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Abstract: A mathematical model is envisaged that dis-
cusses the motion of 3D nanofluids (NFs) with anisotropic
slip influence magnetic field past a stretching sheet. The
heat transportation phenomenon is analysed by melting
effect, heat generation, and chemical reaction. The main
motivation of this study is to analyse the behaviour of
liquid motion and heat transfer (HT) of NFs because this
study has huge applications in boiling, solar energy, and
micropower generation, which are used in the engineering
process. The physical governing partial differential equa-
tion is transformed into a coupled non-linear system of
ordinary differential equations using suitable appropriate
transformations. The translated equations are calculated

using Runge–Kutta–Fehlberg method via shooting proce-
dure. The physical characteristics of various parameters
on velocities, concentration, and thermal fields are explored
in detail. The HT is high in NFs when compared to pure or
regular liquids for ascending values of heat source para-
meter and slip factor. Also, the skin friction coefficients
via coordinate axes and rate of Nusselt number were
analysed.

Keywords: melting effect, nanofluid, MHD, heat source,
chemical reaction, slip condition, thermal radiation
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T
s

solid surface temperature
T

m
temperature of the melting surface

∞T fluid temperature far away from the
surface

T
w

constant fluid temperature of the wall
U

w
stretching velocity

∞U free stream velocity

Greek symbols

μ
1

dynamic viscosity
ϕ dimensionless concentration
σ

1
Boltzmann’s constant

γ chemical reaction parameter =k a/
0 1

λ
1

slip factors =N μ a υ/i
1

1 1

υ
1

kinematic viscosity of the fluid
α

1
thermal diffusivity =k ρc/

1 p
( )

τ
1

ratio of the nanoparticle to the fluid ρc ρc/
p f

( ) ( )

ρc
f

( ) heat capacity of the fluid
ρc

p
( ) heat capacity of the nanoparticle to the fluid
ρ density

Subscripts

∞ condition at free stream

Abbreviation

HT heat transfer
TR thermal radiation
TD thermal diffusivity
3D three-dimensional
CR chemical reaction
MT melting transfer
BL boundary layer
HGT homogenous reaction
NFs nanofluids
HTM heat and mass transfer
MHD magnetohydrodynamic
SS stretching sheet
2D two-dimensional
RFs regular fluids
CLAM China low activation martensitic
HR heterogeneous reaction

1 Introduction

The melting transfer is more popular topic in upcoming
researchers because it is closely related to a wide range of
technologically significant processes. The impact of melting
(fusion) is a physical process (phase conversion of a mate-
rial from a solid to a fluid). It has various natural applica-
tions of heat or pressure (such as thermocouples, semicon-
ducting materials, storage of latent heat, sanitization, optical
material processing, permafrost melting, crystal growth,
heat transfer (HT) and heat engines, metal casting, glass
industry, solidifying magma, defrosting in frozen grounds,
freezing of soil around the heat exchanger coils of a thermal
energy storage, ground-based pump), laser manufacturing
(drilling welding and selective sintering), etc. Epstein and
Cho [1] examined the exact solutions for melting motion of
HT via flat plate. On the other hand, Kamierczak et al. [2,3]
studied melting of a vertical flat plate via porous medium
with convection motion. Rahman et al. [4] presented the
melting effect on magnetohydrodynamic (MHD) laminar
and HT motion via the moving surface by the applied lie
group method. Das [5] discussed the mathematical model of
MHD motion of HT from electrically conducting liquid via
parallel melting surface. Recently, Harish Babu et al. [6]
explored the melting technology applied to magneto-NF
motion via non-linear stretching surface. Venkateswarlu
et al. [7] investigated numerical analysis of viscous dissipa-
tion and heat source on MHD motion via melting surface.
Hayat et al. [8] explored the melting HT on 3D motion of NFs
via impermeable SS. The melting HT and heat absorption
characteristics in radiated stagnation point (SP) motion of
Carreau liquid were created by Khan et al. [9]. The melting
HT on MHD motion of Sisko liquid via nonlinear stretching
velocity was examined by Hayat et al. [10]. Sheikholeslami
and Rokni [11] presented the Buongiorno model that is
applied to NF motion via stretching plate with magnetic
field. Hayat et al. [12] explained the MHD SP motion of
Jeffrey material via nonlinear SS. The microstructure of
selective laser melting-built China low activation marten-
sitic steel plates was analysed by Huang et al. [13]. Hajab-
dollahi et al. [14] investigated the close contact melting
process generated by rotation. Fauzi et al. [15] examined
the effect of melting effect on mixed convection
boundary layer (BL) motion past a vertical surface via
non-Darcian porous medium. Sheikholeslami et al. [16]
analysed the impact of melting HT on NF motion with
Lorentz forces.

