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Abstract: This investigation explores twonumerical approaches:
the optimal auxiliary function method (OAFM) and the new
iterative method (NIM). These techniques address the phy-
sical fractional-order Klein-Gordon equations (FOKGEs), a
class of partial differential equations (PDEs) that model var-
ious physical phenomena in engineering and diverse plasma
models. The OAFM is a recently introduced method capable
of efficiently solving several nonlinear differential equations
(DEs), whereas the NIM is a well-established method speci-
fically designed for solving fractional DEs. Both approaches
are utilized to analyze different variations in FOKGE. By con-
ducting numerous numerical experiments on the FOKGE, we
compare the accuracy, efficiency, and convergence of these
two proposed methods. This study is expected to yield

significant findings that will help researchers study various
nonlinear phenomena in fluids and plasma physics.

Keywords: time-fractional Klein-Gordan equations, frac-
tional calculus, new iterative method, optimal auxiliary
function method

1 Introduction

Fractional calculus (FC) has become a significant branch of
practical mathematics and theoretical physics. Modeling
real-world occurrences with fractional derivatives and
integrals are more accurate than using the classical deri-
vative. Some physical processes, such as signal processing,
electronics, chemistry, viscoelasticity, dynamical systems,
economics, biology, and nonlinear phenomena in plasma
physics, can be modeled correctly and accurately using
fractional derivatives. Many authors focused on significant
advances and additions to FC [1–8]. FC is an essential area
of study for most researchers and experts due to its fasci-
nating applications. The analysis of fractional differential
equations (DEs) is essential to many professions. Compara-
tively, fractional derivatives can represent a wide range of
broad problems. A fascinating area of study in the study of
wave movements in the real world is traveling waveforms.
Mathematics and physics are engaged in wave dispersion
and breaking on coasts, ship waves on water, storm-caused
river flood waves, and free movements of confined water
like lakes and ports in addition to nonlinear waves in
plasmas [9–11].

On the other hand, the wave propagation equation
explains how waves travel through dispersive media, such
as liquid flow containing microscopic air bubbles or flow
features in elastic channels, such as streams, rivers, and
seas, as well as gravity waves in a nearby regions and waves
in plasmas. This kind of dynamical systemmay be helpful in
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research on fluid movement, ocean wave dynamics, and the
mechanism of propagating nonlinear waves in plasmas.
Therefore, finding precise answers to fractional DEs is challen-
ging [12–14]. Therefore, it can be handled using analytical and
estimation techniques. Many practical approaches have been
investigated and proposed for the solution of fractional DEs,
including the fractional differential transform method [15–17],
the Adomian decomposition method [18–20], the residual
power series method [21–23], the variational iteration method
[24–26], and the HAM method [27–29].

The time-fractional Klein-Gordon equation (TFKGE)
has been considered in this research [30,31]. The Klein-
Gordon (KG) equation plays a vital role in mathematical
physics and numerous other scientific disciplines like
solid-state physics, quantum field theory, nonlinear optics,
and nonlinear waves in plasmas [32–36]. On the other
hand, by exchanging the time order derivative with the
fractional derivative of order, the classical KG equation is
transformed into the fractional-order KG equation. The KG
equation in fractional order reads

( ) ( )− + + =D ψ D ψ a ψ a G ψ f x t, ,t

ρ

x

2

1 2

(1)

with initial condition (IC),
( ) ( ) ( ) ( )= =ψ x f x ψ x f x, 0 , , 0 ,

t1 2

where Dt

ρ represents the Caputo fractional time derivative,
a

1
and a

2
are real constants, ( )f x t, , ( )f x ,

1

and ( )f x
2

are
known as analytical functions, whereas ( )G ψ is a non-
linear, and ( )≡ψ ψ x t, is an unknown function of x and t .

Due to its importance in several scientific and tech-
nical fields, the investigation of novel methods for solving
fractional partial differential equations (PDEs) has
attracted considerable interest. In this context, the
Optimal auxiliary function method (OAFM) and the new
iterative method (NIM) have distinguished themselves as
potential approaches to deal with the difficulties in frac-
tional PDEs. These techniques provide fresh ways to deal
with the problems present in these equations, including
fractional derivatives and nonlinear dynamics. By using
auxiliary functions to convert fractional PDEs into systems
of ordinary DEs, the OAFM makes it possible to use tried-
and-true solution methods. The NIM, on the other hand,
uses iterative refinement to increase the precision of
approximation solutions for these equations. Both
approaches have great promise in developing mathema-
tical analysis and their use in various industries. This study
examines the NIM and the OAFM in-depth to illuminate
their ability to solve complex fractional PDEs.

