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Abstract: Momentum and heat transmission influence the
coated physical characteristics of wire product. As a result,
understanding the polymeric movement and heat mass
distribution is crucial. An increase in thermal efficiency
is necessary for the wire covering technology. So, the aim
of this work is to investigate the influence of nanomaterials
on the heat and mass transport processes in wire coating
analyses. A thin film nanofluid is used to investigate heat
and mass transfer in three dimensions over a rotating
inclined disc. Both the suction and injection effects of nano-
fluids and the thermal radiation of their fluxes are taken
into account. By employing similarity variables, the set of
governing equations can be transformed into a differential
equation system. The necessary differential equation system
is solved using the Haar wavelet collocation method. Plots
and observations of the velocity distribution, concentration,
and thermal fields within the boundary layer across an
inclining, steadily rotating plane are made. Flow character-
istics change as a result of varying embedded factors such as
S, Sc, Ny, Pr, and thermophoretic parameters. Evidence sug-
gests that as the number of rotation parameters grows, the
thermal boundary layer weakens.
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1 Introduction

In order to generate the nonlinear differential equation, a
similarity transformation was applied to the original fluid
flow model. A set of differential equation system is derived
from these equations. The first-order differential equations
have been converted into a set of fractional differential
equations with the help of the Haar wavelet collocation
method (HWCM) [1-3].

The removal of saturated vapor from a fluid condensate
during cooling is an important step in the development of
chemical and mechanical engineering. Many researchers
have replicated this issue under varying situations.
Nanoparticle deferrals in fluids exhibit substantial endow-
ment enhancement at low nanoparticle concentrations.
Nanofluids have been the subject of extensive study because
of the critical importance of direct heat transfer enrichment
in various manufacturing applications, transportation sys-
tems, and nuclear power plants [4,5]. It has also been
detailed how nanofluid can be used as a “smart fluid”
in which heat transfer can be controlled to increase or
decrease as needed. This study’s overarching objective is
to have a conversation about the myriad ways in which
nanofluids are currently being and will be used in the
future, with a focus on the enhanced heat transfer proper-
ties that can be regulated and the specific characteristics
that these nanofluids keep [6,7]. Chemical and applied
sciences rely heavily on solving the problem of liquid con-
densation from cool, saturated vapors. Several studies have
examined this phenomenon under different frameworks.

Adding nanoparticles to regular fluids improves their
thermal performance significantly. Bhatti et al. [8] studied
the simultaneous effects of a changing magnetic field on
Jeffrey nanofluid. Ellahi [9] considered the flow of a mag-
netohydrodynamic (MHD) non-Newtonian nanofluid whose
viscosity changes with temperature. Hatami and Ganji [10]
investigated nanofluid laminar flow between rotating discs
with heat transfer, using the microchannel heat sink as a
cooling medium and the least square method and porous media
approach as cooling mechanisms, respectively. Throughout the
extant literature, the common fluid is predominantly used as a
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low-thermal-conductivity base fluid. The outputs of these
thermal systems are incredibly modest. Improving fluid
thermal activity by dispersing microscopic particles called
nanoparticles throughout the fluid. Sheikholeslami et al. [11]
studied the fluid flow over an inclined plane.

There are numerous practical uses for studying time-
dependent fluid flow in engineering and other scientific
disciplines. Attia [12] studied flow on a disc using suction
and injection. In their research, Bachok et al. [13] analyzed
the fluid dynamics of a moving porous plate. With the use
of nanofluids, they were able to improve heat transfer. Frei-
doonimehr et al [14] analyzed numerically the streaming of
a nanoliquid across porous expanding media. Makinde
et al. [15] looked into the effect of varying viscosity on the
streaming of a nanoliquid. Akbar et al [16] analyzed the 2D
stream of a nanoliquid by employing a magnetic field, and
numerical results were derived by a shooting method. The
MHD stream of a nanoliquid produced by a rotating disc
was investigated by Ramzan et al. [17] under partial slip
conditions. Recent studies [18-23] provide a comprehen-
sive investigation of nanofluid streaming with various
properties.

