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Abstract: In this article, we investigated the Landau–Ginzburg–
Higgs (LGH) equation, focusing on the analysis of isolated
soliton solutions and their stability. To compute the isolated
soliton solutions, we used the advanced auxiliary equation
(AAE) approach, which has proven to be a powerful and
efficient method for extracting soliton solutions in various
nonlinear partial differential equations (NLPDEs). We pro-
vided a detailed explanation, both graphically and physically,
of the obtained soliton solutions in this article. Furthermore,
we used the linear stability technique to conduct a stability
analysis of the LGH equation. Additionally, we studied the
bifurcation and stability of the equilibria and performed
phase plane analysis of the model. We also provided a dis-
cussion on the comparisons between the AAE method and
two other well-known approaches: the generalized Kudryashov
method and the improved Bernoulli sub-equation function
method. The application of the AAE approach in this study

demonstrates its effectiveness and capability in analysing and
extracting soliton solutions in NLPDEs.

Keywords: LGH equation, AAE method, soliton solution,
stability analysis

1 Introduction

One of the most important topics for studying nonlinear
wave phenomena is the nonlinear evolution equations
(NLEEs). It has significant implications for many fields of
science and engineering, fluid mechanics, mathematical
physics, mathematical biology, hydrodynamics, and many
others [1–7]. Since NLEEs are very difficult to unravel, so
many powerful analytical and numerical methods are
developed and established for solutions such as the sine-
Gordon technique [8], the improved F-expansion approach
[9], the enhanced ( ′G G/ )-expansion method [10,11], the
binary Darboux transformation [12], the variational direct
method [13], the extended version of exp (−ψ κ( ))-expan-
sion method [14], the Hirota direct methodology [15], the
Lie symmetry approach [16,17], the extended Kudryashov
method [18], the extended homoclinic test technique [19],
the ′G G G/ , 1/( ) expansion approach [20], the meshless method
[21], the Mohand variational transform method [22], the Paul–
Painlevé approachmethod [23], the exact solution method [24],
the optimal auxiliary function method [25], the extended
simple equation technique [26], the Bernoulli sub-ordinary dif-
ferential equation approach [27], the (w g/ )-expansion method
[28], the improved F-expansion and unified methods [29], and
the modified version of the new Kudryashov method [30].

In the last few decades, Parkes and Duffy [31] intro-
duced the tanh function method to generate the exact
solutions for NLEEs. In the study by Fan [32], the Riccati
equation ′ = +φ R φ2 is considered and an extended tanh
functionmethodwas proposed. This concept has been further
developed and made clearer and more direct for a class of
NLEEs by Yan [33] and Li et al. [34]. In addition, the modified
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extended tanh function method was applied to the nonlinear
equations and incorporated the travelling wave solutions by
Elwakil et al. [35]. Lu and Zhang [36] investigated the soliton
solutions of the NLEEs using the extended tanh function
method. Zhu [37] introduced the extended tanh function
method by the generalized Riccati equation mapping method
and obtained new non-travelling wave solutions. Recently,
Khater et al. [38–40] proposed and studied the different types
of wave equations. But Zayed disproved some of the solutions
of this method, which have been discussed in previously
published studies [41–43]. At the same time, El-Ganaini and
Zayed gave us the correct form of the solution in ref. [44]. To
find a new solution for NLEEs, they have proposed various
ansatz approaches based on the Riccati equation. We are
aware that when choosing a direct method, the appropriate
conversion must be made. But how to find more new solu-
tions for NLEEs under the familiar ansatz seems to be more
important. Therefore, in this manuscript, we have further
improved the work done in Zhu [37] by introducing advanced
auxiliary equation (AAE) method and 27 new solutions. All
the corrected solutions made by El-Ganaini and Zayed [44]
are in the AAE method. In this article, we consider the non-
linear wave equation of the Landau–Ginzburg–Higgs (LGH)
[45,46] equation as:

− − + =u u m u n u 0,tt xx
2 2 3 (1.1)

where ∈ −m n R, 0{ }. Some researchers have found new
and more soliton solutions to the LGH equation with the
tanh method [46] and Ansatz method [45]. Using the direct
and unified algebraic method, various travelling wave
solutions are constructed from the LGH equation [47]. In
the study by Kundu [48], the soliton solutions have been
explored and graphically analysed both linear and the non-
linear impact of Eq. (1.1) in quantum physics and also con-
structed the stable soliton solutions from the LGH equation
[49,50]. Recently, Ahmad et al. [51] and Ali et al. [52] have
investigated the LGH equation and obtained exact travel-
ling wave solutions.

