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Abstract: The generalization of the classical FitzHugh-Nagumo
model provides a more accurate description of the physical
phenomena of neurons by incorporating both nonlinearity
and fractional derivatives. In this article, we present a numerical
method for solving the time-fractional FitzHugh—Nagumo equa-
tion (TFENE) in the sense of the Atangana-Baleanu fractional
derivative using B-spline functions. The proposed method
employs a finite difference scheme to discretize the frac-
tional derivative in time, while 8-weighted scheme is used
to discretize the space directions. The efficiency of the
scheme is demonstrated through numerical results and
rate of convergence. The convergence order and error
norms are studied at different values of the noninteger para-
meter, temporal directions, and spatial directions. Finally,
the effectiveness of the proposed methodology is examined
through the analysis of three applications.
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1 Introduction

Splines hold a prominent position among mathematical
functions frequently employed for estimation purposes. A
spline is characterized as a piecewise polynomial function.
In the realm of numerically interpreting ordinary differ-
ential equations, partial differential equations (PDEs), and
fractional PDEs, the approach of utilizing spline functions
for approximation has gained substantial popularity [1].
Fractional calculus has become a popular tool in many
fields of research due to its ability to describe systems
with memory, long-range dependence, and nonlocality.
Traditional operators in fractional calculus have limita-
tions. To address these issues, several researchers have
proposed new operators or modifications to existing opera-
tors. The new operator developed by Caputo and Fabrizio
[2] is nonsingular, which helps to alleviate this issue. How-
ever, this operator has a problem of nonlocality. The new
operator developed by Atangana and Baleanu [3] helps to
address both the nonlocality and the singularity issues asso-
ciated with traditional operators, which makes it a valuable
tool for researchers working with fractional calculus.

There are several implications for fractional deriva-
tives in the areas of physics, mechanics, engineering, and
biology [4]. In recent developments, with the use of frac-
tional derivatives, the financial [5] and economic processes
[6] have been described. Many interpretations of fractional
derivatives exist, such as the geometric approach [7], infor-
matic interpretation [8], and the economic approach [9].
Applications of fractional calculus include non-Newtonian
fluid dynamics [10], rheology [11], hysteretic phenomena
[12], and abnormal diffusion [13]. Studying the analytical
or numerical approaches to fractional differential equa-
tions (FDEs) is extremely important since the majority of
these issues may be stated as FDEs.

The FitzHugh-Nagumo equation (FNE) system has been
derived by both FitzHugh [14] and Nagumo et al. [15]. Its
simplicity and ability to capture key dynamics make it a
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valuable tool in the study of nonlinear dynamical systems
and the analysis of biological phenomena related to excita-
tion and signal propagation. The time-fractional FNE that com-
bines diffusion and nonlinearity has attracted the interest of
many scientists in the fields of neurophysiology, logistical
population increase, flame spread, catalytic chemical reaction,
and nuclear reactor theory, as presented in the study by
Injrou et al. [16].

Nonlinear inhomogeneous time-fractional FitzHugh-
Nagumo PDE is considered as in [17],

y 2
2P0 - VZELD. by, 01 - pita, )0, 0 - ) g
+U(z,t),a<z<h, t€Ety,T],

with initial condition (IC)

p(z, to) = &(2) 12)
and boundary conditions (BCs)
pla, t) = G(t), pb,t) = &), 13)

where 0 <y <1, U(z, t) is source function, v > 0 is kine-
matic viscosity, and f, n, q are parameters that § = 0,
n €(0,1), and q > 0. The :—tyyp(z, t) is taking in the sense
of Atangana-Baleanu time-fractional derivative (ABTFD).
Gordon [18] used a collocation and Hopscotch finite
difference scheme to approximate FNE. Dehghan et al
[19] have approximated FNE using a semi-analytic method.
Keskin and Oturan [20] used reduced differential transform
method to approximate PDEs. By using Adomian Decompo-
sition Method, the exact solution has been founded by
Momani and Odibat [21] of time-fractional Navier—Stokes
equation. Ragab et al. [22] used homotopy analysis method
to approximate time-fractional Navier-Stokes equation. A
biological behavior of three-species predator—prey model
involving Atangana—Baleanu fractional derivative was stu-
died by Ghanbari et al. [23]. Approximate solution using
redefined extended cubic B-spline of time-fractional tele-
graph equation is proposed by Amin et al. [24]. Liu et al.
[25] constructed a shifted Griinwald-Letnikov scheme to
discretize the Riesz derivative of the fractional FitzHugh-
Nagumo model. Shih et al. [26] examined FNE with appli-
cations. Abbasbandy [27] founded the soliton solutions of
FNE using the homotopy analysis scheme. The explicit
solution of FNE was founded by Kakiuchi and Tchizawa
[28]. Schonbek [29] examined the FNE with boundary pro-
blems. Yanagida [30] discussed the stability of traveling
front solutions of FNE. A nonstandard difference method
was proposed by Namjoo et al. [31]. Angadi [32] solved
FNE by wavelet-based lifting methods. Olmos and Shizgal
[33] developed a pseudo-spectral method to examine the
FNE. Abdulazeez and Modanli [34] found analytic solution
of fractional order pseudo-hyperbolic telegraph equation
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using modified double Laplace transform method. The effect
of fractal-fractional Caputo-Fabrizio derivative on the ana-
lysis of tumor growth model is studied by [35]. Baleanu et al.
[36] studied stability and dynamical analysis of generalized
fractional model with a real case study. Ali et al. [37] solved
FNE using Galerkin finite element approach. A polynomial
differential quadrature method is used by Jiwari et al. [38]
for the numerical solutions of the generalized FitzHugh-
Nagumo.

