DE GRUYTER

Open Physics 2023; 21: 20230106

Research Article

Saad Althobaiti and Ali Althobaiti*

Analytical solutions of the extended
Kadomtsev-Petviashvili equation in nonlinear

media

https://doi.org/10.1515/phys-2023-0106
received April 14, 2023; accepted August 04, 2023

Abstract: This manuscript attempts to construct diverse
exact traveling wave solutions for an important model
called the (3+1)-dimensional Kadomtsev—Petviashvili equa-
tion. In order to achieve that, the Jacobi elliptic function
technique and the Kudryashov technique are chosen in
favor of their noticeable efficacy in dealing with nonlinear
dynamical models. As expected, the used approaches lead
to a variety of traveling wave solutions of different types.
Finally, we have graphically illustrated some of the obtained
wave solutions to further make sense of their representa-
tion. Also, we provide an overview of the main results at
the end.

Keywords: traveling waves, exact solutions, Jacobi func-
tions, exponential solution, KP equation

1 Introduction

Real and complex-valued evolutionary equations are a vital
type of nonlinear partial differential equations (NPDEs) that
appear in nonlinear sciences. The field of fluid dynamics is
an example, where several nonlinear evolution models
emerge as a result of modeling diverse physical processes
of fluid propagation/transmission, traveling/flow, and other
situations in various media. At this junction, it will be appro-
priate to mention some of the well-known nonlinear dyna-
mical equations that play an imperative role in the evolution
of fluid flow, including the Korteweg—de-Vries equations
[1-4], the Ablowitz—Kaup-Newell-Segur equation [5], the
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Davey-Stewartson equation [6], and the Kadomtsev—Petviashvili
(KP) equation [7-11] to mention a few. In particular, the equa-
tion of great concern in this study is the KP equation which
was initiated in 1970 and serves as an important model in
nonlinear wave theory [12]. Moreover, the model is also
applicable for modeling water waves with insignificant sur-
face tension as well as in modeling waves in thin films with
significant surface tension [13]. Also, some of the applications
of the model are in plasma physics (see [13]).

The literature on nonlinear evolution equations con-
tains numerous mathematical approaches for the complete
treatment of their resulting exact solutions, which are com-
monly referred to as solitary wave solutions [14,15]. Here,
let us recall some of these famous analytical approaches
such as the extended auxiliary equation method [16,17], the
extended simplest equation method [18], the Jacobi elliptic
function method [19], the Kudryashov method [20], and
others (see [21-31]). On the other hand, some of the notable
numerical approaches are used and developed in the
treatment of nonlinear evolution equations and nonlinear
fractional differential equations, including the homotopy
analysis method [32], the Laplace-homotopy perturbation
method [33], and the Adomian decomposition method [34]
(see [35,36]).

Exact solutions of NPDEs may shed light on our under-
standing of many nonlinear phenomena. Moreover, they
can be used to verify the accuracy and quantify the errors
of different numerical, asymptotic, and approximate ana-
lytical methods. This article aims at constructing diverse
exact traveling wave solutions of the KP equation [9-11],
via the application of two promising analytical approaches.
The approaches are the Jacobi elliptic function method [19]
(also called the modified auxiliary equation method [16,17])
and the Kudryashov technique [20]. The choice of these
approaches is motivated by their noticeable efficiency in
tackling different classes of NPDEs. Moreover, it is very
pertinent to note here that the Jacobi elliptic function
technique gives generalized solutions that can be recast
to several periodic and hyperbolic function solutions
upon playing with the Jacobi elliptic parameter involved.

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/phys-2023-0106
mailto:snthobaiti@tu.edu.sa
mailto:aa.althobaiti@tu.edu.sa

2 =—— Saad Althobaiti and Ali Althobaiti

Thus, the novelty of this work is to go beyond what is
known in the literature by finding exact solutions in
terms of Jacobi functions. In addition, the exact traveling
wave solutions to be acquired will be systematically
examined with regard to their constrain conditions (when
existed). We also plot the three-dimensional plots of certain
solutions, besides the description of the shapes of the con-
structed exact profiles. This study takes the following orga-
nization. Section 2 contains some details about the adopted
methodologies. Section 3 contains the application of the
adopted methodologies on the KP equation; however, Sec-
tions 4 and 5 give the discussion of results and the conclu-
sion, respectively.