The main purpose of the current study is to implement
the OAFM and NIM for analyzing and solving the time-
fractional Klein-Gordon equation (TFKGE).

2 Preliminaries

Some basic definitions of the Caputo fractional derivative
are introduced and discussed here.

Definition 1. The formula for the Riemann fractional inte-
gral reads [32]
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Definition 2. The fractional derivative of f , according to
the Caputo formula, is defined as [33]
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3 General procedure for the
proposed methods

3.1 General procedure of OAFM

This section describes the OAFM approach for solving gen-
eral fractional-order PDEs. Let us introduce the following
general form for time fractional order PDEs:
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Here ∂
∂t

ρ

ρ
represents the Caputo operator, x( )ψ t, is an

unknown function, and x( )g t, is a known analytic func-
tion. The approach algorithm is summarized in the fol-
lowing brief steps:

Step 1: We utilize a two-component approximate solu-
tion to address Eq. (4), which is as follows:

x x x( ) ( ) ( )= + =ψ t ψ t ψ t C i p, , , , , 1, 2, 3,…,i
0 1

(6)

Step 2: To obtain the solutions for the zeroth- and first-
order, we insert Eq. (6) in Eq. (4), to get
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Step 3: For the purpose of determining the first approx-
imation x )(ψ t,

0

based on the linear equation
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by utilizing the inverse operator, we can obtain the
expression for x )(ψ t,

0

, which can be stated as follows:

x x( ) ( )=ψ t g t, , .
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(9)

Step 4: The nonlinear term that appeared in Eq. (7) reads
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Step 5: To enhance the convergence of the first-order
approximation ( )ψ x t, and effectively solve Eq. (10), we propose
an alternative equation which can be expressed as follows:
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Step 6: We can calculate a first-order solution, ( )ψ x t,
0

by using the inverse operator and substituting the aux-
iliary function in Eq. (11) as per the method mentioned.

Step 7: There are various methods for determining the
numerical values of convergence control parameters Ci,
including but not limited to least squares, Galerkin’s, Ritz,
and collocation. In our case, we have opted to utilize the
least squares approach as it helps minimize errors.
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3.2 Analysis of the NIM

To explain the basic idea of the NIM, the following general
functional equation is considered

x x x( ) ( ) ( ( ))= +ψ f N ψ , (14)

where N is the nonlinear operator from a Banach space B

to B and f is an unknown function. Now, we are looking
for a solution to Eq. (14) having the series form
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The nonlinear term can be decomposed as
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Inserting Eqs (15) and (16) in Eq. (14), we get
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Here the following recurrence relation is defined
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Then, we have
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3.2.1 Basic road map of NIM

In this context, we will explore a fundamental approach to
fractional nonlinear PDEs with fractional order using the
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NIM method. To illustrate, let us consider the subsequent
fractional order PDE as follows:

x x( ) ( ) ( )= ∂ + − < ≤
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The function A is nonlinear and dependent on both ψ

and its partial derivative (∂ψ), while B serves as the input
function. According to the NIM, the problem of finding
initial values for Eqs. (20) and (21) can be reformulated
as an integral equation.
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3.3 Numerical problem

3.3.1 Implementation of OAFM

Example 1. Consider the following linear time-fractional
KG problem

x x− − =D ψ ψ ψ 0,t
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with IC,

x x( ) ( )= +ψ , 0 1 sin , (26)

Where both linear and nonlinear terms in Eq. (25) are
defined as
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The initial approximation is obtained according to Eq. (9)
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Using the inverse operator, we get the following
solution:

x x( ) ( )= +ψ t, 1 sin .
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By using Eq. (29) in Eq. (27), the nonlinear terms
become
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The first approximation is given in Eq. (11).
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Using Eqs. (30)–(32), we get
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Adding Eqs. (29) and (33), we obtain OAFM solution
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Also, the exact solution for this problem reads

x x( ) ( )= +ψ t t, 1 sin . (35)