The article is structured as follows: the ABTED, Parseval’s
identity (PI), and CBSFs are presented in Section 2; Section 3
shows the newly developed scheme; Sections 4 and 5 display
stability and convergence of proposed approach, respectively;
the effectiveness and validity of the suggested technique are
examined in Section 6; and finally, Section 7 summarizes the
conclusion.

2 Preliminaries

Definition 1. The ABTFD ;—:yp(z, t) of order y € (0,1) is
presented by Atangana and Baleanu [3] as follows:

oY

t
9 =28V 0
P 0= { SoP(@ VE,

2.1)
dv,

w |-V s
[ 1_y(t vy

where AB(y) is a normalized form of function that has the
property AB(y = 0) = AB(y =1) = 1. E, 5(2) is the Mittag-
Leffler function (MLF) of two parameters with
E,1(z) = E,(z), which is defined by Mittag-Leffler [39] as
follows:

o

Eo@)= Y —.
ro(?) ygo Ty + o)

A4

Some properties of MLF by fixing y and o are as follows:
s E11(2) = €%,

s Eip(2) = #,

* E;4(z%) = cosh(z),
¢ E1(-2%) = cos(2),

sinh(z)
© Eyp(zh) = — .

Definition 2. IfQ € L?[a, b], then PI is given as follows [40]:

0 b
Y 10mE = [18@)Pdz, 22)

n=-o a

n b~ .
where Q(n) = Ia Q(2)e¥nzdz is Fourier transform for all
integers n.
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2.1 Cubic B-spline basis functions

The spatial domain [a, b] be divided into equal length of N
subintervals with h = D_Ta such that {a = zq, z, -*- zy = b}
with z, < z,+1, where z, = hk + zy and r = 0(1)N.

Now, let P(z, t) be the CBSFs approach for p(z, t), i.e.,

N+1

P(z,t) = ) ¥M(DB.(2),

r=-1

2.3)

where control points W7(t) to be calculated at every tem-
poral stage and CBSFs are defined as follows:

(- z-2)*, if z € [2-3, 27-),
3(z - z-1)h? if z € [zp-1, ),
+3(z - z1)*h
-3(z - z1)®
1 + h3,
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6h* 113 + 3h%(z,.41 - 2)
+ 3h(zp41 — 2)?
- 3(ZV+1 - Z)B:

(ZT'+2 - Z)31

2.4
if z € [z, zp41),

ifze [Zr+1: Zr+2):

0, otherwise.

Numerous geometrical features, including the geometric
invariability, symmetry, the convex hull characteristic, local
support, nonnegativity, and the partition of unity, are pre-
served in the CBSFs [41,42]. In addition, By, By, - ,By+ have
been constructed. Equations (2.3) and (2.4) provide the fol-
lowing approximations:

o[t e (e

1 1
@ = | o -5

1 2 1
®oF = [+ [+ [

(2.5)

3 Illustration of the scheme

Suppose [0, T] the time domain be divided into M subinter-
vals of equal length with At = % using {0 = to, ty, = tyy = T}

-—_ 3

with &, < ty+1, Where t, = mAt and m=0:1: M. The
ABTFD in Eq. (1.1) is discretized at ¢ = tp.q as in [42]:

oY
ﬁp(l, tm+1)

tuet
AB(y) ' o l y
= ——P(z, V)E)|—-———(ty+1 — L) |dv,
l—y.([aup( JEy 1‘)/( 1~ V) o
0<y<1,
st
AB(y) < 3} Y
= —— — - 4
1-y vgo . avp(Z’ U)EV 1- y(tm+1 v)’(dv.

Utilizing forward difference formulation, Eq. (3.1) becomes

AB(y) % p(z, t,r1) - p(z, t,)
1-y % At

oY
@P(Z, tm+1) =

o+
X J‘Ey[_%(tmﬂ -y
t,

m+1
dv + A

- 200 19t ) - B0z )
y v=0

X

R4

v+ 1>Ey,z[—1 (A 1)At)V}

- VEV,Z

D PN
1 V(vAt)

AB 2
= T(y) Z [p(z, tn-v+1) = P(Z, t-y)]((V
YV v=0
+ DEyq =~ VE) + A

Hence,

2 AB(y) <
—PZ, th+1) = ———
ath(Z m+1) 1-y vgowv 32)

X [p(z, ty-v+1) — P(Z, ty-y)] + AA”tlﬂ:
where E, = Ey,z[—ryy(vAt)V] and w, = (v + 1)E,+1 — VE,.
Simple observation reveals that
cew,>0andwy=E,v=0:1:m,

C Wy > Wy > WS> Wy, W, > 0asv > o

* z\r;n=0(Wv = Wys1) + Wipey = (BEp — wy) + Z(,n;ll(wv ~ Wyep) +
wp = E;.

In addition, the truncation error AJ+*!

follows:

is shown in [43] as
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AB(V)

m+1

m being ?*p(z, )
Z I atZ

1

_ AB(y) (At)? g oz, )
T1-y 2 ot

X EVI_

%y(tmﬂ - vy dv

v=0
x ‘(m v+ 1)15%2[—%(@ —v+ 1)At)Vl

o]

- (m - v)Ey,z[—ﬁ«m - V)AL

_ AB(y) (Aty? g a%p(z, t,)

1-y 2 /5 ot

x ((m=v+ DEp-ye = (M = V)Ep-y)
JABY) @02 9%p(z, t)

T1-y 2 lO<t<tm ot? b

where ¢ is constant.

