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Abstract: The optimal auxiliary function method (OAFM) is
introduced and used in the analysis of a nonlinear system
containing coupled Schrödinger–KdV equations, all within
the framework of the Caputo operator. The OAFM, known
for its efficiency in solving nonlinear issues, is used to
obtain approximate solutions for the coupled equations’
complicated dynamics. Numerical and graphical assess-
ments prove the suggested method’s correctness and effi-
ciency. This study contributes to the understanding and
analysis of coupled Schrödinger–KdV equations and their
many applications by providing insights into the behavior
of nonlinear systems within mathematical physics.
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1 Introduction

Fractional partial differential equations (FPDEs) have arisen
as a strong mathematical framework for explaining com-
plex systems that show anomalous diffusion, memory

effects, and nonlocal interactions. These equations incorpo-
rate fractional-order derivatives derived within the context
of fractional calculus and so generalize traditional partial
differential equations [1–5]. Due to their capacity to simulate
complex dynamics that conventional integer-order deriva-
tives cannot fully represent, FPDEs are used in many scien-
tific fields, including biology, engineering, and finance [6–8].
It is possible to trace the theoretical roots of fractional cal-
culus to the pioneering work of mathematicians like Rie-
mann, Liouville, and Caputo [9–11]. However, the promise
of FPDEs to provide more precise and realistic representa-
tions of diverse natural and artificial systems has only
recently attracted substantial attention [12–14]. This intro-
duction’s goal is to give a general understanding of frac-
tional calculus’s core ideas and how they apply to FPDEs
while also identifying important sources that have shaped
this field’s development [14–18].

The study of nonlinear systems has revealed complex
dynamics crucial to several scientific fields. A notable area
of study among them is the coupling of the Schrödinger
and Korteweg–de Vries (KdV) equations. These equations
are important tools for understanding a wide range of
physical events because they capture key aspects of wave
propagation and soliton processes. The combination of the
nonlinear dispersive KdV equation with the quantum
mechanical Schrödinger equation results in a coupled
system that exhibits intricate interactions between linear
and nonlinear processes [19–21]. In addition to offering a
more comprehensive framework for comprehending wave
dynamics, this coupling also creates opportunities for inves-
tigating fascinating phenomena that result from their inter-
dependence. To acquire an understanding of the interaction
between quantum and nonlinear dynamics and its larger
ramifications across scientific fields, this work investigates
the analysis of the nonlinear system of coupled Schrödin-
ger–KdV equations in all of its complexity [22–24].

Understanding the complex behavior of many phy-
sical events requires understanding nonlinear systems,
which offers an enthralling panorama. The investigation
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of coupled Schrödinger–KdV equations is one especially
fascinating direction in this area. The Schrödinger equa-
tion, which regulates the behavior of wave functions in
quantum mechanics, and the Korteweg–de Vries equa-
tion, which is well known for its role in explaining
nonlinear wave propagation and soliton production, are
combined in these equations. A new system that captures
both linear quantum effects and nonlinear dispersive
dynamics is created by linking these equations, offering a
singular opportunity to investigate the interactions between
these several physical phenomena [25].

In addition to enhancing our knowledge of wave pro-
cesses, this coupling also has potential applications in sev-
eral other disciplines, including fluid dynamics and nonlinear
optics [26–28]. Understanding the deep links between quantum
effects and nonlinear interactions would help researchers
understand the complex mechanisms that influence wave
behavior in challenging physical contexts [29–31]. This work
attempts to reveal the basic insights that result from the cou-
pling of the nonlinear system of coupled Schrödinger–KdV
equations, providing a greater understanding of the compli-
cated dynamics and interdependencies that underpin complex
wave propagation situations [32,33]. We want to contribute to
the better knowledge of nonlinear systems and their impor-
tance in various scientific areas via thorough analysis and
numerical research [34–36].

The search for efficient methods for resolving nonlinear
equations and systems has taken center stage inmany scien-
tific fields. The optimal auxiliary function method (OAFM)
has emerged as a potential strategy to solve these issues by
providing a structured and adaptable framework. The
OAFM, which has its roots in mathematical analysis, aims
to approximate solutions by carefully including auxiliary
functions that improve convergence characteristics. The
method’s applicability to various nonlinear situations gives
it versatility and makes it useful in disciplines including
physics, engineering, and applied mathematics. Using exam-
ples from various situations, we examine the theoretical
underpinnings, benefits, and practical application of the
OAFM in this study [37–39].

Due to its potential for solving challenging nonlinear
issues, the OAFM has attracted much interest lately. The
OAFM provides a systematic framework for approximation
solutions that could otherwise be difficult to acquire by
efficiently integrating components of perturbation theory,
auxiliary functions, and optimization approaches. The
OAFM was used by Lu et al. [40] to tackle nonlinear compu-
tational intelligence systems, demonstrating its capacity to
extract multiscale characteristics from mixed picture and
text input. In the study of Yin et al. [41], a novel end-to-
end lake boundary prediction model. This demonstrates

how the approach may be used in various fields and high-
lights its promise as a tool for studying challenging real-
world circumstances.