The new-generation researchers are interested in doing
the liquid motion when CR (combination of heterogeneous
reaction [HR] and homogeneous reaction) is present. The
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physical condition values mentioned in HR and homoge-
neous reaction depend on weight, shape, distribution, archi-
tectural, size, appearance, colours, income, radioactivity,
disease, temperature, and so on. Homogeneous reaction is
very simple in comparison with HRs because homogeneous
reaction depends upon only one nature reacting species. But
the HR depends upon the two or more than two distinct
nature reacting species. The heat generation rate is tran-
spiring in liquid, whereas HR is supported on some catalyst
surfaces only. Homogeneous catalyst transpires in gaseous
state, whereas heterogeneous catalyst chances in solid state.
These reactions’ major role applications of chemical reaction
in industries (such as hydrometallurgical industry, atmo-
spheric flows, fog disposition and dissipation, biochemical
systems, combustion, catalysis, ceramics and polymer produc-
tion, etc.). Recently, DelaRosa et al. [17] analysed the use of
heterogeneous catalysts with sulfonic group in hydrolysis of
cellulose. Muto et al. [18] developed the unsteady numerical
simulation with a detailed CR mechanism. Hayat et al. [19]
presented the third-grade NF motion via stretchable rotating
disk. Sulochanaa et al. [20] found that the variable porosity
parameter has tendency to enhance HMT rate. Naukkarinen
and Sainio [21] developed the field of CR engineering using the
virtual laboratory (VL) concept. Yang et al. [22] explored the 2D
surface and semi-finite wedge instability of oblique detonation
waves. Sambath et al. [23] considered the CR and thermal
radiation (TR) effect on natural convective hydromagnetic
motion of viscous liquid via vertical cone. Some of the CR
model problems were analysed in previous studies [24–26].
The CR on unsteady MHD NFs motion via SS was studied
by Tarakaramu and Satya Narayan [27]. Veera Krishna
and Gangadhar Reddy [28] presented the unsteady MHD
free convection in a BL motion via a porous moving ver-
tical plate with CR. Bhatti et al. [29] examined the non-
linear TR and CR effects on 3D MHD motion of viscous NFs
with gyrotactic microorganisms via stretching porous
cylinder. Recently, some important works on fluid flow
are highlighted in previous studies [30–35].

The impact of heat source mechanism is known as a
good regulatory mechanism of HT. This mechanism has
more significant effect on NF motion owing to its engi-
neering applications (metal waste, spent nuclear fuel,
reactor safety analysis, radioactive materials, fire, and com-
bustion). Jain and Bohra [36] presented the entropy genera-
tion on MHD liquid motion and HT via stretching cylinder
with slip regime. Qayyum et al. [37] examined the impact of
buoyancy force on MHD SP motion of tangent hyperbolic
NFs. Hosseinzadeh et al. [38] discussed the non-uniform gen-
eration or absorption of HT in NFs motion via porous
stretching sheet (SS). Ahmed and Elshehabey [39] explained
that the buoyancy-driven HT enhances NFs motion with

heat generation or absorption effect. Kanchana and Zhao
[40] introduced the nonlinear stability analyses of Rayleigh–
Benard convection with internal heat source in NFs.
Recently, the generation or absorption influence on 3D NF
motion models was developed [41–44]. Some of authors
[45–48] developed numerical study of entropy generation
on NFs via stretching surface. Some other studies regarding
material applications, mathematical modelling and techni-
ques, fluid flow, HT rate, and nanomaterial are addressed as
follows: fluid flow behaviour examination [49–51], thermal
mechanics [52–54], first hidden-charm pent quark with
strangeness [55], and material characteristics [56–58].