AT < 9(AL)?, (3.3)

where W is constant.
Now using 6-weighted scheme and Eq. (3.2), Eq. (1.1)
becomes

AB(Y) ¢
1-y
= [VPZZ(Z: tm+1) + BP(Z, tnr)(A
= Uz, tns))(PUZ, tms1) — )]
+ (1 - 0)[vp,,(z, tn)
+ Bp(z, t)(1 - pU(z, t))(PUz, tn) - )]
+ U(Z) tm+1)~

ZW\) [p(z, tm-v+1) = P(Z, tym-v)]

(3.4

Discretizing Eq. (3.4) along spatial direction for 8 = 1 and
using linearization formula as defined in [44], we obtain

(PO = g (pTH! - (g - DPDF. B
m+1 _ m+1 m _ m
(ps)r - 3(p)r (pz)r 2([’3 r (3.6)
(PO =2 )t - (PO
Now using q = 1, we have
= 28B(L + M(p)* + &Bn + 3EB(PHM (P
- &(p, )t
= E(p)f - 8L + m(pAF + 2EB(pP)" @7

S W) - () + g,

v=1
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Where f AB( )1 pk p(zr: tm) and Um+1 U(er tm+1)

Using Eq. (2.5) in Eq. (3.7), we obtain

1

1 2
) ‘[ CRERE A )

4 1
= | SWm + W T
wll r-1 6 r 6 r 1] (3.8)

- Zwv[ Qi Sy

4 1
(BT W) ¢ (W

r+1 )]
+ §um,
[lm £ ]‘Pmﬂ + [4(11 + Z—C]W;nﬂ

2 2
6 h 6 h 39)

1 [ -
« (o e -

et + gt 4 gl = QM r=0:1: N, m

(3.10)

=0:1: M,
where a; = Ey - 2881 + n)(p)I* + &Bn + 3EB(PHF, ¢ =&v,
f=ta - 5, g,’” = 5a+ H' =t~ 55,

1 4 -
Q= wf b+ dwp e dwn ] -t - wpy

TGN DR e ) PV
Yy = Er = EB(L+ n)(p)y* + 28B(p*)".  This (Eq.
(3.10)) has N + 1 linear equations with N + 3 unknowns.

Two more equations can be found for unique solution
from the given BCs (Eq. (1.3)).

system

éq;mﬂ + 21p6n+1 + élpmﬂ (m+l

(3.11)
1 4 1
SWR SR S = g

Equations (3.10)—(3.11) equations have the following form
of the matrix:
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1 4 1
6 6 6 v
fi' & H vy
fi' &' H' vyt
fmoogn Hp, o ||eRd
N-1 gN 1 N-1
gy HY|YRT
104 1 )vR
6 6 6 (3.12)
m+1
1
m+1
0
m+1
1
B r;z+1'
N-1
m+1
N
m+1
2

By using Eq. (1.2), the initial vector
is obtained as follows:

(B = &z,

(P)(r) = &(zr),
(P = €(z,),

WO = (W0, WG, - Wil

r
r
r

0,
0:1:N, (3.13)
N.

The representation of the matrix form for the above

system of equation is shown as

G =R, (3.14)
where
1,1
2h 2h
1 4 1 0
i D
6 6 6 o
1 4 1 0 £(2o)
5 6 &6 v &(z)
: =| (3.15)
141 v, &(zn-1)
6 6 6 w0 &(zy)
1 4 1 0 &'(zy)
- Z = po
6 6 6 e
1, L
2h 2h

Any numerical algorithm can be used to solve Eq. (3.15).
Mathematica 10 is used to conduct the numerical results.

- 5

4 The stability

The numerical technique is assumed to be stable when the
error does not increase during the computing process [45].
Fourier method [46-48] is applied for the stability of pro-
posed scheme. Now, let 7" and 7" represent the amplifica-
tion component and its computation in Fourier transform,
respectively k" is the error that can be addressed as follows:

m m _

kK'=t"-t" m=1:1:M,r=1:1:N-1.

Taking source function U(z,t) = 0 in Eq. (3.8), Eq. (3.8)
becomes
S - g+ Hr
= Py + bW + bW,
< [1
- ZW\; E(W;n—_l\)ﬂ
v=1

_ q?ﬁ&v (4J)

4 1
T ) + (e

m-v
- 1Pr+1 >

where b, = % by = 4%1, and b; = % From IC and BCs, we
can write
Wi=g(z), r=1:1:N (4.2)
and
Y= G(tn), 9 =0tn), m=0:1:M. (43)
Define grid function as follows:
wm
lI”"ze[z - =,z +ﬁ, r=1:1:N-1,
B 2T 2 4.4
0,z € a,a+% or zEe€ b—g,b.

The function ¥™(z) in the Fourier mode can be presented
as follows:

©

wn(z)= Y Fm(n)ers, (4.5)
n=-o
where
b
Fm(n) = Lj'lpm(z)e’i’i‘szdz m = 0()M and
b-a g ’ (4.6)

RO | O SO L L

Applying ||. ||, norm, we acquire
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N-1
o™=, [k X ¥
r=1
a+h Z +ﬁ %
2 N-17"2 b
= [rompaz+ Y [ jwmpdz + [ wmpdz
a k=1Zk_% b—%
b 3
= I|‘Pm|2dz .
a
From Eq. (2.2), we have [40]
b (o]
[rmpaz = 3 1mmp.
a n=-e
Hence, we acquire
em = X 1Fm P, @7

n=-oo

Consider Eqs (4.1)—(4.3) present a solution in Fourier series

as follows:
lp;n = 7:meiarh, 4.8)

wherei = /-1 and a is a real. Using Eq. (4.8) in Eq. (4.1), we
obtained

frm7:m+1e—iah + grm7:m+1 + Hrrn7_~m+1eiah
= blg_-me—iah + b27:m + b37:meiah

- %Wv l(g:m—wrle—iah - Tm—ve—iah)
v=1 6 (49)

4
+ g(7:m—v+1 — 7:m—v)

1 . .
+ = m—v+1eu1h - m—velah .