Example 2. Consider the following time-fractional non-
linear KG problem

x x− + =D ψ ψ ψ 0,t
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with IC,

x x( ) ( )= +ψ , 0 1 sin , (37)

whereas both linear and nonlinear terms read
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The initial approximation is obtained from Eq. (9) as
follows:
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Using the inverse operator, we get the following
solution:

x x( ) ( )= +ψ t, 1 sin .
0

(40)
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From Eqs. (40) and (38), the nonlinear terms become

x x[ ( )] ( ( ))= +N ψ t, 1 sin .
0

2 (41)

The first approximation is given in Eq. (11).
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Using Eqs. (41)–(43), we get
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Adding Eqs. (40) and (44), we obtained OAFM solution.
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Example 3. Consider the following time-fractional non-
linear KG problem

− + − =D ψ ψ ψ ψ 0,t
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with IC,
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The initial approximation is obtained from Eq. (9).
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Using the inverse operator, we get the following solution:
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Inserting Eq. (50) in Eq. (48), the nonlinear terms
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The first approximation is given in Eq. (11).
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Using Eqs. (51)–(53), we get
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Adding Eqs. (40) and (44), we obtain the OAFM
solution.
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The values of C1, C2, C3 and C4 is define in Table 1.

3.3.2 Implementation of NIM

Applying Riemann–Liouville integral to example (1) (i.e.,
Eqs. (25) and (26)), we get

( ) ( ) [ ]= + + − +ψ x t x J ψ ψ, 1 sin .

t
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x x, (56)

From NIM algorithm, the zeroth-order problem ( )ψ x t,
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⎠

ψ x t x
aΓ a

t
Γ a

t, 1 sin

1 1

1 2

.

a a2 (60)

Applying Riemann–Liouville integral to example (2)
(i.e., Eqs. (36) and (37)), we get

( ) ( ) [ ]= + + −ψ x t x J ψ ψ, 1 sin .

t

ρ

x x,

2 (61)
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From NIM algorithm, the zeroth-order problem ( )ψ x t,

reads

( ) ( )= +ψ x t x, 1 sin .
0

(62)

The first-order component of solution reads

( )
[ ]

( [ ] [ ] )= − + +ψ x t
t

aΓ a
x x, 1 3 sin sin .

a

1

2 (63)

The second-order component of solution reads

( )
[ ]

( ( [ ])
[ ]

( [ ] [ ])

[ ]( [ ] [ ])

[ ] [ ]

[ ]( [ ] [ ] [ ])

[ ]

= + +
⎛

⎝
⎜−

+

−
− + −

−
− + − +

+

⎞

⎠
⎟

ψ x t
a a

t x
t

Γ a a

t Γ a x x

a Γ a Γ a

t Γ a x x x

Γ a

,

1

Γ

1 sin

6

6 cos sin

2 3 cos 2 6 sin

3

3 12 12 cos 2 25 sin sin 3

1 2

.

a a
x x

a

a

2

2

2 2

4

2 2

2

(64)

Therefore, three terms approximate solution ( )ψ x t,

reads

( ) ( )
[ ]

( [ ] [ ] )
[ ]

( [ ])
[ ]

( [ ] [ ])

[ ]( [ ] [ ])

[ ] [ ]

[ ]( [ ] [ ] [ ])

[ ]

= + − + + +

+
⎛

⎝
⎜⎜ + +

⎛

⎝
⎜

⎛

⎝
⎜−

+

−
− + −

−
− + − +

+

⎞

⎠
⎟
⎞

⎠
⎟
⎞

⎠
⎟⎟

ψ x t x
t

aΓ a
x x

aΓ a

t x
Γ a

t
a

t Γ a x x

a Γ a Γ a

t Γ a x x x

Γ a

, 1 sin 1 3 sin sin

1

1 sin

1

6

6 cos sin

2 3 cos 2 6 sin

3

3 12 12 cos 2 25 sin sin 3

1 2

.

a

a a

x x

a

a

2

2

2 2

4

2 2

2

(65)

Applying Riemann–Liouville integral to example (3)
(i.e., Eqs. (46) and (47)), we get

( ) ( ) [ ]= − + − +ψ x t x J ψ ψ ψ, sech .

t

ρ

x x,

3 (66)

From NIM algorithm, the zeroth-order problem ( )ψ x t,

reads

( ) ( )= −ψ x t x, sech
0

(67)

The first-order component of solution reads

( )
[ ]

( [ ] )=ψ x t
aΓ a

t x,

1

sech .

a

1

3 (68)