2 Analytical techniques

This section gives the steps for finding a number of exact
solutions via the application of the Jacobi elliptic function
technique [19], also called the modified auxiliary equation
technique [16,17] and the Kudryashov technique [20].
Therefore, we first consider the following NPDE:

) =0, (oY)

Pl(us Uy, uys Uz, Ut, Uy, uyl: Uzt Uxxs oo

the steps of the techniques are presented in what follows:
Step 1. We start by assuming that:

u(x, y, z,t) = U({),

where a, b, and ¢ are the constants. Therefore, on using the
transformation given in Eq. (3) into Eq. (1), the following
nonlinear ordinary differential equation is obtained:

PyU, U, U”, U ...) = 0. &)

{=x+ay+bz+ct, 2)

Step 2. Jacobi elliptic function technique
The Jacobi elliptic function technique assumes that the
solution of Eq. (3) has the form:

n
U = 2 ¥'(0), @
i=-n
where y;’s are the arbitrary undetermined constants, and n
is a positive integer. Also, ¥({) is said to be satisfied by the
following equation:

YAQ) = a0 + () + wPp*(O), ®)

where ag, a;, and @, are the constants. Also, Eq. (5) satisfies
the following solution cases:

Case 1. When ag =1, @, = —(1 + k?), ay = k?, then Eq.
(5) admits the following solution:

Y(¢) = sn((, k), (6)
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where sn(¢, k) is the Jacobi function and k represents the
elliptic modulus such that 0 < k < 1.

Case 2. When ag=1- k% oy = 2k? - 1, and a, = -k?,
then Eq. (5) admits the following solution:

¥(&) = en(d, k), ™

and cn(¢, k) is the Jacobi function, and k is as stated
earlier.

Case3.Whenay = k*-1,a,=2 - k% anda; = -1, then
Eq. (5) admits the following solution:

¥(©) = dn((, k), ®)
where dn({, k) is the Jacobi function.

Case 4. When ap = k2, ¢y = —(1 + k?), and a; = 1, then
Eq. (5) admits the following solution:

¥({) = ns(¢, k), 9
where ns({, k) is also the Jacobi function.

Case 5. Whenay=1- k% a; =2 - k2, and a; = 1, then
Eq. (5) admits the solution of the form:

W(¢) = cs({, k),
where cs((, k) is the Jacobi function cs.

Case 6. When ap = 1, a; = 2k - 1, and a, = k*(k? - 1),
then Eq. (5) admits the solution of the form:

Y(¢) = sd((, k),

where sd(¢, k) is the Jacobi function sd.

Step 3: Kudryashov technique

The Kudryashov technique expresses the solution of
Eq. 3) in the form:

10)

1

n
U(Q) = 2 u@Q), (12)
i=0
where y;’s are non-zero constants, and n is a positive
integer. Moreover, ®({) is said to be satisfied by the fol-
lowing equation:

() = ¥H) - @), (3)
In addition, Eq. (13) admits the following solution:
o) = (19
het + 1’

where h is an arbitrary constant.

Step 4. The value of n in both Eqs (4) and (12) is carried
out by the use of homogeneous balancing principle.

Step 5. Finally, upon substituting Eqs (4) or (12), as the
case may be using the Jacobi elliptic function technique or
the Kudryashov technique, together with Eq. (5) or Eq. (13)
into Eq. (3) and equating all the coefficients of different
powers of ¥({) or ®({) to zero, we find a system of
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algebraic equations for y;. Accordingly, a solution of Eq. (1)
is therefore determined.

3 Exact solutions for the extended
KP equation

Consider the extended (3+1)-dimensional KP given by [9-11]:
(Ue + 6Ully + Uy + B(uyy +Uy) =0, (15)

where § is a real constant.
Therefore, upon using the transformation given in
Eq. (3) that reads

u(x,y,z,t) = U(Q),

where a, b, and ¢ are the constants to be evaluated; there-
after, Eq. (15) thus transforms into the following:

{=x+ay+bz+ct,

cU” + 6(UU” + U + U”" + B(a*U” + b2U”) = 0. (16)

Next, upon making use of the homogeneous balancing
principle on Eq. (16), we find n = 2.