The main intention and objective of this study to deter-
mine the nonlinear TR on 3D NF motion via SS with the
anisotropic slip and melting effect. The major motivation of
this work is to incorporate NFs to enhance the thermal con-
ductivity and to make efficient HT. Also, the model is devel-
oped for the evaluation of the behaviour of TR parameter,
melting parameter, Prandtl number, Brownian motion para-
meter, and thermophoresis parameter. The BL thickness via
SS is increasingly being used in mechanical and physical
processes, boiling, solar energy, maritime processes, aeronau-
tical, and constructions. Flow of liquid and HT across SS is
used in many technical processes, including polymer extru-
sion, food, and paper processing, fiberglass manufacturing,
plastic film stretching, wire drawing, and continuous casting.
The primary goal of the ongoing research is to learn about the
properties of TR of 3D NF motion.

2 Mathematical formulation

Let us assume that the melting effect on 3D MHD motion of
NFs via linear SS =z 0

1
with heat source and CR. As shown

in Figure 1, assume that the Cartesian coordinate system
x y z, ,

1
1

1
( ) corresponding to velocity components u u u, ,

1 2 3
( )

is examined. The nanoparticles (NPs) are taken on the linear
stretching surface. The surface velocity is assumed to be con-
stant U V, , 0

1 1
( ). A constant magnetic field is applied in the

direction of z
1
. The liquidmotion on surfacewill be determined

by the potential flow assumed as (ref. [59]):
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As per the aforementioned liquid motion considera-
tion, we can formulate the continuity, momentum, con-
servative, and energy equations, which are as follows
(ref. [59]):
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Subject to boundary conditions are the anisotropic
slip-on moving surface, constant NP volume fraction, and
constant surface temperature as follows:
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According to (ref. [60]), the radiative heat flux q
r

is
given by:

= −
∂
∂

q

σ

k

T

y

4

3

.
r

1

1

1

4

1

(8)

The temperature differences within motion are as
follows:
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Solving Eq. (8) using Eq. (10), it can be transformed as
follows:
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The suitable similarity variable is as follows:
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Figure 1: Physical model of the problem.
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Eqs. (2)–(4), (6), and (12) takes the following following
form after implementing Eq. 13, we have
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1

1

1

1

1

Substituting Eqs. (13) into Eq. (19), we obtain

= − + ′

= − ″ = − ″

−

− −

R θ

C f C g

Re Nu 1 0 ,

Re 0 , Re 0 ,

x x d

x x y y

1/2

1/2

f

1/2

f

1
1

1
1

1
1

( ) ( )

( ) ( )
(20)

where the local Reynolds numbers = a x uRe / andx 1 1

2

2
1

= a y uRe /y 1
1

2

2
1

are along x
1
- and y

1

-directions, respectively.

2.1 Numerical analysis

Using shooting technique to solve the nonlinear system of Eqs.
(14)–(17). To obtain a numerical solution by selecting a step size

=ηΔ 0.001, we consider the momentum equation in the x and
y directions, as well as the energy equations of third and
second order, respectively. Momentum equation in the direc-
tion of x and y, energy equations are third and second order,
respectively:

‴ = ′ − ″ + + ′ −f Mf f f g f 1,

2( ) ( ) (21)

‴ = ′ + ′ − ″ + −g g g M g f g 1,

2( ) ( ) (22)

″ = − + ′ + + ′ ′ + ′

−

θ R θ f g N θ ϕ N θ

Hθ

Pr/ 1

,

d b t

2( ( ))( ( ) ( )

)
(23)

″ = − + ′ − ″ϕ γϕ f g ϕ

N

N

θLe Pr .

t

b

( ) (24)

Considering dependent variables ξ ξ ξ ξ ξ ξ, , , , , ,
1 2 3 4 5 6

ξ ξ ξ ξ ξ ξ, , , , , and
7 8 9 10 12 13

and substituting in Eqs.
(21)–(24), then we obtain the following format:

