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Abstract: The generalized (2+1)-dimensional stochastic Calogero–
Bogoyavlenskii Schiff equation (SCBSE) driven by a multi-
plicative Brownian motion is taken into consideration. The
Riccati equation mapping and He’s semi-inverse methods
are utilized to obtain the rational function, hyperbolic func-
tion, and trigonometric function for SCBSE. We expand
some solution from previous studies. The acquired solutions
of SCBSE may explain many exciting physical phenomena
because it is widely used in plasma physics and fluid
dynamics. Also, it explains the relationship between the
Riemann y-axis propagating wave and the long x-axis pro-
pagating wave. Using a variety of 2D and 3D graphs, we
illustrate how the Brownian motion influences the exact
solutions of SCBSE.

Keywords: stochastic Calogero–Bogoyavlenskii Schiff equa-
tion, exact stochastic solutions, Riccati equation mapping
method

1 Introduction

In many scientific fields, such as fluid dynamics, chemical
physics, plasma physics, and optical fibers, nonlinear wave
phenomena can be observed. Partial differential equations
(PDEs) are essential for clarifying these wave phenomena.
As a result, finding the solutions of these PDEs is necessary.
Numerous methods for solving PDEs, such as ′∕G G( )-expan-
sion method [1,2], Kudryashov method [3], first-integral
method [4], sine–cosine method [5,6], −ϕ ςexp( ( ))-expansion
method [7], direct algebraic method [8], perturbation

method [9,10], tanh function method [11], sine–Gordon
expansion method [12], and Jacobi elliptic function [13]
have been presented. Recently, from matrix spectral pro-
blems, integrable equations are generated. We can obtain
reduced integrable equations through specific symmetric
reductions on potentials such as nonlinear Schrödinger
equation [14] and modified Korteweg–de Vries equations
[15,16]. Moreover, many integrable equations have been
investigated by formulating and analyzing their Riemann–Hil-
bert problems derived from the associated given matrix spec-
tral problems (see for instance [17–19] and references therein).

In general, stochastic PDEs are used to handle systems
that face random impacts in many fields such as materials
sciences, finance, information systems, biophysics, elec-
trical engineering, condensed matter climate, and physics
system modeling [20,21]. The importance of including sto-
chastic term in complex system models has been recog-
nized. Recently, exact solutions for several SPDEs, for
example [22–25], have been found.

Therefore, stochastic effects must be taken into account
in PDEs. Here, we consider the generalized +2 1( )-dimen-
sional stochastic Calogero–Bogoyavlenskii Schiff equation
(SCBSE) driven in the Itô sense by a multiplicative Brownian
motion:

+ + + =a b δ ,xt xxxy xx y x xy x t� � � � � � � � (1)

where x y t, ,�( ) denotes the wave profile. a and b are non-
zero constants. � is a Brownian motion (BM), ρ is the noise
strength. When = −a 2, = −b 4, and =δ 0, we obtain the
following +2 1( )-dimensional breaking soliton equation:

+ − − =2 4 0.xt xxxy xx y x xy� � � � � �

While for =a 4, =b 4, and =δ 0, we obtain the +2 1( )-dimen-
sional Bogoyavlenskii’s breaking soliton equation:

+ + + =4 4 0.xt xxxy xx y x xy� � � � � �

If we put =δ 0 in Eq. (1), then we obtain the determi-
nistic Calogero–Bogoyavlenskii Schiff equation:

+ + + =a b 0,xt xxxy xx y x xy� � � � � � (2)
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which explains the relationship between the Riemann y-
axis propagating wave and the long x-axis propagating
wave. Also, it is widely used in plasma physics and fluid
dynamics. As a result, a number of authors have investi-
gated a wide range of analytical solutions of Eq. (2),
including direct integration and Lie symmetries [26], multiple
exp-function method [27], + +

′
′

G

G G A
( )-expansion method [28],

extended tanh methods and improved ′∕G G( )-expansion
method [29], sine–cosine method [30], and ′∕G G( )-expansion
method [31]. While the stochastic exact solutions to Eq. (1)
are not examined at this time.

Our purpose of this article is to achieve the exact sto-
chastic solutions of SCBSE (1). To obtain these solutions, we
utilize two various methods including Riccati equation map-
ping method and He’s semi-inverse method. We expand
some solution from previous studies such as the solutions
stated in previous studies [29–31]. The stochastic term in Eq.
(1) makes the solutions extremely useful for identifying
numerous crucial physical phenomena, and physicists would
be advised to take them into account. In addition, we provide
a large number of diagrams by using MATLAB to investigate
the effect of noise on the SCBSE solution (1).

A brief summary of the contents of this article is as
follows: The wave equation of SCBSE (1) is derived in Sec-
tion 2. Achieving exact solutions for the SCBSE is the focus
of Section 3. In Section 4, we examine how the Brownian
motion effects the solutions of SCBSE. Finally, the paper’s
conclusions are laid out.

