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Abstract: In this work, a numerical scheme based on
shifted Jacobi polynomials (SJPs) is deduced for variable-
order fractional differential equations (FDEs). We find
numerical solution of consider problem of fractional order.
The proposed numerical scheme is based on operational
matrices of variable-order differentiation and integration.
To create the mentioned operational matrices for variable-
order integration and differentiation, SJPs are used. Using
the aforementioned operational matrices, we change the
problem under consideration into matrix equation. The
resultant matrix equation is solved by using Matlab, which
executes the Gauss elimination method to provide the
necessary numerical solution. The technique is effective
and produced reliable outcomes. To determine the effec-
tiveness of the suggested method, the results are compared
to the outcomes of some other numerical procedure.
Additional examples are included in this article to further
clarify the process. For various scale levels and fractional-
order values, absolute errors are also recorded.

Keywords: shifted Jacobi polynomials, matrix equation,
numerical results, absolute errors

1 Introduction

In the last several decades, it has been shown that calculus
of non-integer-order differentiation and integration is a
helpful tool for characterizing the characteristics of complex
dynamic systems more efficiently than conventional integer-
order derivatives and integrals. As a result, researchers are
very interested in employing fractional differential equations
(FDEs) to explore a variety of real-world issues and occur-
rences. These kind of equations can also more effectively
capture the dynamics of practical problems. A fractional-
order derivative expresses the entire spectrum or accumula-
tion of a function applied to it and has a higher degree of
freedom [1–3]. In this context, researchers have looked more
closely at FDEs for existence and stability outcomes in recent
years. In addition, numerous real-world occurrences have
been modeled mathematically using the aforementioned
field. Here, we cite a few articles that address the aforemen-
tioned topics (see [4–7]).

It is crucial to keep in mind that the effective methods
that have been thoroughly studied practically for all kinds
of FDEs connected to linear and nonlinear issues are qua-
litative theory and numerical analysis. A few well-known out-
comes are listed in the sources such as [17–20]. Researchers
have employed a variety of nonlinear analysis tools, including
fixed point theory, Picard, monotone iterative methods, and
topological degree ideas, to study existence theory.
Schauder, Mawhin, and Sheafers have provided some well-
known results that are primarily applicable to theoretical
outcomes. The aforementioned findings and theories have
been applied to the study of existence theory for solutions
to a variety of FDE nonlinear issues (see [21–23]). Mathema-
tical models of many real-world problems, including multiple
fractional-order differential operators, are called multi-term
FDEs. A system of mixed fractional and ordinary differential
equations with more than one fractional differential operator
is known as a multi-term FDE. FDEs have been resolved by a
variety of numerical and analytical techniques (see [8–12]).
Along the same vein, researchers have been particularly
drawn to the numerical component. Khan et al. [13] studied
numerically a disease model by using slide mode controller
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with fractional order. Some integro-partial FDE with weakly
singular kernels have been solved in the study by Fuan et al.
[14] using piecewise collocation techniques based on poly-
nomials. The Jacobi collocation method was applied in the
study by Amin et al. [15] to tackle nonlinear fractional par-
tial problems. Murtaza et al. [16] studied a fractals-fractional
order coupled stress nanofluid problem for numerical
solution.

Here, we remark that in the aforesaid study,
researchers have used constant fractional-order. Samko
and Ross [24] in 1993 originated the idea to investigate
variable-order FDEs. But this area has not received proper
attention later on, like its real-order counterpart. After 2010,
the area has received much attention, and various theore-
tical and numerical results have been published up to date
[25–28]. The said FDEs with variable-order have more
degree of freedom and further globalize the dynamics of a
problem. Keeping the importance of variable-order, here we
investigate a class of multi-term variable-order FDEs by
using spectral method based on shifted Jacobi polynomials
(SJPs) operational matrices method. The concerned
method has been used for dealing traditional fractional-
order problems very well, see [28–30]. Spectral methods
based on SJPs have been used in various linear problems
of fractional-orders. Hence, a huge literature exists on the
mentioned area, see, e.g., [31–34]. Recently, some more
efficient numerical schemes have been deduced like
[35–37] for non-variable order problems in fractional
calculus. Recently, some remarkable work on variable
order have been done. Some reputed results are refereed
too, see [38].