=f ξ ,
1

(25)

′ = ′ =f ξ ξ ,
2 2

(26)

″ = ′ =f ξ ξ ,
3 3

(27)

‴ = ′ = = − + + −f ξ ξ Mξ ξ ξ ξ ξ 1,
4 4 2 4 1 5 2

2( ) ( ) (28)

=g ξ ,
5

(29)

′ = ′ =g ξ ξ ,
6 6

(30)

″ = ′ =g ξ ξ ,
7 7

(31)

‴ = ′ = = − + −g ξ ξ ξ ξ ξ ξ 1,
8 8 6

2

1 5 7
( ) ( ) (32)

= ′ =θ ξ ξ ,
9 9

(33)

′ = ′ =θ ξ ξ ,
10 10

(34)

″ = ′ = = − + + +

+ −

θ ξ ξ R ξ ξ ξ N ξ ξ

N ξ Hξ

Pr/ 1

,

11 11 d 10 1 5 b 10 12

t 10

2

9

( ( ))( ( )

( ) )
(35)

= ′ =ϕ z z ,
11 11

(36)

′ = ′ =ϕ z z ,
12 12

(37)

″ = = − +

− − + + + +

−

ϕ ξ γξ f g ξ

N

N

R ξ ξ ξ N ξ ξ N ξ

Hξ

Le Pr

Pr/ 1

.

13 11 12

t

b

d 10 1 5 b 10 12 t 10

2

9

( )

(( ( ))( ( ) ( )

))

(38)

Associated boundary layer as formated below

′ − ″ = =

′ − ″ =
= = − ′ ′ =

⎫

⎬
⎪

⎭⎪
→

′ ∞ = ′ ∞ = ∞ = ∞ =

→ ∞

⎫

⎬

⎪
⎪

⎭

⎪
⎪

f λ f g

g λ g

θ f Hθ ϕ

η

f g θ ϕ

η

0 0 0, 0 0,

0 0 0

0 1, Pr , 0 0

, as 0

1, 1, 0, 0 ,

at

.

1

2

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

(39)

To solve system of Eqs. (21)–(25) ten initial conditions
must be known, but ξ ξ ξ ξ, , , and

4 8 11 13
are unknown,

→ ∞ζat , boundary condition of f ζ g ζ θ ζ ϕ ζ, , ,( ) ( ) ( ) ( )

are unknown, and these three unknown conditions are
indicated by ξ ξ ξ ξ, , , and

1 5 9 11
. In order to achieve an error

of less than −
10

10, the parameters taken must be approxi-
mated to a finite value, denoted as ∞ζ , using Newton’s
scheme.
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3 Results and discussion

The variation of M (magnetic field parameter) on ′f η( )

′g ηand ( ) is presented in Figure 2. It is seen that the
′ ′f η g ηand( ) ( ) declined with various statistical values of

M . Furthermore, a variation of relative study reveals
that CRe

x x

1/2

f
(skin friction coefficient via axial direction)

decays with various distinct values of Mt (Melting para-
meter) against λ

1
(slip parameter via x

1
-axis) for both cases

=M 0 and >M 0, as explored in Figure 3. It is noted that
the hydrodynamic =M 0( ) is lower than the hydromag-
netic case >M 0( ) along x

1
-direction. Physically, M is direct

proportional to EC (electrical conductivity); due to this,
the magnetic field and resistive force applied act more
into opposite direction of liquid motion, and low EC, and
then liquid speed goes to very slow motion in stretching
surface.

Figure 4 presents the effect of Mt (melting parameter)
on θ η( ) (temperature profile). It is noted that the θ η( ) dwin-
dles with distinct statistical values of Mt. Physically, the
melting parameter is a combination of Stefan numbers
for solid and liquid aspects. Also, it is proportional to spe-
cific heat at constant pressure. Due to this fact, the fluid
particles yield low temperature.