2 Wave equation for SCBSE

The accompanying wave transformation is employed to
derive the SCBSE (1) wave equation:
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Inserting Eq. (4) into Eq. (1) yields

″ + ″″ + + ′ ″ =−
a b e 0.

δ t δ t
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When we take into account the expectations of both par-
ties, we obtain

″ + ″″ + + ′ ″
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Since t�( ) is the Brownian motion, then =e eδ t δ t
1

2

2

� �( ) ( ),
Eq. (6) turns into

″″ + ″ + ′ ″ =ℏ 2ℏ 0,1 2� � � � (7)

where
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Integrating Eq. (7) yields

‴ + ′ + ′ =ℏ ℏ 0,1 2

2
� � �( ) (9)

where integral constant was not considered.

3 Exact solutions of SCBSE

Two various methods such as Riccati equation mapping
(REM) [32] and He’s semi-inverse are used to obtain the
solutions of Eq. (9). After that, the solutions to the SCBSE
(1) are found.

3.1 REM method

The Riccati–Bernoulli equation has the form:

′ = + +α β γ,
2� � � (10)

where α β, , and γ are constants. Utilizing Eq. (10), we have

‴ = + + +
+ + + +
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Plugging Eqs (10) and (11) into Eq. (9), we obtain
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We obtain by assigning each coefficient of k� to zero

+ =α α6 ℏ 0,
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and

+ + + =β αγ γ γ2 ℏ ℏ 0.
2 2

1

2

2

The result of solving these equations is
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Now, we can rewrite Eq. (10) as
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Then, SCBSE (1) has the trigonometric function solutions:
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where = + +x y t.1 2 3ℓ ℓ ℓ ℓ

Family II: When <γα 0, thus the solutions of Eq. (10)
are as follows:
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Then, SCBSE (1) has the hyperbolic function solutions:
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Remark 1. Putting =a 4, =b 2, and =δ 0 in Eqs (14), (15), (18),
(21), (22), and (25), the identical solutions (37), (40), (43), and (46)
are given in the study by Shakeel and Mohyud-Din [29].

Remark 2. Putting =δ 0 in Eqs (14) and (15), the identical
solutions (24) are given inthe study by Najafi and Arbabi [30].

Remark 3. Putting =δ 0 in Eqs (14), (15), (21), and (22), the
identical answers (27)–(30) are given in the study by Najafi
and Arbabi [31].

Figure 1: (a)–(c) 3D-shape of solution given in Eq. (33) for various =δ 0, 1, 2. (d) 2D-shape for these values of δ . (a) =δ 0, (b) =δ 1, (c) =δ 2, and
(d) =δ 0, 1, 2.
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3.2 He’s semi-inverse method

We derive the next variational formulations by using He’s
semi-inverse approach, which is described in previous stu-
dies [33–35]:
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Following the form given by Ye and Mo [36], we assume the
solution to (7) as
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Making � stationary related to � as follows:

Figure 2: (a)–(c) 3D-shape of solution given in Eq. (21) for various =δ 0, 1, 2. (d) 2D-shape for these values of δ . (a) =δ 0, (b) =δ 1, (c) =δ 2, and
(d) =δ 0, 1, 2.
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We may do the same with the solution to Eq. (7) as
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where = + +x y t1 2 3ℓ ℓ ℓ ℓ .

4 Impacts of Wiener process

We now investigate the impact of WP on the obtained
solution of the SCBSE (1). Many graphs illustrating the per-
formance of different solutions are given. Let us fix the
parameters = 11ℓ , = 12ℓ , = −23ℓ , =y 0, ∈x 0, 4[ ] and

∈t 0, 4 ,[ ] for some solutions that have been found, such
as (21), (32), and (33), so that we can study them further. In

Figure 3: (a)–(c) 3D-shape of solution given in Eq. (32) for several =δ 0, 1, 2. (d) 2D-shape for these values of δ . (a) =δ 0, (b) =δ 1, (c) =δ 2, and
(d) =δ 0, 1, 2.
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the following figures, we can see the impact of noise on the
solutions.

It can be seen from Figures 1–3 that there exist several
solutions, such as dark, bright, periodic, kink, and others,
when the noise disappeared (i.e., at =δ 0). After a few
modest transit patterns, the surface obtains much flatter
when noise appeared and the intensity is increased. This
was confirmed using a 2D graph. This implies that the
SCBSE solutions are affected by the Wiener process and
are stabilized at zero.

5 Conclusion

We considered here the generalized (2+1)-dimensional SCBSE
forced by multiplicative Brownian motion. The Riccati equa-
tion mapping and He’s semi-inverse methods are used to
obtain the solutions of the SCBSE in the form of rational,
hyperbolic, and trigonometric functions. We expanded some
solution from previous studies such as the solutions stated in
previous studies [29–31]. The obtained solutions may be used
to explain a wide variety of exciting physical phenomena
because it is widely used in plasma physics and fluid
dynamics. Finally, we created a huge number of 2D and
3D graphics to show the effect of the Wiener process on
the analytical solutions of the SCBSE.
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