3.1 Exact solutions via Jacobi elliptic function
technique

Therefore, the solution of Eq. (16) is expressed via the
application of the Jacobi elliptic function technique as
follows:

Uy + =
(ORI (9h

where §({) is said to satisfy Eq. (5). Then, on putting Eq. (17)
with the use of Eq. (5) into Eq. (16) and thereafter putting
the coefficients of ({) to zero, we obtain a system of alge-
braic equations. Solving this system for u,, i, i,, ¢t _;, and
U _,, the following solution sets are acquired:

Set 1.

UQ) = 1y + up(0) + %) + an

1
Uy = E(az(‘ﬁ) —da - VB -0,y =0,u,=0,
u_=0,u_,=-2aq.

(18)

Using the result in Eq. (18), we obtain the following.

Case 1. Ifay =1,y = —-(1 + k%), and a; = k2, then the
KP equation in Eq. (15) has a solution in the form:
-c+4k?+ 4| (19

1 1
we) = ¢|-pla* + b*) - (0 K
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Therefore, the aforementioned solution becomes the
following:

u(x,y, z,t) = %(—,B’(a2 + b%) - 12 coth®(ay + bz + ct 20)

+X)-c+8)

and

1
u(x,y, z,t) = E(—ﬁ(a2 + b%) — 12csc®(ay + bz + ct o

+Xx)-c+4),

when k — 1 and k — 0, respectively. In addition, the three-
dimensional (3D) plots are depicted in Figure 1. The figure
describes the solutions determined in Eqs (20) and (21), for
graphical visualization.

Case 2. If ap =1 - k% oy = 2k% - 1, and a; = —k?, then
Eq. (15) admits the following solution:

20k -1)

AR A

1
u() = ¢|-plat+ b +
Moreover, the aforementioned solution transforms into
the following:

1
ux,y,z,t) = E(—B(a2 + b%) — 12sec®(ay + bz + ct 23)

+X)-c+4),

when k - 0.
Case3.Ifay=k*-1,a,=2 - k? and a, = -1, in this
case Eq. (15) has a solution in the following form:

2(k2-1)

YA

. (24)

1
u@) = g[—ﬁ(az + 1) -

Case 4. If ap = k%, ay = —(1 + k?), and a, = 1, then Eq.
(15) satisfies the following solution:

12k?

1
wer=s5 ns (7, k)

_B(az + bZ) —

-c+4k*+ 4]. (25)

This solution reduces to:

1
ux,y, z,t) = g(—ﬁ(a2 + b%) - 12tanh*(ay + bz + ct 26)

+Xx)-c+38),

when k — 1. Figure 2 represents the solution given in
Eq. (26).

Case 5. If aqy=1-k% o =2- k% and ay =1, then
Eq. (15) has a solution:

2(1-K)

@1 c+4k%-8[. @27

u@) = g|-p@+ ) -
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(a) (b)

Figure 1: 3D plots (a) and (b) for solutions reported in Eqs (20) and (21), respectively, whent =z =0anda=b=c==1.

(8) (b)

Figure 2: 3D plots for solutions reported in Eq. (26) whenz =0anda=b=c=f=1,at(a)t=0and (b) y = 0.

This solution reduces to: Therefore, the aforementioned solution reduces to:

ux,y,z,t) = %(—ﬁ(az + b%) - 12tan*(ay + bz + ct 8) u(x,y,z,t) = %(—ﬁ(aZ + b%) - 12cschXay + bz + ct 30)

+X)-c-8), +Xx)-c-4),
when k - 0. when k - 1.
Case 6.Ifay = 1, a; = 2k? - 1, and ay = k%(k® - 1), then Set 2.
Eq. (15) satisfies the following solution: 1
==(a*(-B) - 4a; - b*B-¢),u; =0, u_, =0,
_1 24 p2 12 8k2 + 4|. (29) : 6( P 1 e h 1
u(() - 6 ﬁ(a ) Sd((, k)z (4 . u_4= 0’ U, = —2a2‘