Utilizing the relation e + e¢™@" = 2 cos(ah) and values of
by, by, bs, ", g™, and H" we obtain the following equality:

Fmh (2 cos(ah) + 4)

"= 21 (ah))
aQ ¢(1 - cos(a
(2cos(ah) + 4)€ +mT w10)
(2cos(ah) + 4)Zv=1%[7:m—v+1 - Fmv]
B M 2¢(1 - cos(ah))
(2cos(ah) + 4)? +
1

¢m+1 = s o, Th
m 24¢ sin’ (7)

wil + Ph%(2 cos(rh) + 4)
m
Z,:le[?:m_v” _ ¢m—v]
)

411

x |Fm -
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m m m-v+l _ q=m-v
_ Zwvu) (4.12)
1 v=1

?
7:m+1 =
o P01

. 24g sin? |
1
= = 4+ —F
where o B Y hE@cos(rh) + 4)

Obviously gy > 1.

where ¥, >0 and a; > 0.

Lemma 4.1. If ¥™ is the solution of Eq. (4.12), then
|[F™ < |F9, m=0(1)M.

Proof. To prove this lemma, we use mathematical induc-
tion. So, for m = 0, Eq. (4.12) reveals

1
|FY = —IF<|FY, o 21
gy
Assume that |[F™| < |F form =1,2,..., M - 1, then

1 1 ¢
€ 1 = = 2 w(F = 1)
01 oWy 5
1 1 ¢
S—TO - W ¢0 - f[)
o1 71 G ZmAF = 17D

<[,

Theorem 1. The proposed technique (Eq. (3.10)) is stable
unconditionally.

Proof. Using Lemma 4.1 and Eq. (4.7), we obtain

¥™, < |9, Vm=0,1,.., M.

This lemma shows that the developed approach is stable
unconditionally. O

5 The convergence

The methodology as in [49] is used to analyze the conver-
gence of the propagated approach. Initially, Theorem 2 is
presented [50,51]:

Theorem 2. Suppose U belongs to C*[a, b] and P(z, t) belongs
to C¥a, b}, also partition of[a, bl is© = {a = zy, z, -~ zy = b}
with z, < zZp4 Such that z, — a = hr, where k=0:1: N. If
solution curve is interpolated by unique spline P(z,t) at
Zr € U, then for every t = 0, there is a constant wy indepen-
dent of h, and forr = 0, 1, 2, we have

ID"(B(z, t) = p(z, )|l < whT. G.1)

Lemma 5.1. The CBSFs {B_y, By, ...,By.1} in Eq. (2.4) fulfills
the inequality as given in [42]
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N+1

Y 1Bi(2)| < % 0<z<1 (5.2)

Theorem 3. The numerical approach P(z, t) to the analytic
solution p(z, t) for the the time-fractional FitzHugh-Nagumo
equation (TFENE) (Egs (1.1)-(1.3)) exists. In addition, if source
function U(z, t) belongs to C*0, 1] as in [42], then

lp(z, t) = P(z,0)|l» < wh?, forallt=0, (5.3)

for suitably small h, and @ > 0 is independent of h.

Proof. Let P(z, t) = ZNH V™(t)B,(z) be the estimated spline

for p(z, t). Through the triangular inequality, we obtain
1Pz, £) = p(z, Dll= < |IP(2, 1) = p(z, D)
+ 1Bz, ) = p(z, D)o
We have from the help of Theorem 2,
Pz, t) = P(z, D)l

For the developed scheme, these LP(z.t) = Lp(z,,t) =
U(z, t), wherer =0, 1,..., N are the conditions of colloca-
tion. Suppose that

< woh* + ||P(z, 1) = p(z, O)]. G4

LBz, t) = U(z, t), r = O(LN.

Thus, L(p(z:, t) — p(zr, t)) can be indicated for any time
level as

a5 ]q,mﬂ [4a1 Zc]q,mﬂ [ﬂ _ S |gme

6 h 6 R 6 h2)

¥ 4y Y § e

61 ;nl qu)m - _1((I)r+1 thm !

(5.5
m

- sz (‘I’m V- ;nlv

4 m-v+1 m-v m-v+1 _
+ g((br -+ g(q)rﬂ r+1 |-

The description of the BCs is

écp"”l %cp;"*l A oml=0, r=0,N,

where
Pl=9n -y r=-1:0:N+1

and

p" = U™ - 0;"],r = 0,1,...,N.

Now using the inequality (5.1), we obtain
= WU -

1o 0" < wht,

Define  p™ = max{|p/"|;0 < < N},
e™ = max{|e/";0 <r < N}.

g" =97, and
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When m = 0, Eq. (5.5) becomes

a1 ¢ 4a 2¢ 1, ¢ ]

f— —_— + —

6 R ]q) 6 ) 6 o P
_ Do ¢1 JUg L €
6 r 1t 6 6 (I)r+1 thrl’

where r = 0, 1,..., N and, through the IC, £ = 0. Applying
norms of @2, pr1 and appropriately small h, we have

3¢

1
gls ——>—
"7 ah? + 12

wht, r=0,1,..,N

We obtain £, and &}, through the BCs

15¢
Ls—— —wht
B 12c

15¢
‘€ ————mwht
NS 2
which implies

el < mh?, (5.6)

where @, is independent of h.