In the polymerization industry, wire coating is typically
used as an insulating substance and protection against
mechanical damage. This method involves pulling and sub-
merging an exposed, warmed wire into the melting polymer
[24,25]. During this procedure, the heated polymer is also
extruded across a rolling wire. Because of its widespread
application in science, technology, and engineering, thin-
film flow research has recently come to the forefront.
Non-viscous flow has real-world applications, such as in
developing cables, wires, fibber coats, etc. Sandeep and Mal-
vandi [26] investigated the thin-film fluid flow of non-New-
tonian nanoliquids . According to Wang's [27] measurements,
there is a variation in the thin-film fluid’s flow through the
stretching sheet. Usha and Sridharan [28] analyzed unstable
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finite thin liquid as it moves past a straight surface. Liu and
Andersson [29] discussed the film flow with heat on a surface.
Aziz et al [30] imagined fluid moving as a thin layer on a
stretching sheet to generate internal heat. Tawade et al. [31]
analyzed thin film thermal radiation and convection. A thor-
ough investigation of thermal radiations can be further
enhanced by referring to the comprehensive analysis pro-
vided in previous scholarly publications [32-38] and the
diverse investigations encompassed within them. Anders-
sona et al. [39] pondered fluid film flow on a stretching sheet
with heat transfer. Moreover, researchers [40-43] have con-
sidered the irregular motion of liquid films on a stretching
surface to account for additional variations. Hatami et al. [44]
used a steadily spinning disc to study the movement of nano-
fluids in three dimensions.

Considering the foregoing extensive discussion, this
study seeks to examine the flow of nanofluid for cooling
purposes in the wire surface coatings.

2 Mathematical formulation

Consider the flow of a nanofluid thin layer in three dimen-
sions over a spinning disc that is deemed a wire. As can be
seen in Figure 1, the rate at which the disc spins in its own
plane, expressed as an angular velocity, is given by Q. The
slanted disc is at an inclination of degree  with respect to
the horizontal plane. Here, h represents the nanofluid
layer thickness and Vi, represents the spraying velocity.
Since the liquid sheet is so thin in relation to the disc’s
radius, the cumulative effect can be disregarded. As expected,
the downward force of gravity (acceleration denoted by the
symbol g) is in effect. The film surface temperature is
denoted by the letter T;, while the disc surface temperature
is denoted by Tj. A similar C; concentration is found on a

X

Figure 1: Schematic diagram.
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film’s surface, while a C4 concentration is found on the disc.
By maintaining a fixed value for p, at the film’s surface, the
pressure is reduced to a simple function of the z-axis.

The basic flow equations are given as follows:
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With the help of the above defined parameters, one
can obtain the governing non-dimensionalized equations:

Df - (Df)* + g* - fD*f - §

Df + f] 0, (10

DK - KD(f) - h(ng(n) + 2fD(K) + 1

_ S(K +nDK)) _ 0 an
2 - 3
- 2D(f) + 2D(g)f - S[D<g> 1 (g)] 0, a2
S(h - nD(h
D - K(pg(n) - ho() + o) - P
=0,
D20 + 2PrfD(0) + Ny9'¢’ + Ny(0)* + w =0, (14)
Dg) + 256y + g+ SATFII) s
Ny 2
With boundary conditions,
f(0) = Df(0) = 0, D¥; = g(0) = 0, Dgs = K(0)
= D(K)s = 0, h(0) = 6(0) = D(h)s = ¢(0) (16)

=0,0(8) = ¢(6) =1,

where the parameters Pr, Sc, N, N, and S are defined as
follows:

DG DT
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The equation 6 = ¢ yields the constant nor-

ve(1 - bt)
malized thickness. The phenomenon under consideration
is understood by means of the condensation or spraying

velocity, denoted as f(6) = ; jg—g = a. The pressure can be

determined using the process of integrating Eq. (4). For
Pr = 0 and 6(6) = 1, the exact solution is represented by

0(0) = %. (19)

The equation § = ¢ /ﬁ represents the asymptotic

limit for a small (6). The non-monotonic nature of the
decline of 6’(0) with increasing (§) can be observed from
the oscillatory behavior of the curves for large (Pr):
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In the same way, the Sherwood number is defined as
follows:

