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Abstract: Finding analytical solutions for nonlinear partial
differential equations is physically meaningful. The Kaup-
Kupershmidt (KK) equation is studied in this article. The
KK equation is of fifth order, such that several solitary
solutions are obtained. In this article, however, the mod-
ified auxiliary function approach is applied to this model to
find solitary solutions. These solutions are written in terms
of Jacobi functions. Therefore, the obtained solutions can
be implemented graphically to show different patterns for
appropriate parameters.
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1 Introduction

Nonlinear partial differential equations (NPDEs) govern
transport phenomena that manifest in various physics
and engineering scenarios. These partial differential equa-
tions can be used to model, for instance, solitary waves in
fluid problems such as earthquakes and the hydromag-
netic flux of a dusty liquid through a porous medium [1]
or fluid dynamics such as Bona-Mahony equation [2-5],
Benney-Luke equation, the modified Kortewege—de-Varies
equation [6,7], heat transfer in thermoelectric fluid [8] and
Benjamin-Bona-Mohaony equation [9,10]. Great attention
has already been taken to the Kaup-Kupershmidt (KK)
equation [11,12] and also to Sawada—Kotera model [13] that
are fifth-order NPDEs.

In literature, the latter two equations are well docu-
mented even though they are of the same order and different.
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The KK model is more complex than the Sawada—Kotera
model regarding integrability and mathematical solutions.
However, the KK equation is still an active system as far as
we know of which one would seek further soliton solutions.
The KK equation can be applied to various applications in
physics, such as nonlinear optics, fluid dynamics, and plasma
physics [14]. In 1980, the famous classical KK equation is
introduced by Kaup [15] and modified by Kupershmidt in
1994 [16]. Most recently, numerical approaches to the frac-
tional-order KK equation have been implemented to seek
nonlinear dispersive waves and capillary gravity waves [17].
For fractional-order differential equations model, readers
who express interest in the topic are advised to consult these
references [18-23].

In the literature, Kaup found numerically solitary solu-
tions to the KK equation by using inverse scattering theory.
Herman and Nusier [24] have computed two and three
solutions, but, they did not provide a further sequence of
soliton solutions. This brought motivation to investigate
the existence of exact solutions with the aid of Mathema-
tica software and several analytical methods. For instance,
the modified auxiliary equation (MAE) method [25,26], the
exponential expansion method [27], the tanh-based expan-
sion method [28], the Jacobi elliptic functions method [29], the
modified exponential rational method [30], the G’/G-expan-
sion method [31] with interested applications, and the Kudrya-
shov method [32]. Moreover, one may refer to [33,34] for more
analytical methods, for instance, the sub-equation method and
more. Furthermore, several computational methods can be
used to approximate soliton solutions, such as the Adomian
decomposition approach [35], homotopy analyzis approach
[36], and Laplace-homotopy perturbation method [37].

The objective of this present manuscript is to investi-
gate new traveling wave solutions to the problem under
investigation. This includes exponential periodic hyper-
bolic [2-4] and rational [4,5] analytical solutions different
from those exposed in the literature. The analytical method
MAE is utilized to construct different analytical solutions
for the KK equation using the well-known Jacobi functions.
Further solitons solution is determined and analyzed upon
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any constraint conditions if they exist. Furthermore, the
solutions are displayed graphically and classified according
to the Soliton profiles.

The current manuscript is organized as follows: an
overview of the methodology used herein in Section 2; in
Section 3, we use the proposed approach to the KK equa-
tion; Section 4 is devoted to discussing the obtained solu-
tions; and at the end of Section 5, the conclusion and
further ideas are presented.

2 The method of MAE

Here, we give an overview of the modified auxiliary
method [25,26]. Thus, consider the general form of the
NPDEs as follows:

) =0, (4]

X(U, Uy, U, Uxt, Ugxs e

where v = y(x, t) is unknown function in space and time,
respectively.