Using the result in Eq. (31), we obtain the following
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Case 1. Ifay = 1,04 = —-(1 + k%), and a; = k?, then the
KP equation in Eq. (15) has a solution in the form:

uf) = %(-B(a2 + b?) - 12k?sn({, k)2 - ¢ + 4k% + 4). (32)

Case 2. Ifag=1- k% a; = 2k* - 1, and a, = —k?, then
Eq. (15) admits the following solution:

1
w) = g(—,B(a2 + b + 12k%en(l, k) - ¢ - 8k + 4). (33)
Then, we obtain the following explicit solution:

1
ux,y,z,t) = E(—B(a2 + b%) + 12 sech?(ay + bz + ct 34)
+Xx)-c-4),

when k - 1.
Case3.Ifap = k*- 1,4 = 2 - k% and @, = -1, then Eq.
(15) has a solution in the following form:

u(Q) = %(—,B’(a2 + b%) + 12dn({, k)? - ¢ + 4k? - 8).(35)

Case 4. If ag = k%, ¢y = =(1 + k?), and a, = 1, then Eq.
(15) satisfies the following solution:

u(Q) = %(—,B(a2 +b2) - 12 ns({,k)> - c+ 4k2+ 4). (36)

Case5.Ifag=1- k% a; =2 - k? and a, = 1, then Eq.
(15) has a solution:

(@) = %(—ﬁ(a2 +b?) =12 cs({, k) - c+4k*-8). (@37

Hence, the aforementioned solution transforms to the
following:

1
u(x,y, z,t) = E(—ﬁ(a2 + b%) - 12cot¥ay + bz + ct 38)

+Xx)-c-8),

when k — 0.
Case6.Ifay =1, @ = 2k% - 1, and a = k*(k? - 1), then
Eq. (15) satisfies the following solution:

u(() = %(—B(aZ + b2) - 12k3(k? - 1)sd((, k)? - ¢ 39)
- 8k% + 4).

Set 3.

1
o= (@) ~ 4 = BB = €)1y =
l’l -2 = _2(10, ﬂ -1 = 0) tuz = _ZaZ'

(40)

Using the result in Eq. (40), we obtain the following.
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Case 1. If ag =1, = -(1 + k?), and a; = k2, then the
KP equation in Eq. (15) has a solution in the form:
-B(a® + b?) - - 12k%sn({, k)?
(41

1
‘0% (¢ k7

—c+4k2+4].

Therefore, from the aforementioned transformed solu-
tion, the following explicit solution is attained:

1
u(x,y,z,t)==(-p(a® + b*) - 12coth?(ay + bz + ct + x)
6 42)
—12tanh?(ay + bz + ct + x) - ¢ + 8),
when km — 1.
Case 2. Ifap=1- k% a; = 2k? - 1, and a; = —k?, then
Eq. (15) admits the following solution:
12(1 - k?)
en({, k)?

-B(@ + b?) - + 12k2en((, k)2

(43)

1
U(C)=g
—c—8k2+4].

Case3.Ifag = k* -1, = 2 - k% and a, = -1, then Eq.
(15) has a solution in the following form:

12(k% - 1)

_ﬁ(az +b?) - dn (¢, k)

u(Q) = % +12dn(¢, k)? - ¢

(44)
+ 4k? - 8].

Case 4. If ag = m?, ¢y = =(1 + k?), and a; = 1, then Eq.
(15) satisfies the following solution:

12k?

W - 12118((, k)z -C

€)= b+ ) -
)

+ 4k2 + 4].

Case 5. Ifag=1- k? a; = 2 - k%, and a; = 1, then Eq.
(15) has a solution:
1 12(1 - k2
u(@) = g[—ﬁ(a2 e - 20200 s k- ¢

2
=0 (46)

+ 4k? - 8].

Finally, the aforementioned transformed solution
reduces to the following solution for the governing model:

1
u(x,y, z,t) = E(—/S(a2 + b%) — 12cot¥(ay + bz + ct + x) 47

- 12tan®(ay + bz + ct + x) - ¢ - 8),
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Figure 3: 3D plot for solutions reported in Eq. (47) whent =2z =0
anda=b=c=8=1

DE GRUYTER

when k — 0. Figure 3 represents the solutions given in
Eq. (47).