2D

3 Methodology

Assume that A and B are constants, then for x € [A, B], the
definition of the ith Haar wavelet family is

1 for X € [ay, by)
Hi(x) =1-1 for x€[h,q), (22)
0 elsewhere
1
k+< 1
al=£,b1=_—2,c‘1=k+ (23)
mi my m

where my = 2/ is the highest attainable resolution, we will
refer to this quantity as M = 2j, and each of the 2M sub-
intervals of the interval [A, B] has length x = (B, A)/2M,
where M is the number of subintervals (2M). A translation
parameter k=0,1,..,m; -1 and a dilatation parameter
j=0,1,..,]. The formula for the wavelet number i is
i=m+k+1
For the Haar function and its integrals

pa0) = [Hix), (24)
0

D) = Ipi,z(X')dX’, [=12.. (25)
0

In order to calculate these integrals, we use Eq. (22)

x-aq for x€[ay,by)
py(X)=1a-X for x€[b,q), (26)
0 elsewhere
1 2
E(X - @) for x € [ay, by)
L —l(c—x)2 for x €[by, q)
pa(0) = { 4m? 27 SR
1
amg? for x€lg,1)
0 elsewhere
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1
E(X - )3 for x € [m, b))
1
— b)) = Z(c = x)3
pu) = | TEX B g for x€lbna) o
1
amy? x-p for x€qg,1)
0 elsewhere
We also present the notation shown below:
L
Ca = [Py, (29)
0
L
Co = [H(x)dx, (30)
0

Summation of the Haar wavelet function can be
written as follows:
fX) = Y aH(x). 3D
i=1
Using wavelets, we may approximate the highest order deri-

vatives of f, 6, g, h, K, and ¢ given by problems (10)-(14) and
(15) to build a straightforward and precise HWCM

2M

) = Y aHn), (32)
i=1
2M

g™ =y biHn), (33)
i=1
2M

0"(n) = Y cHi(n), (34)
i=1
2M

o) = 3 diHi(n), (35)
i=1
2M

h(n) = Y eHi(n), (36)
i=1
2M

K"(n) = Y fH). 37)
i=1

Integrating Eq. (32), we obtain the values f”(n),
f7(), f'(n), and f (1)), respectively,

m 1
= Zai[pi,l(n) - Zci,l], (38)
i=1
a 1
7 = Y afpm - Jncis) 69
i=1
2M 1 ']2
[ = Zai[p,- () - ——cu], (40)
=1 U L2
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1.0

Figure 2: Variation of “S” on f{n) for Ny, = Ny = Sc = 0.5, Pr = 6.7.

(41)

2M 1 ’73
fn) = izZlai Dia(m) - ngm].

Assume L is a large number. The numerical solution for
the given system is obtained by substituting Eqs (32)-(41) into
Egs (10)—(15). In the next section, we see a visual representa-

tion of the results of the proposed solution.

L0

10}

()

Figure 3: Variation of “S” on f(n) for N, = Ny = Sc = 0.5, Pr = 6.7.

3D thin-film nanofluid

Figure 4: Variation of “S” on k(n) for N, = Ny = Sc = 0.5, Pr = 6.7.

4 Results and discussion

This study investigates fluid flow characteristics in thin-
film nanofluids within a three-dimensional framework.
Specifically, we examine the behavior of these nanofluids

0.15

0.10 |

h(z)

Figure 5: Variation of “S” on h(n) for N, = Ny = Sc = 0.5, Pr = 6.7.
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1.0

Figure 6: Variation of “S” on 8’ for N, = Ny = Sc = 0.5, Pr = 6.7.

across an inclined and rotating surface, with a particular
emphasis on the associated heat and mass transfer pro-
cesses. The focus of our work has been to analyze the
impact of different embedded characteristics. The findings
were achieved using the HWCM. Figure 1 depicts the

14

#'(n)

Figure 7: Variation of “S” on ¢'()) for N, = Ny = Sc = 0.5, Pr = 6.7.