Now we use mathematical induction on m for the
proof of this theorem. Suppose that &' < wh? is true for
i=12)m and @ = max{w;:i=0:1:m}, then from Eq.
(5.5), we obtain the following:

@ G )ema [4a1 Zc] m+
Lot D
[6 R? 6 R
@ _ 1] m1
6 h2) "1
4 1
(wo - Wl)[ Dy + E‘Dm % ;"+1]
4 1
+ (wy - Wz)[ E‘Dm T+ 6‘1’”1]

1, 4,1
Qrq + ~ Dy +_cDr+1

+ (Wm—l Wm)[ 6 6

m+1

1
CI)? 1t _CI)O + _®r+1]] Zpr

; Wm[6

Again, using norms on ®;" and p", we obtained

3wht el
m+1 + -

& - a1h2 + 12C E vgo(wv Wv+1) .
Similarly, we obtain the values of €7#*! and &J/! from the
BCs

15wh?
m+1
S+ 12 [E Vzo(wv et
15wh*
m+1
et = wmh® + 12¢ [g vzo (W = W)
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Hence, for all m, we acquire

el < whe, (5.7
In particular,
N+1 N
Bz, t) = P(z,t) = ) (Vi(t) ~ W(1)B(2).
r=-1

Therefore, from Lemma 5.1 and inequality (5.7), we obtain

1Pz, t) = P(z, O)||w < %whz. (5.8
Using Eq. (5.8), the inequality (5.4) gives
IIP(z, t) = p(z, O)||o < woh* + gwhz = wh?,
where @ = wph? + %w. O

Theorem 4. The TFFNE is convergent with BCs and IC.

Proof. Let p(z, t) be analytic solution and P(z,t) be the
approximate solutions for the TFFNE. Therefore, the above
theorem and relation (3.3) justify that there exist constants
@ and § such that

Ip, ) = P(z, )]l < S(ALY? + TR,

Hence, the proposed approach is second-order convergent
in time and spatial directions. O

6 Analysis and presentation of
numerical applications
Approximate results are revealed to show the perfection of

the proposed methodology through L,(N), and L.(N) in
this section that are defined as follows:

N
LZ(N) = ”P(Zr; t) - p(zrs t)”Z = \/h z |p(zr: t) - P(er t)|2 ’

z=0

Lo(N) = ||P(zr, ) = p(Zp, D)]]eo = max |p(z:, ©) = P(zy, D),

and order of convergence u is calculated using following
formula as in [42]:

La(N)
La(N+1)

log

= :

R(N+1)
R(N)

log

Every application is examined by considering AB(y) = 1.

DE GRUYTER

Application 6.1. Consider the TFFNE forq =1

p
m=Vﬁ+ﬁp(1‘l7)(p"7)+U(Z)t)’aszsl’:
0<t=<T,

with IC and BCs

p(z,0) =0,
p(0,¢t) =0, (6.1)
p,t) =0,

and calculation of U is

Uz, t) = + 2vtt

4
= y(z - zz)t4Ey,5‘

- BltY(z - A1 - t4z - )[4z - 25 - nl.

The analytic solution is p(z,t) = (z - z®)t*, where
v=f=1 and n=0.5. Numerical results and absolute
errors for different values of y with N = 100, 60, and 80,
At = 0.001, and t = 1 for Application 6.1 are presented in
Tables 1and 2. For various time levels and different choices
of y, the error norms are shown in Table 3. The order of
convergence 4 and the error norms along spatial and time
directions are represent in Tables 4 and 5. The obtained
results of proposed method and analytic solution have
closed commitment as in Figure 1 for different values of
time t with At = 0.001. Figure 2 for N = 100, At = 0.001,
y =0.255,t =1, and z € [0, 1] shows the 3D plot of numer-
ical and analytic solutions. The 2D and 3D error plots are
presented in Figure 3 att = 1.

Application 6.2. Consider the TFFNE for q = 1

Table 1: Errors norm at t = 1 of Application 6.1 for different values of y
with At = 0.001 and N = 100

Numerical result Absolute error

z Analytic V=% V=% V=% V=%
solution

0.1 0.09000 0.08999 0.08999 1.67581 x 10-®  1.82337 x 10~°
0.2 0.16000 0.15999 0.15999 359818 x 108  4.22148 x 1079
0.3 0.21000 0.20999 0.20999 5.,00533 x 108  6.53577 x 10~°
0.4 0.24000 0.23999 0.23999 591083 x 10-®  8.11400 x 10-°
0.5 0.25000 0.24999 0.24999 622188 x 108  8.66179 x 10~°
0.6 0.24000 0.23999 0.23999 591083 x 10~  8.11401 x 109
0.7 0.21000 0.20999 0.20999 5.00533 x 10~8 6.53578 x 10~
0.8 0.16000 0.15999 0.15999 359818 x 10~8  4.22150 x 10~
0.9 0.09000 0.08999 0.08999 1.85955 x 10-8 1.82339 x 10~°
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Table 2: Errors norm at ¢ = 1 for Application 6.1 with At = 0.001
Numerical result Absolute error
z Analytic result y=§,N=60 y=§,N=80 y=§,N=60 y=%,N=80
0.1 0.09 0.08999 0.09000 1.64381 x 108 4.63942 x 10-°
0.2 0.16 0.15999 0.16000 3.18930 x 108 8.01115 x 102
0.3 0.21 0.20999 0.21000 4.44481 x 108 1.02170 x 10-8
0.4 0.24 0.23999 0.24000 5.25382 x 108 1.15103 x 108
0.5 0.25 0.24999 0.25000 5.53179 x 10-8 1.19462 x 10-8
0.6 0.24 0.23999 0.24000 5.25382 x 108 1.15103 x 108
0.7 0.21 0.20999 0.21000 4.44481 x 10-8 1.02170 x 108
0.8 0.16 0.15999 0.16000 3.18930 x 10-8 8.01115 x 102
0.9 0.09 0.08999 0.09000 1.64381 x 108 4.63943 x 1079
o'p azp Table 4: Order of convergence of Application 6.1 by taking various
— =v—,; +fppl- -n+Ut),asz<h, ) 9 PP - by taxing
oty 072 B p)p = m 0 values of At = % for fixed h = ﬁ andt =45
0<t=<T,
Proposed method
with IC and BCs
y m L«(N) Ly(N) u
p(z,0) =0
5 0.32 5 0.00079894 0.00055564
p(0,t) = t, (6.2) 10 0.00026095 0.00018178 1.61432
p(,t) = eXp(—l)tSV, 20 0.00007315 0.00005101 1.83478
40 0.00001921 0.00001340 1.92919
and calculation of U is 80 490113 x 10-6 3.42021 x 1076 1.97054
, 0.72 20 9.29997 x 106 5.78571 x 1076
Uz, t) = IGy+ D exp(~z2)tVE, 5+ 1[__)” ] 40 2.97431 x 10-6 1.89860 x 10-6 1.64467
1-y 1-y 80 819033 x 107 5.27495 x 107 1.86056
+ V[t exp(-22)|[1 - 22%] 160 213139 x 107 1.37757 x 1077 1.94213
320 5.41608 x 10-8 3.50547 x 10-8 1.97647