The outline of the method is presented as follows as:
Step 1: we apply the following transformation:

X, t) = W(0),

where g is arbitrary constant. Then, employing the
applied transformation in Eq. (2) to the partial equa-
tion in Eq. (1), it will be converted to an ordinary
differential equation in the following nonlinear form:

QW, W', W, W”, ..)| = 0. )

( =Xt Cltx (2)

Step 2: Assuming the solution of Eq. (3) would be

W)= 2 %) @
j=n

such that n > 0 is an integer and ; are constants
that will be specified. The function ¥/({) satisfies:

THE) = vy + LPAQ) + VW), &)

where vy, vy, and v, are arbitrary constants.
Therefore, Eq. (5) admits several solutions’ cases
as follows:

Case 1: Ifvg = 1, v; = =(1 + k2), and v, = k2, then the solu-
tion to Eq. (5) is: ¥({) = sn({, k), where sn({, k) is the
Jacobi function and k refers to the elliptic modulus, where
0<k<1.
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Case 2: If vg=1- k% vy = -2k%* - 1, and v, = -k?, then
Eq. (5) has a solution ¥({) = cn((, k), where cn({, k)
defines the Jacobi function and k as before.

Case 3: If ug = k* - 1,1 = -2 - k?, and v, = -1, then Eq.
(5) can be solved as ¥({) = dn({, k), where dn({, k)
defines the Jacobi function dn.

Case 4: If vy = k%, v, = -1 - k%, and v, = 1, then Eq. (5)
can be solved as W({) = ns({, k), where ns({, k) defines
the Jacobi function ns.

Case 5: If vyy=1-k%v;=-2-k2 and vy, =1, then
Eq. (5) can be solved as W({) = ¢s({, k), where ¢s({, k)
defines the Jacobi function cs.

Case 6: If vy = 1, vy = 2k* - 1, and v, = k% (k% - 1), then
Eq. (5) can be solved as W({) = sd((, k), where sd((, k)
defines the Jacobi function sd.
Step 3: In Eq. (4), n is determined via the application of
homogenous balancing principle explained in the
study by Hereman and Nuseir [24].
Substituting Eqs (4) and (5) into Eq. (3) and van-
ishing those terms with the same exponent of ¥, a
set of equations in n; can be determined. So, the
solution Eq. (1) is well determined.

Step 4:

3 The solutions to the KK model

Here, the MAE will be used to solve the KK model. Thus,
based on the study by Parker [11], the KK model is written
as follows:

75
u; + 45uu, - Tuxuxx — 15Ullyy + Uy = 0. 6)

Then, let us apply the following transformation:
ulx, ) =U(), &=x+ct, ™

where c is a constant. So that, Eq. (6) is transformed as follows:
75
cU’ + 45U%U" - 7U’U” -150U” + U =0. (8

The principle of homogeneous balancing will be used in
Eq. (8), we find n = 2. Hence, the solution to Eq. (8) can be
written as follows:
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Therefore, by using Eq. (5) and substituting Eq. (9) into
Eq. (8), one can vanish the coefficients g, n,, n_;, and n_, in
Eq. (9). Thereafter, an algebraic equations system is obtained.
Then, solving the system for n,, n,, n_;, and c, the following
solutions are obtained:

Set 1.

U@©) = ng + mp) + np*(§) + )

Ug
’]0 = ?) ’11 = 01 ”2 = 0) ’1—1 = 01 ’]—2 = Vg, C (10)

= 3ugu; - VL.

After replacing these values into Eq. (9), several cases
of analytical solutions are constructed as follows:

Case 1. If vy = 1, v; = —=(1 + k%), and v; = k2, then the
solution to KK equation in Eq. (8) is given as follows:

1 1
- — (]2 e
u@ = 5k + )+ s an
such that & = x + ct.
This leads to the following equation:
-2
u(x, t) = 3 + coth(t - x), (12)
-1
ulx, t) = 3 + ¢sc(t - x) (13)

when k — 1 and k — 0, respectively. The given solutions in
Eqs (12) and (13) are plotted in Figure 1, respectively.