To the best of our information, multi-term variable-
order FDEs have not been testified by the use of said pro-
cedure. In order to close this gap, we, therefore, take into
consideration the subsequent linear multi-term FDE under
variable-order as
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tors of order ( )ε t1 and ( )ε t2 , where �∈μ μ,
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. In addition,
ε1 and ε2 are continuous functions such that � ( ]→ε : 0, 11

and � ( ]→ε : 1, 2 .2 Furthermore, [ ]∈ Cf 0, 1 is a given con-
tinuous function. We use the aforesaid method to compute
numerical solution. The concerned spectral method has
been proved stable and convergent when applied to any
linear problem. Furthermore, the computational cost is
low as compared to wavelet and finite element methods.
No need of prior discretization or collocation. In addition,

like perturbation method, this technique needs no axillary
parameter to control the method. Also, the suggested
method has some rawbacks. We also establish some exis-
tence results to the considered problems by using fixed
point theory. A comparison between our results and that
computed by Haar wavelet method (HWM) has given to
illustrate the efficiency of the procedure. Numerous exam-
ples are given along with graphical presentation and error
analysis.

This article is organized as follows: in Section 1, we
give detail introduction. Some needful results are given
in Section 2. Further, the required operational matrices
are given in Section 3. Moreover, the numerical scheme
has established in Section 4. Illustrative examples are given
in Section 5. Finally conclusion and discussion are fixed in
Section 6.

2 Auxiliary results

Some fundamental materials are recollected as follows:

Definition 2.1. [24] If ( ) >ε t 0, then variable-order integra-
tion of [ ]∈ Lh 0, 1 is given as follows:
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Definition 2.2. [24] The variable-order derivative of [ ]∈ Ch 0, 1

is given as follows:
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Lemma 2.3. [24] If ( ) >ε t 0, then for variable-order problem
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0
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3 SJPs and operational matrices

The analytical form of the SJPs [31] over [ ]τ0, can be
expressed as follows:
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Here, for SJPs, the orthogonal relation is given as follows:
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Any function [ ]∈ τLf 0,2 can be estimated using the aforementioned polynomials as follows:
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where the notion KM and FM are M terms coefficient and function vectors, respectively. Here, = +M m 1 and bj is derived
from Eqs (3)–(6) as follows
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Here, we create a few operational matrices for fractional integration and differentiation of variable-order.

Theorem 3.1. For vector F ,M one has
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Proof. Following the same procedure as derived in the study by Youssri and Atta [31] and Shah et al. [32], we can obtain
the above matrix of variable fractional-order derivative. □
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Theorem 3.2. For vector of functions FM , we compute matrix corresponding to variable-order integral as follows:
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Proof. The above matrix can be obtained by following the same procedure as done by Youssri and Atta [31] and Shah et al.
[32]. □

4 Numerical algorithm

Here, by using Theorems 3.1 and 3.2, we establish the required algorithm for the considered problem.
Assume that
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Table 1: Maximum absolute errors and computer processing unite (CPU) time at two different scale levels and various values of ( )θ ϑ, and t for
Example 1 by taking ( ) ( )=ε t t1 ‒ exp ‒1 and ( ) = +ε t t1 0.52

(( ))θ ϑ, t ‖‖ ‖‖u u‒ex app X, at ==M 4 CPU time (s) ‖‖ ‖‖u u‒ex app X, at ==M 6 CPU time (s)

(0, 0) 0.2 ×0.005330 10‒14 15 ×0.001206 10‒16 20
(0.1, 0) 0.2 ×0.005016 10‒14 17 ×0.002660 10‒16 23
(0, 0.1) 0.2 ×0.002152 10‒14 18 ×0.001125 10‒16 28
(0.2, 0.2) 0.4 ×8.456253 10‒14 25 ×4.407010 10‒16 30

(0.5, 0.5) 0.6 ×3.182218 10‒14 30 ×1.658655 10‒16 35

(‒0.5, 0.5) 0.8 ×1.169592 10‒14 35 ×6.104875 10‒16 40

(0.5, ‒0.5) 0.8 ×4.239774 10‒14 30 ×2.216698 10‒16 40

(1, 1) 1.0 ×1.523946 10‒14 30 ×7.979700 10‒16 45
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By approximating + ≈μ μ t G F
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In same line from Eq. (18), we have
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Figure 1: Graphical presentation of variable-order and integer-order
solution of Example 1 for =M 6, ( )=ε t1 exp1 , ( ) = +ε t t2 0.52 , and
taking ( ) ( )=θ ϑ, 0, 0 .