- Bt exp(-z*)][1 - t¥ exp(-z%)]
x [t exp(-z?) - n].

p(z, t) = t7 exp(-z%) is the analytic solution, where
v =B =1andn = 0.5. The absolute errors and the numer-
ical outcomes for various values of z of Application 6.2
setting N = 200, 150, 180, and different values of y and At
att = 1 are presented in Tables 6 and 7. The error norms for
t=0.1,t=0.45 and t = 0.9 are presented in Table 8 for dif-
ferent values of y with N = 175, At = 0.0005, and z € [0, 1].
The error norms and order of convergence ¢ are calculated in

1

Table 3: L..(N) and Ly(N) for different values of y with At = 2000

Tables 9 and 10 in time and space directions, respectively.
Figure 4 highlights the performance of analytic solution
and numerical outcomes at different temporal direc-
tions. 3D plots in Figure 5 of exact and computational
solution are presented. The 2D error graph and 3D error
graph are shown in Figure 6. For different values of y,
the 2D graphs are shown in Figure 7 for exact and
numerical solution.

N =100, and 0 < z < 1 of Application 6.1

Ly(N)

1 3
V=1 Y=1

L«(N)
1 3
' y=i =i
0.1 8.44658 x 10~ 3.74539 x 10~
0.5 3.76645 x 10~ 498079 x 10710

0.9 8.33893 x 107 2.08303 x 10-10

2.66203 x 10713
3.55499 x 10~
1.30658 x 10-10

5.99959 x 101
2.51322 x 101
5.82464 x 107°
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Table 5: Order of convergence with fixed At = ﬁ

. . 1
and various choices of h = - when t = 45

for Application 6.1

Proposed method

y m=n  L«(N) Ly(N) u

032 5 0.000735108 0.000542213
10 0.000258923 0.000180519 1.50543
20 0.000073009 0.0000509183 1.82638
40 0.000019199 0.0000133951 1.92705
80 4.90060 x 10-6 3.41986 x 10-° 1.97000

072 20 9.27310 x 10-6 5.77695 x 106
20 2.97235 x 10-6 1.89788 x 10-6 1.64145
40 818914 x 1077 5.27449 x 1077 1.85982
80 2.13134 x 107 1.37755 x 107 1.94195
160 3.50549 x 10-8 5.41613 x 10-8 1.97643

Application 6.3. Consider the TFFNE for g = 1

oY 9?
op _ 0%

o " Vagz TR - -m+UE . asz<Dh,

0<t<T,

P(z,t)
0.25

0.20

0.15

0.10

0.05

(©)

DE GRUYTER
with IC and BCs
p(z,0)=0
p(0.0) = ?z%z 63)
p 0= ——,
and calculation of U is
P 2t2V+2 sin| 2%
6
- ﬁltz’“z sin SZTH] 1- t¥*2sin SZTH]]

-

p(z, t) = t+? sin[%”] is analytic solution, where

x [tZ}”Z sin

v = =1andn = 0.5. The computational results and abso-
lute errors at different values of z establishing At = 0.0002,

P(zt)

(d)

Figure 1: Approximate and analytic solutions with At = 0.001 of Application 6.1 at various time levels. (a) N = 65,y = 0.255, (b) N = 85,y = 0.255,

(c) N =65,y = 0.755, and (d) N = 85,y = 0.755.
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(a) (b)

Figure 2: 3D Analytic solution and numerical solution images with N = 100, ¢ = 1,y = 0.225, At = 0.001 for Application 6.1 when 0 < z < 1. (a) Analytic
solution and (b) numerical solution.

Absolute Errors

6.x1078
5.x1078 F
6.x1078
8L
4.x10 Absolut%_ly%rsg 1000
-8
3.x1078F 2.x10
2.x108F
1.x1078
. . . . , /s
0.2 0.4 0.6 0.8 1.0 100

Figure 3: 2D and 3D Error images with N =100, t = 1, y = 0.255, At = 0.001 for Application 6.1 when 0 <z <1.