Case 2. Ifvy =1 - k% vy = -2k? - 1, and v, = k2, then
Eq. (6) admits the following solution:

Extracting solitary solutions of nonlinear KK equation == 3

1 1-k?
= —(2k? - —. 14
u(é) 3(2k 1)+ @ k) (14)
Furthermore, Eq. (14) leads to the following solution:
-1
ulx, t) = 3 + sec(t - x) (15)

when k — 0.
Case 3. If up = k2-1,v; = -2 - k%, and v,y = -1, then
Eq. (6) leads to the Jacobi solution as follows:
k2 -1

w© = 32- k=

an (g, k)2 a0

Case 4.If vy = k% vy = -1 - k? and v, = 1, then, Eq. (6)
satisfies the solution as follows:

2

uE) =k —

ns (&, k)*’ )

Thus, the solution in Eq. (17) leads to the following

equation:
-2
ulx, t) = 3 + tanh?(t - x), (18)

when k — 1. The given solution to Eq. (18) will be repre-
sented in Figure 2.

Case5.Ifuy =1 - k2, v, = -2 - k? and v, = 1, then Eq.
(6) leads to the following solution:

1-k?

— 19
cs(&, k¥’ 9

uE) = 32 - k) +

which can be reduced to

Figure 1: The 3D positive solutions (12) and (13) are plotted in (a) and (b), respectively.
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Figure 2: The 3D plot of the solutions (18) when k = 1.

ulx, t) = % + tan(t - x) (20)

when k — 0.

Case 6.Ifvy =1, v1 = 2k% - 1, and v, = k%(k? - 1), then
Eq. (6) admits the following solution:
1

1
u¢) = §(2k2 -D+ SAE K

@D

Furthermore, the determined solution above converts to:

ulx, t) = % + csch(t - x) (22)

ask - 1.
Set 2.
_su
0 3 )
¢ = 176(3vv; — vP).

n n,=0,n,=0,n,=0,n, =8,

(23)

By substituting previous values into Eq. (9), several
cases of analytical solutions are constructed as follows:

Case 1. If vy = 1,01 = -(1 + k%), and v, = k2, then the
KK equation in Eq. (8) can be solved as follows:

8 8
= (k) ——. 24
U =5k + )+ s (24
Furthermore, Eq. (24) leads to the following solution:
-16
ulx, t) = KN + 8 coth?(176t - x), (25)
-8
ulx, t) = . + 8csc(176t — x) (26)

when k — 1 and k — 0, respectively.

DE GRUYTER

Case2.Ifuy =1 - k2 v, = -2k? - 1, and v, = —k?, then
Eq. (6) admits the solution as follows:

8(1 - k2)

G K @7

8
u) = 32k - 1) +
Furthermore, Eq. (14) leads to the following solution:

-8
ulx, t) = 3 + 8sec%(176t - x) (28)
when k - 0.
Case 3. If up = k2-1,v; = -2 - k%, and v, = -1, then
Eq. (6) admits a solution that can be written as follows:
8(k?-1)

u® = 5@ -k + 2D

anG K7’ @

Case 4. If vy = k%, v, = -1 - k?, and v, = 1, then Eq. (6)
satisfies a solution that can be written as follows:

8 8k?
= ——(k? —_—. 30
u(é) 3(k +1) + 1S (e, k)2 (30)
Furthermore, Eq. (30) leads to the following form:
-16
ulx, t) = -5 * 8 tanh%(176t — x) (3D

when k — 1.
Case5.Ifuy =1 - k? vy = -2 - k? and v, = 1, then Eq.
(6) satisfies a solution that can be written as follows:

8 8(1 - k%)
=—Q2-kH+ ——3 32
u@ = 3K+ (3
which can be reduced to the following equation:
16
ulx, t) = 3t 8 tan%(176t — x) (33)

when k — 0.
Case 6.Ifvy =1, vy = 2k2 - 1, and vy = k%(k? - 1), then,
Eq. (6) satisfies the following form:

UE) = Sk -1+ N

_ 8

sd(&, k)*
Furthermore, the solution determined above transforms to
the following equation:

8
ulx, t) = 3t 8csch 2(176t — x) (35)
ask - 1.