Table 2: Maximum absolute errors and CPU time at two different scale levels and various values of ( )θ ϑ, and t for Example 2 by taking ( ) = +
ε t

t

1

1

2

and ( ) = +
ε t 2‒

t

2

1

2

(( ))θ ϑ, t ‖‖ ‖‖u u‒ex app X, at ==M 4 CPU time (s) ‖‖ ‖‖u u‒ex app X, at ==M 6 CPU time (s)

(0, 0) 0.2 ×3.9000 10‒13 16 ×3.0000 10‒16 21
(0.1, 0) 0.2 ×2.5000 10‒13 23 ×3.1000 10‒16 35
(0, 0.1) 0.2 ×2.4000 10‒13 28 ×3.2000 10‒16 36
(0.2, 0.2) 0.4 ×1.3203 10‒13 32 ×9.1234 10‒16 36
(0.5, 0.5) 0.6 ×1.8907 10‒13 37 ×1.0000 10‒16 38

(-0.5, 0.5) 0.8 ×1.3400 10‒13 37 ×1.4001 10‒16 42
(0.5, -0.5) 0.8 ×1.8000 10‒14 38 ×1.4000 10‒16 42

(1, 1) 1.0 ×1.3000 10‒14 40 ×1.3000 10‒16 48

Figure 2: Graphical presentation of variable-order and integer-order
solutions of Example 1 for =M 6, [ ]= +ε t 11

1

2
, ( ) = +ε t t1 0.52 , and

taking ( ) ( )=θ ϑ, 0, 0 .
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By usingMatlab and exercising the Gauss eliminationmethod,
we solve Eq. (22) to compute matrix K

M

T , which, on putting in
Eq. (17), we obtain numerical solution of Eq. (1).

Theorem 4.1. [33] Convergence result: If �[ ] →τtw : ,0

differentiated m times and all derivatives are continuous
such that [ ]∈ τCw 0,m and let
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where { }= −S t tmax 1 , .0 0 Here, the point to be noted is that
at → ∞m , the numerical result converges to the exact value
of the function.

5 Experimental problems

Here, we present some test problems to testify our
algorithm.

Problem 1. Consider the given problem
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The true solution is ( ) =u t t
3.

Table 3: Maximum absolute errors and CPU time at two different scale levels and various values of ( )θ ϑ, and t for Example 3 by taking ( ) = +
ε t

t

1

1

2

and ( ) = +
ε t 2‒

t

2

1

2

(( ))θ ϑ, t ‖‖ ‖‖u u‒ex app X, at ==M 4 CPU time (Sec.) ‖‖ ‖‖u u‒ex app X, at ==M 6 CPU time (Sec.)

(0, 0) 0.2 ×9.9100 10‒14 18 ×6.1000 10‒16 25
(0.1, 0) 0.2 ×9.9102 10‒14 22 ×4.5432 10‒16 30
(0, 0.1) 0.2 ×9.9876 10‒14 26 ×6.1234 10‒16 30

(0.2, 0.2) 0.4 ×4.4523 10‒14 33 ×7.9821 10‒15 32

(0.5, 0.5) 0.6 ×7.5678 10‒14 34 ×4.2340 10‒15 35

(‒0.5, 0.5) 0.8 ×9.9231 10‒14 37 ×6.2341 10‒15 44

(0.5, ‒0.5) 0.8 ×9.9123 10‒14 39 ×5.6432 10‒15 45
(1, 1) 1.0 ×1.5991 10‒14 41 ×6.9000 10‒16 50

Figure 3: Graphical presentation of variable-order and integer-order
solutions of Example 3 for =M 6, = +

ε
t

1

1

2
, ( ) = +

ε t 2
t

2

1

2
, and

taking ( ) ( )=θ ϑ, 0, 0 .

