739

0.3 0.090629
0.4 0.090519
0.1 0.2 0.091139

0.3 0.091430
0.4 0.092178
0.1 0.2 0.089906

0.3 0.089880
0.4 0.089854
0.1 0.2 0.089906

0.3 0.089890
0.4 0.089854

Table 7: Numerical values of the density number via different embedded
parameters

Lb Pe δ (( ))
‒

∂χ

∂ξ

0

0.1 0.1 0.1 0.089252
0.2 0.089171
0.3 0.089090
0.1 0.2 0.089290

0.3 0.089328
0.4 0.089366
0.1 0.2 0.089268

0.3 0.089284
0.4 0.089300

Table 5: Numerical outcomes of the Nusselt number

Rd Nb Nt λE Pr (( ++ )) (( ))
‒ 1 Rd

∂θ

∂ξ

0

0.1 0.1 0.1 0.1 1.0 0.099975
0.2 0.108871
0.3 0.117733
0.1 0.2 0.099963

0.3 0.099951
0.4 0.099939
0.1 0.2 0.099963

0.3 0.099951
0.4 0.099939
0.1 0.2 0.100153

0.3 0.100331
0.4 0.100509
0.1 1.5 0.100627

3.4 0.101355
6.0 0.101604

Table 4: Numerical outcomes of the skin friction vs embedded
parameters

β M λ Nr Nc (( )) (( ))
β2 1 ‒ 3

∂ f

∂ξ

02

2

==α 0.2 ==α 0.0

0.1 0.1 0.1 0.1 0.1 −0.583876 −0.726352
0.2 −0.336899 −0.422872
0.3 −0.085038 −0.107671
0.1 0.2 −0.590713 −0.740026

0.3 −0.597549 −0.753699
0.4 −0.604346 −0.767372
0.1 0.2 −0.583279 −0.725358

0.3 −0.582683 −0.724363
0.4 −0.582086 −0.723369
0.1 0.2 −0.583981 −0.726477

0.3 −0.584025 −0.726601
0.4 −0.584100 −0.726725
0.1 0.2 −0.583981 −0.726477

0.3 −0.584025 −0.726601
0.4 −0.584100 −0.726725
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Figure 14. Figure 15 represents the impact of ω on ( )ϕ ξ . The
increasing ω decreases ( )ϕ ξ . The mass boundary layer
thickens with the increase in ω. The increasing ω enhances
the term ( ) [ ( )]+ − +ω σθ E σθ1 exp / 1

n , which consequently
augments the concentration of the nanofluid flow. Thus, an
increasing impact is found here. Figure 16 shows the impact
of E on ( )ϕ ξ . The increasing E augments ( )ϕ ξ . The activation
energy is defined as the least energy required to initiate a
reaction. It is discovered that at low temperatures and higher
activation energies, the reaction rate constant decreases,
resulting in a slowing of the chemical process as well as an
increase in ( )ϕ ξ .

4.4 Density profiles

The impacts of Lb and Pe on ( )χ ξ are displayed in Figures 17
and 18. The increasing Lb and Pe reduce ( )χ ξ . As the Lewis
number rises, the microorganisms’ diffusivity falls while the
viscous diffusion rate rises, the motile density boundary
layer thickness is reduced as a result. A rise in Pe improves
the motile density boundary layer thickness and augments

( )χ ξ . This is due to an inverse relation of Pe microorgan-
isms’ diffusivity with a constant chemotaxis constant. This
means that as the parameter is increased, the floating speed
dominates the diffusivity of themicroorganisms, resulting in
a rise in motile microorganism density. Figure 19 displays
the impact of δ on ( )χ ξ . The augmenting δ reduces ( )χ ξ .

4.5 Streamline patterns

Figures 20 and 21 show the streamline patterns of two
different Newtonian and NNF cases, respectively. It is clear
from the figures that the streamline patterns are quite
different for the Newtonian and non-Newtonian cases.
Figures 22 and 23 show the streamline patterns for magne-
tized and non-magnetized cases, respectively. It is clear
from the figures that the streamline patterns are quite
different for both cases. This behavior is due to the fact
that the higher magnetic field produces friction force at the
surface of sheet which results in the reduction in the flow
velocity as discussed in Figure 4. As a result, the stream-
lines become closer when compared to the non-magnetized
fluid flow.

4.6 Quantities of interest

This section deals with the influences of physical para-
meters on skin friction, heat transfer, mass transfer, and

density number. Table 3 guarantees the validation of the
present model with previously published results. Table 4
shows the impacts of β, M , λ,Nr, andNc on skin friction for
both slip and no-slip conditions. The augmenting β and
λaugment the skin friction, whereas the increase inM ,
Nr, and Nc reduces the skin friction. Table 5 shows the
impacts of Rd, Nb, Nt, λ

E
, and Pr on Nusselt number. The

augmenting Rd, λ
E
, and Pr augment the Nusselt number,

whereas the increase in Nb and Nt reduces the Nusselt
number. Table 6 shows the impacts of Le, Nb, Nt, λ

C
, E ,

and ω on Sherwood number. The augmenting Le, Nb, and
λ

C
augment the Sherwood number, whereas the increase in

Nt, E , and ω reduces the Sherwood number. Table 7 shows
the impacts of Lb, Pe, and δ on the density number. The
augmenting Pe and δ augment the density number, whereas
the increase in Lb reduces the density number.

5 Conclusion

In this analysis we have studied the mixed convection flow
of Walters-B fluid past an extending surface. The Walters-B
nanofluid contains the gyrotactic microorganisms and nano-
particles. The convective and slip conditions are taken into
consideration. The physical interpretation of the embedded
parameters on Walters-B nanofluid has been presented and
discussed. The slip condition is imposed on velocity field to
investigate the nanofluid motion. Also, the convective
conditions are taken in temperature, nanoparticles concen-
tration, and microorganisms concentration equations. The
concluding remarks are listed as:
1) The escalated viscoelastic, magnetic, and buoyancy

ratio factor have declined the nanofluid motion for
both slip and no-slip conditions. These impacts are
dominant for the case of slip condition.

2) The augmented mixed convection parameter has increased
the nanofluid motion for both slip and no-slip conditions.
Additionally, at the surface of sheet, the slip condition
reduces the fluid motion, say < <ξ0 0.5. However, away
from the stretching surface say < < ∞ξ0.5 , an increasing
conduct up to some points and then free stream velocity is
found.

3) The escalated Brownian motion, thermophoresis, and
thermal radiation parameters have escalated the thermal
profile, while the augmented temperature relaxation
parameter has reduced the temperature profile.

4) The escalated thermophoresis and activation energy have
augmented the concentration profile, whereas the escalated
concentration relaxation, Brownian motion, and chemical
reaction parameters have reduced the concentration
profile.
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5) The increased bioconvection Lewis number has increased
the microorganisms’ profile while the greater bioconvec-
tion Peclet number has increased themicroorganisms’ pro-
files reduced.

6) The increased Lewis number and Peclet number decrease
the density function.

7) The streamline patterns for Newtonian, non-Newtonian,
magnetized, and non-magnetized cases have different
behaviors.
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