Set 3.
%1
= _’ = O? = U ) - = O? - = 07

No 3 ny Ny = U2, 4 N- 36)

¢ = 3vgvy - VA
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By substituting previous values into Eq. (9), several
cases of analytical solutions are constructed in the fol-
lowing form:

Case 1. If vy = 1,3 = (1 + k%), and v, = k2, then the
KK equation in Eq. (8) satisfies a solution that can be
written as follows:

u) = —%(k2 +1) + kZsn (¢, k)~ (37

Case2.Ifvy =1 - k2, vy = -2k? - 1, and v, = —-k?, then
Eq. (6) admits the solution as follows:

u) = %(Zk2 - 1) - k%cen(€, k)~ (38)

Furthermore, the form in Eq. (38) leads to the fol-
lowing solution:

u(x, t) = % - sech Xt - x), (39)

when k — 1.
Case 3. If up = k2 -1, v, = -2 - k%, and vy = -1, then
Eq. (6) satisfies a solution that can be written as follows:

u(®) = 32 - k%) - dné, k). 40)

Case 4. If vy = k%, v; = -1 - k%, and v, = 1, then Eq. (6)

satisfies a solution that can be written as follows:
1

u) = -g(k2 +1) + ns(¢, k)% (41)

Case5.Ifuy =1 - k%, vy = -2 - k% and v, = 1, then Eq.
(6) admits a solution that can be written as follows:

1
u@ =5@- k%) + cs(&, k), (42)
which can be reduced to the following form:
2
u(x, t) = 3" cot?(t — x) (43)

when k — 0.
Case 6. Ifuy = 1, v; = 2k% - 1, and v, = k3(k? - 1), then
Eq. (6) satisfies a solution that can be written as follows:

W) = Sk - 1)+ R - DSIE KP4

Set 4.

’70 = ﬂ:’h = 0: ’72 = Uy, r’—l = 0: ’7—2 = Uy,
3 (45)

¢ = =120V, - V2.

By substituting previous values into Eq. (9), several
cases of exact solutions are constructed in the following
forms:
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Case 1. If vy = 1, vy = —-(1 + k?), and v, = k2, then the
KK equation in Eq. (8) satisfies a solution that can be
written as follows:

1 1
- — (2 - - 2 2
u@) =gk +1+ mE k2sn(¢, k)% (46)
Furthermore, Eq. (11) leads to following form:
-2
ulx, t) = 3" coth?(16t - x) + tanh?(16t — x) (47)

when k - 1.
Case 2. Ifuy =1 - k2, vy = -2k - 1, and v, = —k?, then
Eq. (6) admits the following solution:
— |2

UE) = 3K 1) + — S+ Ken(E K

cn(é, k)? 48

Case 3. If ug = k2-1,v; = -2 - k%, and v, = -1, then
Eq. (6) admits the following form:
1 k?-1
= = — 2 - - 2
u@=3@-kH+ dn(E k) dn (¢, k)*.
Case 4. If vy = k%, v, = -1 - k?, and v, = 1, then Eq. (6)
admits the following form:

(49)

2

ns(¢, k)2 (50)

1
u@) =-gk*+ 1+ + ns(¢, k)%
Case5.Ifuy =1 - k2, v, = -2 - k? and v, = 1, then Eq.

(6) admits the following form:

1 — 2
==Q2-k)+ ——= , k)%, 51
uQ = 3@k + o H @i 6D
which can be reduced to the following form:
2
ulx, t) = 3 + cot’(16t — x) + tan?(16t — x) (52)

when k = 0.
Case 6.Ifvy = 1, v; = 2k% - 1, and v, = k%(k? - 1), then
Eq. (6) satisfies the following form:

1
= 20912 S Y 1 R 2
u(é) 3(21{ 1) + SAE K7 + k2(k? - 1)sd (&, k)2 (53)
Set 5.
8vuy
N = T3 N =0,n,=8v,n,=0,n,=0, G4)

¢ = 176(3vgu; - vA).