Table 4: Comparison between Haar wave let method and our proposed method for =ε1

3

4
, ( ) ( )=θ ϑ, 0, 0 for Example 3

J == ++
N 2 J 1 ‖‖ ‖‖u u‒ex app X at HWM M ‖‖ ‖‖u u‒ex app X at SJPs

1 4 0.007115 4 ×9.9100 10‒16

2 8 0.002810 4 ×9.9000 10‒16

3 16 0.001071 4 ×9.4536 10‒16

4 32 ×3.964817 10‒4 4 ×9.93456 10‒16

5 64 ×1.443621 10‒4 6 ×6.5674 10‒16

6 128 ×5.204125 10‒5 6 ×6.1234 10‒16

7 256 ×1.864213 10‒5 6 ×5.2341 10‒16

8 512 ×6.650365 10‒6 6 ×5.067807 10‒16
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From Table 1, one can see that the absolute error is
much more smaller at reasonable scale level. Figure 1 also
shows this comparison graphically.

Problem 2. Take another test problem as

� � �( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )⎧
⎨
⎩

+ + + =
= ′ =

u t u t u t u t t

u u

f ,

0 2, 0 0,

t

C

t

ε tC

t

ε tC2

0 0 0
1 2

(24)

where

( )
( ( )) ( ( ))

( ) ( )

= − −
−

−
−

− −
t

t t

ε t

t

ε t

f 1
2 Γ 3 Γ 3

.

ε t ε t2 2

1

2

2

1 2

Here, the exact solution at ( ) =ε t 11 and ( ) =ε t 22 is given as
follows:

( ) = −u t t2
1

2
.2

We approximate the solution for different scale levels and
consider the variable order as follows:

( ) [ ] ( ) [ ]= + = − +ε t t ε t t

1

2
1 , 2

1

2
1 .1 2

From Table 2, at a tolerable scale level, we observe that the
absolute inaccuracy is significantly reduced. Further in
Figure 2, we have shown this comparison graphically.

Table 2 shows absolute errors and CPU times at var-
ious values of the parameters of SJPs, t and scale level M .

Problem 3. Consider the following multi-term FDEs [33]

� �( ) ( ) ( )

( ) ( )

( )⎧

⎨
⎪
⎪

⎩
⎪
⎪

+ +

= + +
⎛
⎝

⎞
⎠

= ′ =

u t u t u t

t t t

u u

6
8.53333333

Γ

,

0 0 0.

t

C

t

ε tC2

0 0

3

1

4

1

9

4 (25)

At ( ) =ε t 11 , the exact solution is given by ( ) =u t t .3 From
Table 3, at a tolerable scale level, we observe that the
absolute inaccuracy is significantly reduced. Further in
Figure 3, we have shown this comparison graphically.

Table 3 shows absolute errors and CPU times at dif-
ferent values of the parameters of SJPs, t and scale level M .

Furthermore, we compare our results with that of
HWM used in the study by Kazem (Table 4, [33]).

6 Conclusion and discussion

For the purpose of computing approximate solutions to a
class of multi-term variable-order FDEs, we have developed
a proper numerical approach. We have created two opera-
tional matrices for integration and fractional variable-order

derivative using SJPs. We have translated the problem
under consideration into the matching algebraic equations
using these matrices. We have solved the received matrix
equations using Matlab and the Gauss elimination process to
obtain numerical answers. To confirm that the suggested
numerical technique performs better for multi-term FDEs,
certain numerical experiments have been conducted. The
tables also include a list of the CPU’s duration. Figures also
show a comparison between exact and numerical solutions.
We may observe from the table and graph that the sug-
gested method performs better. The analysis demonstrates
a quick convergence. In addition, the suggested approach’s
comparison to the HWM method already in use revealed
that the latter is likewise a strong and effective numerical
procedure with the highest accuracy. Furthermore, for
any linear issue, the current spectral technique is stable.
Extending the scale level can lead to even greater accu-
racy. The aforesaid method is a scale-oriented procedure.
Greater the scale the greater the accuracy, and vice versa.
In addition, the accuracy can also be enhanced by fixing
the order in suitable manes. In the future, we will extend
this scheme to fractals-fractional derivatives.
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