The influence of R
d
(TR parameter) on θ η( ) is shown in

Figure 5a. It is noted that θ η( ) improves with distinct sta-
tistical values of R

d
, while the reverse behaviour follows

concentration as predicted in Figure 5b. Physically, the TR
is inversely proportional to TD (thermal diffusivity); due to
this, the low TD in liquid motion at stretching surface
released high temperature and low concentration.

The variation of Pr (Prandtl number) on θ η( ) is shown
in Figure 6. As expected, thermal BL decays for different
statistical values of Pr. Physically, Pr is inversely propor-
tional to TD. Due to this, the TD released low temperature
in NF motion at surface area.

Figure 7 indicates the behaviour of N
t
(thermophoresis

parameter) on θ η( ). It is seen that the thermal BL con-
verges high in region ≤ ≤η1 0.8 (approximate region)
with ascending statistical values of N

t
, whereas the oppo-

site behaviour displays N
b
(Brownian motion parameter),

Figure 2: Impact of M on f η g η′ and ′( ) ( ).

Figure 3: Impact of Mt on CRe
x x

1/2

f
.

Figure 4: Impact of Mt on θ η( ).
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as shown in Figure 8. Physically, the Brownian motion and
thermophoresis parameters are inversely proportional to
kinematic viscosity. The kinematic viscosity released high
temperature in NF motion at SS.

Figure 9 shows the effect of Le (Lewis number) on ϕ η( )

(concentration profile). It is observed that the low concen-
tration BL for ascending numerical values of Le. Physically,
the Lewis number is ratio of TD to Brownian diffusivity.
The low TD released low concentration in motion of NFs.

The impact of λ
1
(slip parameter via axial direction

direction) and λ
2
(slip parameter via transverse direction)

on CRe
x y

1/2

f
is shown in Figure 10. It is clear that the

skin friction enhances along the y
1

-direction for enlarged
values of λ

1
. Physically, the slip factor is proportional to

dynamic viscosity. NFs with low dynamic viscosity produce
low coefficient of skin friction at SS.

Figure 11 presents the behaviour of NFs and RFs (reg-
ular fluids) with various ascending values of H (heat
source parameter) against λ

1
on the HT rate. It is observed

that the −
Re Nu

x x

1/2 declined for distinct ascending statistical
values of H . It is also stated that the high HT rate is reduced
in case of NFs when compared to RF motion.

(a)

(b)

Figure 5: (a) Impact of R
d
on θ η( ). (b) Impact of R

d
on ϕ η( ).

Figure 6: Impact of Pr on θ η( ).

Figure 7: Impact of N
t
on θ η( ).
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4 Conclusion

This study provides valuable insights into the behaviour of
NFs in terms of liquid motion and HT. The findings can be
used to optimize the design and performance of systems
involving NFs, and to enhance the efficiency of processes
such as boiling, solar energy utilization, and micro power
generation. The results highlight the importance of consid-
ering factors such as slip influence, magnetic field, and
chemical reactions in the analysis of NF behaviour. The

findings also emphasize the potential of NFs to significantly
enhance heat transfer compared to regular liquids. Further
research can build upon these findings to explore addi-
tional parameters and conditions, and to develop more
accurate and comprehensive models for NF behaviour.
Overall, this research contributes to the understanding
and advancement of NF technology, opening up new pos-
sibilities for its application in various engineering fields.
The main results are mentioned as follows:
• The ′ ′f η g ηand( ) ( ) decrease for distinct enlarged statis-
tical values of M . On the other hand, the CRe

x x

1/2

f
decays

along the x
1
-direction with various ascending values of

Mt for the cases of =M 0 and >M 0.

Figure 8: Impact of N
b
on θ η( ).

Figure 9: Impact of Le on ϕ η( ).

Figure 10: Impact of λ
1
on CRe

x y

1/2

f
.

Figure 11: Impact of H on Re Nu
x x

1/2 .
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• The CRe
x y

1/2

f
enhances along the y

1

-direction with distinct
enlarged values of λ

1
against λ

2

• The variation of Re Nu
x x

1/2 decreases for the cases of NFs
and RFs with distinct enlarged values of H .
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