By substituting previous values into Eq. (9), several
cases of the following exact solutions can be constructed:

Case 1. If vy = 1, vy = —=(1 + k%), and v, = k%, then the
KK equation in Eq. (8) admits the following form:

ui) = —g(k2 +1) + 8k%sn (¢, k). (55)
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Case2.Ifvy =1 - k% vy = -2k* - 1,and vy = —k?, then
Eq. (6) admits the following solution:

u(®) = 52k - 1) - BkEen(E, k). (56)

Furthermore, Eq. (56) leads to the following form:

ulx, t) = % - 8sech (176t - x) (57

when k - 1.
Case 3. If ug = k2-1,v; = -2 - k4, and v, = -1, then
Eq. (6) admits the following solution:

u(¢) = %(2 - k%) - 8dn(¢, k)% (58)

Case 4. If vy = k% v; = -1 - k?, and v, = 1, then Eq. (6)
satisfies a solution that can be written as follows:

ué) = —%(k2 +1) + 8ns (¢, k)2 (59)

Case5.Ifuy =1 - k%, vy = -2 - k?, and v, = 1, then Eq.
(6) has a solution of the following form:

8
u@) = 5@ - k?) + 8cs(¢, k), (60)
that can be reduced to the following equation:
16
ulx, t) = 3t 8 cot?(176t - x), (61)

when k - 0.
Case 6. Ifvy = 1, v; = 2k - 1, and v, = k*(k? - 1), then
Eq. (6) satisfies the following form of solution:

U@ = %(Zk2 - 1) + 8k2(k? - 1)sd (¢, k)% (62)
Set 6.
_ 81)1 _ _ _ _
Ny = 3 = 0,1, =800y = 0,1, = 8up, 63)

¢ = -176(12v4v; + VP).

By substituting previous values into Eq. (9), several
cases of the following exact solutions are constructed:

Case 1. If vy = 1, v; = -(1 + k2), and v, = k2, then the
KK equation in Eq. (8) satisfies the form of solution as
follows:

8

— _§ 2 - - 2 2
u) = 3(k +1)+ S(E, K2 + 8k2sn (¢, k)% (64)
The solution in Eq. (24) leads to
ulx, t) = -16 + 8 coth?(2816t - x)
’ 3 (65)

+ 8 tanh?(2816t - x),

when k - 1.
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Case 2. Ifyy =1 - k% vy = -2k? - 1, and v, = —k?, then
Eq. (6) admits the following solution:

8(1 - k2)

en(§, k) 9

8
u() = g(Zk2 -1+ - 8k2cen (€, k)%
Case 3. If up = k2 -1, v, = -2 - k%, and v, = -1, then

Eq. (6) admits the following solution:

8(k? - 1)

an(, k2 ©n

8
u@ =5@- k?) + - 8dn(¢, k)
Case 4. If vy = k%, v, = -1 - k?, and v, = 1, then Eq. (6)
admits the following solution:
2

ns(¢, k)? ©8)

u(®) = -5+ 1) + + 8ns(E, K,

Case5.Ifuy =1 - k?, vy = -2 - k? and v, = 1, then Eq.
(6) admits the following solution:

—_ 12
u) = 3@ - k) + ST s ges(e b,

cs(é, k)? 63)

which can be reduced to:
16
ulx, t) = 3t 8 tan2(2816t — x) + 8 cot?(2816t — x),(70)

when k — 0.
Case 6.Ifvy =1, v; = 2k% - 1, and v, = k3(k? - 1), then
Eq. (6) admits the following form of solution:
8 8
- — 2 _ - -
U@ = 5@ -+ g
+ 8k%(k% - 1)sd (¢, k).

(71

4 Conclusion

In this manuscript, the KK equation has been studied
to find new analytical solitary solutions. The MAE method
has been utilized to obtain a variety of solutions to the
problem under investigation. As far as we know, our solu-
tions are new and different from those in the literature.
The obtained solutions are written in terms of Jacobi func-
tions that can be reduced to hyperbolic and trigonometric
forms. All solutions obtained in the article have been ver-
ified through insertion into the primary equation. Some of
the obtained solutions are plotted based on appropriate
parameter values. In future work, the analytical methods
MAE used in this article can be applied to other types of
nonlinear equations for determining the solutions of a sui-
table model.
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