The second-order component of solution reads

( )
[ ]

( [ ] )
[ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

( [ ] )

[ ]

= +
⎛

⎝
⎜−

−
+

+
+

+

+
− +

+

⎞

⎠
⎟

−

ψ x t
aΓ a

t x
t x

a Γ a
a

t Γ a x

Γ a Γ a

t Γ a x

Γ a Γ a

a π t x

Γ a

,

1

sech

sech

1 2 sech

3

1 3 sech

1 4

4 1 9Tanh

.

a

a

a

a

a a

2

3

3

3

2

2 4

3 6

2

2 2

1

2

(69)

Therefore, three terms approximate solution ( )ψ x t,

reads

( ) ( )
[ ]

( [ ] )

[ ]
( [ ] )

[ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

( [ ] )

= − +

+ +
⎛

⎝

⎜
⎜−

−
+

+
+

+

+
− +
⎡⎣ + ⎤⎦

⎞

⎠

⎟
⎟

−

ψ x t x
aΓ a

t x

aΓ a
t x

t x

a Γ a
a

t Γ a x

Γ a Γ a

t Γ a x

Γ a Γ a

a π t x

Γ a

, sech

1

sech

1

sech

sech

1 2 sech

3

1 3 sech

1 4

4 1 9Tanh

.

a

a

a

a

a

a a

3

3

3

3

2

2 4

3 6

2

2 2

1

2

(70)

4 Numerical results and discussion

In this work, we derived some approximations to the
FOKGE using both OAFM and NIM approaches. The
obtained results are compared with each other and with
the exact solutions. It is found that there is a good agree-
ment with all the obtained approximations. Tables 1–3

Table 1: Convergence control parameter values obtained by the collo-
cation method

C1 C2 C3 C4

1.3893225828 ‒0.538801623 ‒0.141206521 0.0166159469

Table 3: Convergence control parameter values obtained by collocation
method

C1 C2 C3 C4

7.3254640962 10.241536004 ‒13.85392749 ‒2.758428144

Table 2: Convergence-control parameter values obtained by collocation
method

C1 C2 C3 C4

0.9808794933 ‒0.152779348 0.1245001438 0.0442022463
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Figure 1: (a) 2D periodic approximation (34), (b) 3D periodic approximation (34) using OAFM technique, (c) 2D periodic approximation (62), and (d) 3D
periodic approximation (62) using NIM technique.

On the localized and periodic solutions to time-fractional KG equations  7



Figure 2: (a) 2D periodic approximation (45), (b) 3D periodic approximation (45) using OAFM technique, (c) 2D periodic approximation (69), and (d) 3D
periodic approximation (69) using NIM technique.
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Figure 3: (a) 2D localized approximation (negative soliton) (55), (b) 3D localized approximation (negative soliton) (55) using OAFM technique, (c) 2D
localized approximation (negative soliton) (76), and (d) 3D localized approximation (negative soliton) (76) using NIM technique.
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represent numerical values for auxiliary constant using
collocation method. Both Figures 1–3 and Tables 4–6 indi-
cate the comparison between the obtained approximations

using both OAFM and NIM techniques for examples 1–6.
Both approximation (34) using OAFM and the approxima-
tion (62) using NIM for example (1) or (4) are illustrated in
Figures 1(a and b) and 1(c–d), respectively, against the frac-
tional-order ρ. It is clear that the oscillation amplitude
decreases with the increase in ρ.

Figures 2(a and b) and 2(c and d), respectively, demon-
strate both approximation (45) using OAFM and the
approximation (69) using NIM for example (2) or (5),
against the fractional-order ρ.

Both approximation (55) using OAFM and the approx-
imation (76) using NIM for example (3) or (6) are, respec-
tively, introduced in Figures 3(a and b) and 3(c and d) and 6
at different values of the fractional-order ρ. It is seen in this
example that the magnitude of oscillation amplitude
increases with the enhancement of ρ.

5 Conclusion

In this work, the OAFM and NIM have been carried out for
analyzing and solving the FOKGE. The comparative study
demonstrated that both mentioned methods produce results
in excellent agreement. The obtained results provided accu-
rate and reliable solutions to the FOKGE. NIM and OAFM
have proven to be effective and efficient methods for solving
this equation. Based on the obtained results, we expect that
these results will serve many researchers who are inter-
ested in studying nonlinear phenomena in plasma physics
and optical fibers.
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