Table 6: Absolute errors of Application 6.2 for different values of y when At = ﬁ and N=200 att=1

y=1 y=3

z Analytic solution Numerical result Error Analytic solution Numerical result Error

0.1 0.99005 0.99005 415062 x 107 0.99005 0.99005 3.27136 x 107
0.2 0.96079 0.96079 6.03925 x 10-7 0.96079 0.96079 4.60952 x 10-7
0.3 0.91393 0.91393 6.03551 x 10~7 0.91393 0.91393 4.3518 x 107
0.4 0.85214 0.85214 4.65706 x 1077 0.85214 0.85214 2.96126 x 1077
0.5 0.77880 0.77880 2.51426 x 107 0.77880 0.77880 9.8195 x 108
0.6 0.69768 0.69768 2.43833 x 108 0.69768 0.69768 1.01663 x 10-7
0.7 0.61263 0.61263 1.55997 x 107 0.61263 0.61263 2.49878 x 107
0.8 0.52729 0.52729 2.40588 x 10-7 0.52729 0.52729 3.01590 x 10-7

0.9 0.44486 0.44486 1.94746 x 10~7 0.44486 0.44486 2.24421 x 10~7
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Table 7: Errors with At = 0.0005 of Application 6.2 att =1

DE GRUYTER

y = 35, N =150 y =5, N=180
z Analytic solution Numerical result Absolute error Analytic solution Numerical result Absolute error
0.1 0.99005 0.99005 6.69283 x 107 0.99005 0.99005 416680 x 10-7
0.2 0.96079 0.96079 1.01761 x 10-6 0.96079 0.96079 5.90103 x 107
0.3 0.91393 0.91393 1.00680 x 106 0.91393 0.91393 5.61936 x 10-7
0.4 0.85214 0.85214 7.61051 x 107 0.85214 0.85214 3.90011 x 10-7
0.5 0.77880 0.77880 3.86353 x 10~ 0.77880 0.77880 1.42579 x 107
0.6 0.69768 0.69768 6.68630 x 10~-° 0.69768 0.69768 1.08793 x 1077
0.7 0.61263 0.61263 3.14688 x 107 0.61263 0.61263 2.96796 x 10~
0.8 0.52729 0.52729 451997 x 107 0.52729 0.52729 3.65201 x 107
0.9 0.44486 0.44486 3.57983 x 10~7 0.44486 0.44486 2.73714 x 107

Table 8: L..(N) and Ly(N) error norms of Application 6.2 for various values of y with At = 0.0005, N=160 and 0 <z <1

Lo(N)

t =5 -

20

13
20

Ly(N)

15

L B
T 20

20

0.1 458028 x 10~ 5.22857 x 10710
0.45 6.76907 x 108 1.40524 x 1077
0.9 5.41753 x 1077 6.69999 x 1077

3.02405 x 1010
8.10530 x 10-8
3.87817 x 1077

2.67718 x 101
3.95313 x 10-8
317722 x 1077

At = 0.0004, N = 500, 250, 200, y = 0.25,0.75, and t = 1 for
Application 6.3 are displayed in Tables 11 and 12. The error
norms att = 0.15,t = 0.45, and t = 0.75 are shown in Table
13 for different values of y relying on N = 175, At = 0.0005,
and z € [0, 1]. The order of convergence i and error norms
are displayed in Tables 14 and 15 in time direction and space
direction. Figure 8 provides a description of exact values

Table 9: Order of convergence with various values of At = % and fixed
h= é of Application 6.2 whent =1

Proposed method

y m L«(N) Ly(N) u

0.32 10 0.00129431 0.000890232
20 0.000385587 0.000266753 1.74705
40 0.000104669 0.0000725964 1.88123
80 0.0000271709 0.0000188835 1.94569
160 6.84355 x 106 4.77689 x 106 1.98925

0.72 10 0.00422254 0.00289823
20 0.00158785 0.00109955 1.41103
40 0.000480743 0.000334018 1.72374
80 0.000132024 0.0000918791 1.86447
160 0.0000345204 0.0000240582 1.93527

and computational outcomes at different time levels.
3D precision of the existing approach is demonstrated by
graphs of numerical results and analytical solutions in
Figure 9. Figure 10 demonstrates the 2D and 3D error
description, proving the method’s efficiency. Figure 11 shows
the graphs of analytic and numerical solutions with dif-
ferent values of y.

L and different choices

Table 10: Order of convergence with fixed At = ¢

of h = % for Application 6.2 whent =1

Proposed method

y n L«(N) Ly(N) u

0.32 10 0.000246743 0.000146946
20 0.0000630247 0.0000364128 1.96902
40 0.0000150676 8.73748 x 106 2.06447
80 3.08653 x 1076 1.86245 x 10-° 2.28739
160 8.13505 x 107 479792 x 107 1.92376

0.72 5 0.000949882 0.000562242
10 0.000235108 0.00014029 2.01443
20 0.0000571683 0.0000333155 2.04004
40 0.0000108836 6.87791 x 10-6 2.39306
80 3.92854 x 1076 2.48103 x 10-6 1.47009
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Table 11: Absolute errors of Application 6.3 for different values of y when At =
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1
5][WandN:SOOatt=1