Furthermore, Chen et al. [42], who used the technique to
create a generic linear free-energy relationship for fore-
casting partition coefficients in organic compounds, high-
lighted the OAFM’s potency in handling mathematical
models. This application highlights the OAFM’s ability to
draw important correlations from complex mathematical
formulations. Furthermore, Lu et al. [43] discussed attention
processes in the context of multi-modal fusion in visual
question responding, emphasizing how the OAFM might
illuminate the intricate interaction of diverse data sources.

The OAFM has shown promise in various applications,
from feature extraction to predictive modeling. To contri-
bute to the expanding body of knowledge on efficient non-
linear problem-solving strategies, this work clarifies the
method’s theoretical foundations, investigates its benefits,
and offers insights into its practical application.

2 Preliminaries

Definition. The fractional Caputo derivative of a function
U ζ τ,( ) of order α is given as follows:
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3 General procedure of OAFM

To elucidate the fundamental concept of the OAFM, we
shall dissect a general nonlinear equation represented as
follows:

+ + =L u N u h φ 0.( ) ( ) ( ) (3)
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This equation is accompanied by the given initial/
boundary conditions:

∂
∂

=B u φ
u φ

φ
, 0.( ( )

( )
) (4)

In this context, L pertains to the linear term, N denotes
the nonlinear term, and h is a given function. The approach
involves the approximation of the solution for Eq. (3),
which can be expressed as follows:

= + =u φ C u φ u φ C n s* , , , 1, 2, 3, 4 … .i n0 1
( ) ( ) ( ) (5)

To initiate this approximation process, we derive the
initial and first approximations for Eq. (3) by introducing
Eq. (5) into Eq. (3), yielding

+ + + +
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The initial approximation, denoted as u φ
0
( ), can be

obtained from the linear term, leading to
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The linear operator L relies on the given initial/boundary
conditions, while the function h ϕ( ) remains variable.

To determine the first approximation u φ
1
( ), we take

into account both the initial approximation and the non-
linear differential equation, along with the corresponding
initial/boundary conditions, which results in:

+ + =L u φ C N u φ u φ C, , 0,n n1 0 1
( ( )) ( ( ) ( )) (8)

accompanied by the following relevant initial/boundary
conditions:
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Furthermore, the nonlinear term in Eq. (8) can be
expanded as follows:
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This expansion, as delineated in Eq. (10), can be pre-
sented algorithmically to achieve the limiting solution.

In order to overcome the challenges associated with
solving the nonlinear differential equation presented in Eq.
(6) and expedite the convergence of the first approxima-
tion u φ C, n1

( ), an alternate expression, as represented in
Eq. (7), is introduced for Eq. (8). This expression is vital
for controlling the issues encountered during the solution
of nonlinear differential equations and enhancing the con-
vergence of the first approximation.

Remark 1. A
1
and A

2
are considered auxiliary functions

that are contingent on u φ
0
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andCm, where =n s1, 2, 3,… and = + + +m s s s q1, 2, 3 … .

Remark 2. A
1
and A
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u φ
0
( ) or N u φ

0
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depending on the specific context.

Remark 3. The nature of A
1
and A

2
depends on whether

u φ
0
( ) or N u φ

0
( ( )) is a polynomial, trigonometric, or expo-

nential function, resulting in corresponding summation
forms. In the special case where =N u φ 0

0
( ( )) and u φ

0
( )

serves as the exact solution.

Remark 4. The determination of the values for the
unknown parameters Cn and Cm can be achieved using
various methods, such as the Ritz method, Collocation
method, Least Square method, or Galerkin’s method.

This comprehensive approach underlines the flex-
ibility and adaptability of the OAFM in handling a wide
range of nonlinear problems.

3.1 Problem 1

3.1.1 Implementation of OAFM

Consider the coupled Schrödinger–Kdv equation of frac-
tional order
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subject to the following initial conditions:
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Consider the following linear terms from Eq. (11):
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The nonlinear terms can be defined as:
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Zeroth order approximation
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Using the inverse operator, we obtain the following solution:
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Using Eq. (16) in Eq. (14), the system of nonlinear term
becomes
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and we choose the auxiliary function A
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as follows:
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The first-order approximation according to OAFM pro-
cedure is discussed in Section 3, i.e.,
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Using Eqs. (17) and (18) in Eq. (19), we obtain
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by applying inverse operator to Eq. (20), we obtain

Table 1: Absolute error of u φ t,( ) at fractional orders =μ 0.7, =μ 0.8,
and =μ 1

ζ Absolute
(( == ))error μ 0.7

Absolute
(( == ))error μ 0.8

Absolute (( == ))error μ 1

0. 0.00004 0.00004 0.00004
0.1 0.00130227 0.000404499 0.000004655
0.2 0.00217469 0.000694956 0.0000421961
0.3 0.00236032 0.000759476 0.000053294
0.4 0.00197233 0.000635256 0.0000454302
0.5 0.0013183 0.000423718 0.0000290893
0.6 0.000679637 0.000217624 0.0000138151
0.7 0.000167597 0.0000534943 0.0000036002
0.8 0.00027163 0.0000866903 0.00000510754
0.9 0.00074588 0.000238765 0.00001506
1. 0.0012967 0.000416593 0.0000283522

