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Abstract: The main aim of this article is to focus on the
dynamics and traveling wave solution of stochastic coupled
Konno–Oono equation with multiplicative noise in the
Stratonovich sense. First, the considered model is converted
to the nonlinear ordinary differential equations by using
traveling wave transformation. Secondly, two-dimensional
phase portrait of the nonlinear ordinary differential equa-
tion and its periodic perturbation system are drawn by
using Maple software. Finally, the traveling wave solutions
of the investigated equation are obtained via the planar
dynamic systemmethod. Moreover, three-dimensional graphs
of some obtained solutions are drawn.
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1 Introduction

Stochastic partial differential equation (SPDE) [1,2] plays a
very important role in the fields of physics, life science,
nonlinear optics, engineering technology, and control
science. More and more models from natural and social
sciences need to be simulated by SPDE. Therefore, the study
of SPDE is particularly important. At present, the main pro-
blems of SPDE include the existence of solutions, the unique-

ness of solutions, the stability of solutions, martingale repre-
sentation theory, numerical solutions, and exact solutions
[3–8]. However, in real life and scientific calculation, it is
more likely to use numerical or analytical solutions of SPDE.
However, due to the complexity of stochastic problems,
there are still many challenging problems in finding the
exact solutions of SPDE. As is well known, the problem of
traveling wave solutions for nonlinear partial differential
equation (NLPDE) has received widespread attention [9–19],
and many classic methods have been proposed for con-
structing traveling wave solutions for NLPDE [20–32]. In
some recent studies, Mohammed and his collaborators
[33,34] can simplify some special SPDE into nonlinear
ordinary differential equations by means of traveling
wave transformation and mathematical analysis, which
is very helpful for us to study SPDE.

In this article, we consider the stochastic coupled
Konno–Oono (K–O) equation [35]:
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where =v v t x,( ), =u u t x,( ). σ is the noise strength. =F v( )

∘v βx t
represents the noise term in the Stratonovich sense.

β t( ) stands for the standard Wiener process. When =σ 0,
Eq. (1.1) describes a current-fed string interacting with an
external magnetic fed [36]. Stratonovich integral and Itô
integral are as follows [37]:
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Mohammed et al. [35] studied the exact solutions of Eq. (1.1)
by using the generalized ′G

G

-expansion method. However,
Mohammed et al. [35] did not obtain a Jacobian function
solution and did not discuss the dynamic and chaotic beha-
vior of Eq. (1.1). The main purpose of this article is to
discuss the dynamic behavior and exact traveling wave
solutions of Eq. (1.1).
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The rest of this article is arranged as follows. In Section 2,
two-dimensional phase portrait of the nonlinear ordinary
differential equation and its periodic perturbation system
are drawn. Moreover, the traveling wave solutions of
systems (1.1) are obtained. Finally, in Section 3, a conclu-
sion is given.

2 Phase portraits and traveling
wave solutions of Eq. (1.1)

2.1 Traveling wave transformation

First, the following transformation is considered
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where V ξ( ) and U ξ( ) are deterministic real function, σ

stands for the noise strength, and k is the nonzero constant.
Substituting Eq. (2.1) into Eq. (1.1), we have
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Applying (1.2) to Eq. (2.2), we can obtain

″ + =kV VU2 0. (2.4)

Next, taking mathematical expectation on both sides of
Eq. (2.3) at the same time, we can obtain

− ′ + ′ =kU VV2 0. (2.5)

Integrating both sides of Eq. (2.5) with respect to ξ , we have
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where c is the integration constant.
Substituting Eq. (2.6) into Eq. (2.4), we have
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2.2 Phase portraits of Eq. (2.7)

Suppose that = y
V ξ

ξ

d

d

( ) , then we obtain the following two-
dimensional plane system:
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which has the first integral
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When =k
2

2
and = −c 1, system (2.8) has three equili-

brium points, namely 0, 0( ), 0, 1( ), and −0, 1( ). Its phase

portrait is shown in Figure 1a. When =k
2

2
and =c 1,

system (2.8) has only one equilibrium point, namely 0, 0( ).
Its phase portrait [38] is shown in Figure 1b.

The periodic perturbation of system (2.8) is expressed
as follows:
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Figure 1: The phase portraits of system (2.8). (a) >ϒ 01 , >ϒ 02 and (b) >ϒ 01 , <ϒ 02 .
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where A stands for the periodic perturbation and B repre-
sents the frequency. It can be seen from the comparison
between Figures 1 and 2 that when a disturbance term is
added to the system, the system will produce chaotic beha-
vior [39].

2.3 Traveling wave solutions of Eq. (1.1)

Let = ± = −h H , 01
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Integrating Eqs (2.12) and (2.13), we obtain
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Figure 2: The phase portraits of system (2.10). (a) >ϒ 01 , >ϒ 02 , =A 0.6, =B 0.8 and (b) >ϒ 01 , <ϒ 02 , =A 0.6, =B 0.8.

Figure 3: The traveling wave solution of system (1.1) for =k
2

2
, =c 1, =σ 0. (a) =h

3

4
, (b) =h 0, and (c) =h

1

4
.
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(ii) When =h 0, so =δ1
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2 . Thus, the solu-
tion of Eq. (1.1) is presented as
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(iii) When ∈ +∞h 0,( ), system (2.7) is recorded as
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periodic orbits, then, we have
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So, we have
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Remark 2.1. Figure 3(a) and (c) shows solutions to a Jaco-
bian function, which are periodic solutions. Figure 3(b)
shows a bell shaped solitary wave.

3 Conclusion

In this article, the dynamics and traveling wave solution of
stochastic coupled K–O equation with multiplicative noise
is studied. Two-dimensional phase portrait of stochastic
coupled K–O equation with multiplicative noise and its
periodic perturbation system are drawn by using the
Maple software. Compared with the existing literature
[35], this article also obtains Jacobian elliptic function solu-
tions, which are new solutions. In the future, our research

will still focus on the dynamic behavior and traveling wave
solutions of SPDEs.
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