1.0

Figure 8: Variation of “N,, N” on 8'(n) for S = Sc = 0.5, Pr = 6.7.

schematic state of the flow. Variations in the value of the
parameter (S) and their effects on the axial velocity, radial
velocity, drainage flow, and induced flow are depicted in
Figures 2-5. Higher values of the parameter (S) signify
more significant fluctuations in the fluid velocity. This
effect is considerably obvious and it holds true for all of

15
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1.0

Figure 9: Variation of “Sc” on ¢'(n) for S = Ny = N, = 0.5, Pr = 6.7.
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the aforementioned different types of fluid motion that
emerge with greater values of (S), as the thickness of the
momentum barrier layer increases. This result is modified
in Figure 6, where the temperature profiles continue to fall
as (8) increases. In reality, increasing the amount of S cools
the system and slows down the rate at which heat is trans-
ferred from the sheet to the fluid. Molecular collisions
within the fluid are slowed down physically but only
slightly.

As illustrated in Figure 7, the concentration profile
rises as the unsteadiness parameter (S) is increased. This
is because a thicker momentum boundary layer results in a
higher concentration profile. The point-wise rate of change
inherent in this situation makes this effect more efficient
and transparent.

As can be seen in Figure 8, the heat transfer rate
improves with increasing values of (I;) and (Ny,). As can
be seen in Figure 9, the concentration rate rises as (Sc)
(Schmidt number) is changed. Actually, the kinematic visc-
osity increases as (Sc) grows larger, and the Sherwood

Figure 10: Variation of “P.” on 8'(n) for Sc = Ny = Ny, = 0.5.

Table 1: Numerical solution of the HWC approach Sc = § = 0.5, Pr = 6.7, N; = N}, = 0.5

n JAU)] f') o(n) k(n) o'() h(n)

0 0.012222 0.002136 111918 0.001021 0.013215 0.092328
0.1 0.016141 0.0594279 1.30172 0.164447 0.059058 0.096225
0.2 0.219794 0.136644 1.41946 0.309963 0.109512 0.010135
0.3 0.249326 0.228574 1.56612 0.437877 1152476 0.010774
0.4 0.280665 0.331357 1.93674 0.550058 1188817 0.011539
0.5 0.290019 0.441102 227418 0.648589 1.219154 0.124272
0.6 0.323463 0.55441 2.35061 0.735506 1.243934 0.139431
0.7 0.357075 0.6686 3.57273 0.812652 1.263408 0.149434
0.8 0.370967 0.781725 3.92233 0.851608 1.277633 0.154355
0.9 0.395266 0.992468 4.01623 0.843696 1.286467 0.155058
1 0.402134 1.387695 4.05592 0.897643 1.589538 0.158441

Table 2: Analytical (HAM) and numerical approach (HWCM) to evaluating the function f(n) and f'() are compared
Sc=8=05, Pr=6.7, N;= N, =05

() HWCM calculations Ham calculations Absolute error

0.0 0.012222 0.002136 0.012223 0.002136 0.000001 4.873421 x 1078
0.1 0.016141 0.059427 0.016141 0.059427 4.573421 x 1078 5.743610 x 1078
0.2 0.219794 0.136644 0.219794 0.136645 3.973421 x 1077 -0.000001

0.3 0.249326 0.228574 0.249327 0.228574 0.000002 3.457235 x 1078
0.4 0.280665 0.331357 0.280665 0.331289 4172121 x 107° 0.000068

0.5 0.290019 0.441102 0.290017 0.441102 0.000002 4.842367 x 107®
0.6 0.323463 0.554410 0.323463 0.554395 6.873421 x 1077 0.000015

0.7 0.357075 0.668656 0.357076 0.668653 0.000030 0.000026

0.8 0.370967 0.781725 0.370967 0.781725 2.871121x 107° 6.845295 x 1078
0.9 0.395266 0.992468 0.395267 0.992466 0.000005 0.000002

1 0.402134 1.387695 0.402133 1.387694 0.000001 0.000135
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Table 3: Analytical (HAM) and numerical approach (HWCM) to evaluating the function 8'(p) and k(i) are compared