1 3
y=1 Y=1
z Analytic solution Numerical result Error Analytic solution Numerical result Error
0.1 0.25882 0.25882 418042 x 10~7 0.258819 0.258819 3.81068 x 107
0.2 0.50000 0.49999 7.99684 x 107 0.50000 0.49999 7.28667 x 107
0.3 0.70711 0.7071 1.11019 x 106 0.70711 0.7071 1.01104 x 106
0.4 0.86602 0.86602 1.32205 x 106 0.86603 0.86602 1.20349 x 10-%
0.5 0.96593 0.96592 1.41713 x 106 0.96593 0.96593 1.29023 x 106
0.6 1.0000 0.99999 1.38544 x 10-6 1.00000 0.99999 1.26263 x 10-6
0.7 0.96593 0.96592 1.22299 x 106 0.96593 0.96593 1.11692 x 106
0.8 0.86603 0.86602 9.31030 x 10-7 0.86603 0.86603 8.53002 x 10~
0.9 0.70711 0.70711 517630 x 107 0.70711 0.70711 4.76236 x 107
Table 12: Errors with At = 0.0004 of Application 6.3 att =1
1 3
y=4N=250 y = N=200
z Analytic solution Numerical result Absolute error Analytic solution Numerical result Absolute error
0.1 0.25882 0.25882 1.67219 x 10-6 0.25882 0.25882 2.40548 x 106
0.2 0.50000 0.49999 3.19879 x 106 0.50000 0.49999 4.60242 x 106
0.3 0.7071 0.70710 444086 x 106 0.70711 0.70710 6.39185 x 106
0.4 0.86603 0.86602 5.28832 x 106 0.86603 0.86602 7.61635 x 106
0.5 0.96593 0.96592 5.66862 x 10-6 0.96593 0.96592 8.17223 x 10-6
0.6 1.00000 0.99999 5.54189 x 106 1.00000 0.99999 8.00148 x 106
0.7 0.96593 0.96592 4.89208 x 106 0.96592 0.96592 7.07799 x 10-6
0.8 0.86603 0.86602 3.72419 x 10-6 0.86603 0.86602 5.40301 x 10-6
0.9 0.7071 0.70711 2.07056 x 10-6 0.70711 0.70710 3.01425 x 106

Table 13: For Application 6.3 the error norms for different choices of y

whenAt=m,N=175,and05zs1
L«(N) Ly(N)
t =7 - =7 =
Y=1% Y=1% V=2 Y=

7.61423 x 10-°
4.92105 x 1077
3.57981 x 10-6

0.15 6.75807 x 10-8
0.45 1.3548 x 106
0.75 561998 x 10-%

5.44521 x 10~°
3.5158 x 10~7
2.55469 x 10-6

4.82336 x 1078
9.66342 x 1077
4.00719 x 106

7 Conclusion

In the current article, through a numerical strategy based
on CBSFs, an effective solution to the TFFNE involving the

Table 14: Order of convergence with fixed h = é and taking different

values of At = % for Application 6.3 when t =1
Proposed method

y m L(N) Ly(N) u

0.32 10 0.00398681 0.00268049
20 0.00134032 0.000906445 1.57266
40 0.00038427 0.000260435 1.80238
80 0.00010198 0.0000691498 1.91383
160 0.0000254313 0.0000172158 2.00361

0.72 10 0.00588917 0.00396847
20 0.00210514 0.00142527 1.48415
40 0.000623368 0.000422822 1.75576
80 0.000168799 0.000114559 1.88478
160 0.0000431439 0.0000292582 1.96808
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Table 15: Order of convergence with different values of h = % and

1

At = - for Application 6.3 whent =1

625

Proposed method

y n L(N) Ly(N) u

0.32 10 0.00358166 0.00256983
20 0.000896036 0.00064259 1.99900
40 0.000223318 0.000159799 2.00446
80 0.0000544964 0.0000390408 2.03487
160 0.0000122878 8.84781 x 10~ 2.14893

0.72 10 0.00336907 0.00241909
20 0.000842198 0.000604066 2.00012
40 0.000208842 0.000149542 2.01175
80 0.0000499815 0.0000358637 2.06295
160 0.0000102688 7.44260 x 106 2.28312

DE GRUYTER

ABTFD has been achieved. The ABTFD has been approxi-
mated using the usual finite difference formulation, and
CBSFs are used for interpolating the solution curve in the
spatial direction. The approach suggested in the current
study is novel and offers an acceptable level of accuracy.
The proposed scheme is stable unconditionally having
second-order temporal and spatial convergence. The cur-
rent algorithm is shown to be more effective, simple, and
allowable when implemented to numerical application. Future
work should focus on expanding the scope, analyzing the algo-
rithm’s properties in more detail, and exploring its applicability
in real-world scenarios.

(c) (d)

Figure 4: At different time levels, the approximate and analytic solutions for Application 6.2. (a) N = 65, y = 0.255, and At = 0.001,
(b) N = 85,y = 0.255, and At = 0.001, (c) N = 65,y = 0.755, and At = 0.001, and (d) N = 85,y = 0.755, and At = 0.001.
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(a) (b)

1
2500

Figure 5: For Application 6.2, the 3D analytic and numerical solutions images when N = 200, ¢t =1, y = 0.75, At =
solution and (b) numerical solution.

and 0 < z < 1. (a) Analytic
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Figure 6: 2D and 3D error graphs with N = 200, ¢t =1,y = 0.75, and At = 5

for Application 6.2 when 0 <z < 1.
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Figure 7: 2D Graph with different values of y and N = 100, and At = for Application 6.2 when 0 <z <1.(a)t = 0.5 and (b) t = 0.9.
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Figure 8: For Application 6.3, the analytic and numerical solutions at various temporal direction. (a) N = 65, y = 0.255, and At = 0.001,
(b) N =85,y = 0.255, and At = 0.001, (c) N = 65, y = 0.755, and At = 0.001, and (d) N = 85,y = 0.755, and At = 0.001.

() (b)

Figure 9: 3D Analytic solution and numerical solution images with N = 500, t = 1, y = 0.25, and At = 0.0002 for Application 6.3 when0 <z <1.
(a) Analytic solution and (b) numerical solution.
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Figure 10: For Application 6.3, the 2D and 3D error plots when N = 500, ¢t = 1, y = 0.25, At = 0.0002, and 0 < z < 1.
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Figure 11: 2D Graph with different values of y and N = 100, and At =
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