Case6.Ifay =1, = 2k% - 1, and ay = k*(k? - 1), then
Eq. (15) satisfies the following solution:

12

1
U = §| @+ b = gk

(48)
— 12K2(k? - 1)sd({, k)% - ¢ - 8k + 4.

3.2 Exact solutions via Kudryashov
technique

In the same manner, the KP equation admits the following
solution form, via the application of the Kudryashov tech-
nique as follows:

Figure 4: 3D plots for solutions reported in Eq. (52) whent=z=0anda=b=c=f=1at(a)h=1,(b)h =1, and (c) h = 10.
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U©) = 1y + 1 ®() + 1,2%9), (49)

where ®({) is said to satisfy the differential equation ear-
lier mentioned in Eq. (13). Then, on substituting Eq. (49)
with the help of Eq. (13) into Eq. (16), and further equating
the resulting coefficients of ®({) to zero, we obtain a
system of algebraic equations. Furthermore, solving the
resultant system for u,, i, and u,, we obtain the following
solution case:

1
Au0 = E(_B(az + bZ) -C- 1)1 Aul = 21 Au2 = _2' (50)

Using the aforementioned values into Eq. (49), we
obtain

e b 1) 4 —
u(@) = G(-p@+ b - c -1 + -
(51
2
(hef + 1)*’
or more explicitly,
u(x,y,7,0) = (-B@ + B - c = 1)
(52)

2 2
* heW+bz+ct+x 4 1 - (heay+bz+ct+x + 1)2’

where h is an arbitrary constant. Moreover, the aforemen-
tioned exponential solution (Eq. (52)) obtained via the
application Kudryashov approach is shown in Figure 4
for different values of h.

4 Discussion

This study examines the extended KP equation by con-
structing diverse exact solutions with the use of two ana-
lytical approaches. The approaches of interest in this study
are the Jacobi elliptic function method and the Kudryashov
method, which are chosen owing to their successful applic-
ability in treating classes of both real and complex-valued
evolution equations — arising from dissimilar nonlinear
processes, and the general nonlinear sciences. As expected,
the approaches of choice revealed a variety of traveling
wave solutions of different types. Starting with the Jacobi
elliptic function technique, a lot of Jacobi elliptic function
solutions generalizing related exact traveling wave solu-
tions in the literature are obtained; moreover, these func-
tions/solutions are recast to a series of periodic and hyper-
bolic structures upon playing with the generalized Jacobi
parameter k. In addition, the Kudryashov technique gives
only one exact traveling wave solution featuring exponen-
tial function; this is, however, known for the Kudryashov
technique in disclosing pretty few exact solutions — see the

Analytical solutions of the extended KP equation == 7

application of the method in refs [15] and [20], among
others, where few solutions are similarly disclosed by the
approach. Finally, the current study also gives the 3D plots
of some of the acquired solutions in Figures 1-4. Figure 1
shows the dark solution as in (a) and the periodic soliton
solution as in (b), while Figure 2 represents the bright
soliton solution. Figure 3 depicts the shape of periodic solu-
tion for Eq. (47). The solution in Eq. (52) is plotted for
different values of h.

5 Conclusion

As a concluding note, this study has examined a universal
nonlinear wave model called the extended KP equation,
through the construction of diverse exact traveling wave
solutions. The obtained exact solution was carried out via
the application of two promising analytical approaches by
the names the Jacobi elliptic function technique (also
called the modified auxiliary equation technique) and the
Kudryashov technique. The choice of these approaches was
motivated by their noticeable efficacy in dealing with diverse
nonlinear evolution and Schrodinger equations. As expected,
the used approaches revealed different traveling wave solution
cases involving a range of Jacobi functions using Jacobi elliptic
techniques; however, an exponential traveling wave solution
was obtained using the Kudryashov technique. It is important
to state here that Jacobi elliptic function solutions reduce to
hyperbolic and periodic solutions by varying the parameter
k. Finally, we have graphically illustrated some of the obtained
solutions to further make sense of their depictions. The used
techniques are recommended to solve nonlinear equations.
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