Table 2: Absolute error of v φ t,( ) at fractional orders =μ 0.55, =μ 0.75,
and =μ 1

ζ Absolute
(( == ))error μ 0.55

Absolute
(( == ))error μ 0.75

Absolute (( == ))error μ 1

0.5 0.000577801 0.0000354637 0.0000281522
0.6 0.00191544 0.000181767 0.0000215926
0.7 0.0043588 0.000452243 0.00000599374807
0.8 0.00732438 0.000781972 0.0000145519
0.9 0.00921167 0.000992997 0.0000289521
1. 0.00812713 0.000874782 0.0000240854
1.1 0.00317805 0.00032797 0.0000006343112
1.2 0.0045951 0.000532017 0.0000554198
1.3 0.0123911 0.00139412 0.000104191
1.4 0.0169013 0.00189093 0.000130217
1.5 0.0159235 0.00177787 0.00011859
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Table 3: Absolute error of w φ t,( ) at fractional orders =μ 0.6, =μ 0.8,
and =μ 1

ζ Absolute
(( == ))error μ 0.6

Absolute
(( == ))error μ 0.8

Absolute (( == ))error μ 1

1.3 0.000530974 0.0000269316 0.0000288141
1.37 0.000887848 0.0000693315 0.0000211942
1.44 0.00131683 0.000119502 0.0000129191
1.51 0.00178548 0.000173845 0.00000439
1.58 0.00225593 0.000228179 0.00000391539
1.65 0.00269217 0.000278529 0.000011588
1.72 0.00306528 0.000321714 0.0000182843
1.79 0.00335612 0.000355633 0.0000237875
1.86 0.00355569 0.000379302 0.0000280033
1.93 0.00366383 0.00039272 0.0000309441
2. 0.00368713 0.000396623 0.0000327027

Figure 1: The fractional order of (a) =μ 0.4, (b) OAFM =μ 0.6, (c) =μ 0.8, and (d) =μ 1 of u φ t,( ) at =t 0.004.
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According to the OAFM procedure,
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Using Eqs (16) and (21), we have
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The exact result is given as (Tables 1, 2, and 3).

4 Numerical and graphical results

The graphical analysis in this section provides insights into
the behavior of the solutions to the nonlinear system
of coupled Schrodinger–KdV equations with varying frac-
tional orders (μ) at a specific time point ( =t 0.004). Figure 1
shows the set of graphs that depicts the behavior of the
function u φ t,( ) at =t 0.004 for different fractional orders:
(a) =μ 0.4, (b) =μ 0.6, (c) =μ 0.8, and (d) =μ 1. These
visualizations illustrate how changing the fractional order
affects the behavior of u at this specific time instance, shed-
ding light on the impact of fractional order on the solution.
Similarly, Figure 2 presents the behavior of the function
v φ t,( ) at =t 0.004 for various fractional orders: (a) =μ 0.6,
(b) =μ 0.7, (c) =μ 0.8, and (d) =μ 1. These graphs allow us
to observe how altering the fractional order influences
the characteristics of v at this particular time. Figure 3
focuses on the function w φ t,( ) at =t 0.004 under different

Figure 2: The fractional order of (a) =μ 0.6, (b) =μ 0.7, (c) =μ 0.8, and (d) =μ 1 of v φ t,( ) at =t 0.004.
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fractional order conditions: (a) =μ 0.6, (b) =μ 0.7, (c)
=μ 0.8, and (d) =μ 1. These visual representations enable

us to explore the variations in the behavior of w as the
fractional order μ changes. By examining these figures, one
can gain a better understanding of how the fractional
order parameter (μ) influences the solutions u, v, and w

in the nonlinear system of coupled Schrodinger–KdV equa-
tions. These graphical representations provide valuable
insights into the dynamics of the system at a specific
time point and the role of the fractional order in shaping
these dynamics.

5 Conclusion

Finally, this research ventured into the domain of non-
linear systems by using the OAFM to evaluate a coupled
system of Schrödinger–KdV equations using the Caputo
operator. The OAFM demonstrated its effectiveness in hand-
ling difficult nonlinear issues by approximating solutions to

the intricate dynamics of the coupled equations. The reported
numerical and graphical assessments proved the method’s
correctness and efficiency, demonstrating its potential
for dealing with difficult mathematical physics problems.
This research adds to a greater knowledge of coupled
Schrödinger–KdV equations and their ramifications across
numerous scientific areas by effectively revealing insights
into the behavior of the nonlinear system. The OAFM’s rele-
vance as a useful instrument in the arsenal of mathematical
analysis is reinforced by its capacity to offer trustworthy
solutions to complex nonlinear systems.
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