Sc=8=0.5 Pr=6.7, Ny=N,=05

() HWCM calculations Ham calculations Absolute error

0.0 1.11918 0.001021 1.11910 0.001021 0.000080 0.000000

0.1 1.30172 0.164447 1.30145 0.164442 0.000270 0.000005

0.2 1.41946 0.309963 1.41923 0.309961 0.000230 0.000002

0.3 1.56612 0.437877 1.56612 0.437871 2172121 x 107° 0.000006

0.4 1.93674 0.550058 1.93670 0.550058 0.000040 4198120 x 10™°
0.5 2.27418 0.648589 2.27418 0.648586 4172021 x 107”7 0.000003

0.6 2.35061 0.735506 2.35056 0.735500 0.000050 0.000006

0.7 3.57273 0.812652 3.57273 0.812651 6.170121 x 1078 0.000001

0.8 3.92233 0.851608 3.92223 0.851603 0.000100 0.000005

0.9 4.01623 0.843696 4.01589 0.843689 0.000340 0.000007

1 4.05592 0.897643 4.05591 0.897638 0.000010 0.000005

Table 4: Analytical (HAM) and numerical approach (HWCM) to evaluating the function ¢(n) and h(n) are compared

Sc=S=05 Pr=67 N,=N,=05

(m HWCM calculations Ham calculations Absolute error

0.0 0.013215 0.092328 0.013215 0.092328 3.173464 x 1078 5174321 x 1078
0.1 0.059058 0.096225 0.059036 0.096219 0.000022 0.000007
0.2 0.109512 0.010135 0.109506 0.010130 0.000006 0.000005
0.3 1.152476 0.010774 1.152465 0.010773 0.000011 0.000002
0.4 1.188817 0.011539 1.188815 0.011537 0.000002 0.000003
0.5 1.219154 0.124272 1.219145 0.124270 0.000009 0.000002
0.6 1.243934 0.139431 1.243933 0.139430 0.000001 0.000001
0.7 1.263408 0.149434 1.263407 0.149428 0.000001 0.000006
0.8 1.277633 0.154355 1.277628 0.154346 0.000005 0.000010
0.9 1.286467 0.155058 1.286458 0.155045 0.000009 0.000013
1 1.589538 0.158441 1.589529 0.158389 0.000009 0.000053

number decreases with the increase in concentration of
the chemical species.

Figure 10 depicts the relationship between the Prandtl
number (Pr) and the heat transfer rate. When the Prandtl
number increases, the thermal boundary layer thins out,
slowing the rate at which the system cools. In the initial
stages, this impact takes on a quite distinct form. This is
because there is a ceiling on the effect caused by the point-
wise rate of change.

The numerical results of the HWCM are presented in
Table 1. The study incorporates a comprehensive analysis
utilizing numerical and analytical HAM calculations. The
findings are shown in Tables 2-4, providing a complete
comparison between the two methods. The data indicate
a significant level of concurrence between the HAM and
numerical results, suggesting a strong level of precision in
our conclusions. The investigation demonstrates a minimal
absolute error between our numerical results and the cal-
culations based on the HAM. Therefore, it is apparent that

our numerical computations are in complete agreement
with the analytical HAM outcomes.

5 Conclusion

This study focuses on examining the complexities of the
dynamics of three-dimensional nanofluid spraying over a
spinning inclined disc, which is similar to the wire utilized
in practical surface coating applications. The following dis-
cussion summarizes the novel findings discovered in the
current investigation.

As the unsteadiness parameter (S) increases, the tempera-
ture field decreases due to the increase of the momentum
barrier layer's thickness.

An increase in the Schmidt number (Sc) leads to a
decrease in the Sherwood number as a result of an
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increase in the kinematic viscosity and concentration of
the chemical species.

With larger values of the Prandtl number (Pr), the
Nusselt number decreases. Although the initial effect is very
different, as the value decreases, we notice an increase in
boundary layer flow turbulence.

Increasing the proportion of nanofluids in the system,
the temperature profile decreases, and the lowest tempera-
ture is reached.

The velocity profile declines for parameter S due to the
internal collision of the small fluid particles.
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