The objective of this work is to generate isolated
closed-form soliton solutions to the LGH equation through
the AAE scheme, as inspired by earlier works. We have also
initiated the solution with rational, trigonometric, expo-
nential, and hyperbolic function solutions including some
free parameters, all of which have applications in a wide
range of industries and engineering. The rest of this article
is organized as follows: we propose an AAE method for
obtaining soliton solutions from NLEEs. In Section 3, we
used it to solve the LGH equation and used the results to
deduce distinct solutions to the collection of various equa-
tions. Section 4 provides a graphic and physical explanation

of the solutions that have been found. Section 5 presents an
investigation of the stability of the LGH equation and finally,
Section 6 discusses phase plane analysis before providing a
conclusion.

2 Brief of the AAE method

Consider NLEEs in the following structure:

=u u u u u uƝ , , , , , ,…… 0,t x xx tx tt( ) (2.1)

where Ɲ is a nonlinear polynomial function of wave func-
tion u x t,( ), including its disparate partial derivatives. We
suppose that

= = −u x t u x σt, Ω , and Ω ,( ) ( ) (2.2)

where σ is the speed of the soliton. Eq. (2.2) is converted
to Eq. (2.1) into a nonlinear ordinary differential equation
(NODE) as:

′ ″ ⋯⋯⋯ =u u u£ , , , 0,( ) (2.3)

where the prime represents the derivative of Ω. According
to the AAEmethod, the solution of Eq. (2.3) is conjectured to
be

∑=
=

u M qΩ ,
i

Y

i
ik

0

Ω( ) ( ) (2.4)

where the constants M M M M, , ,……, Y0 1 2 are unknown and
to be calculated later, such that ≠M 0Y . According to the
balanced theorem, we obtain the value of Y in Eq. (2.4).
k Ω( ) is the solution of the equation:

′ = + +−k
q

μq γ ƙqΩ
1

ln
.k kΩ Ω( )

( )
{ }( ) ( ) (2.5)

In this step, we substitute Eqs. (2.4) and (2.5) into
Eq. (2.3) and we obtain an algebraic equation, which
is equated left and right sides based on powers of q ,ik Ω( )

=i 0, 1, 2, 3 ……( ). As a result, we gain an algebraic equa-
tion. Solving these algebraic equations, we find out the
values of M M M M, …… Y0, 1 2, and σ . The solutions of Eq.
(2.5) are obtained as follows:

Case 1: when − <γ μƙ4 02 and ≠ƙ 0,

=
−

+
− ⎛

⎝
⎜

− ⎞

⎠
⎟q

γ

ƙ

μ γ

ƙ

μƙ γ

2

4 ƙ

2
tan

4

2
Ω ,k Ω

2 2

( ) (2.5.1)

or

=
−

−
− ⎛

⎝
⎜

− ⎞

⎠
⎟q
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ƙ

μƙ γ

ƙ

μƙ γ

2

4

2
cot

4

2
Ω .k Ω

2 2

( ) (2.5.2)
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Case 2: when − >γ μƙ4 02 and ≠ƙ 0,

=
−

−
− ⎛

⎝
⎜

− ⎞

⎠
⎟q

γ

ƙ

μƙ γ

ƙ

μƙ γ

2

4
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4
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( ) (2.5.3)

or

=
−

−
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⎝
⎜
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⎠
⎟q
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μƙ γ

ƙ

μƙ γ

2

4

2
coth

4

2
Ω .k Ω

2 2

( ) (2.5.4)

Case 3: when + < ≠γ μ ƙ4 0, 02 2 and = −ƙ μ,

= −
− − ⎛

⎝
⎜

− − ⎞

⎠
⎟q
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γ μ

μ

γ μ

2

4
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( ) (2.5.5)

or
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⎝
⎜
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⎠
⎟q
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γ μ
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( ) (2.5.6)

Case 4: when + > ≠γ μ ƙ4 0, 02 2 and = −ƙ μ,

= +
+ ⎛

⎝
⎜
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⎠
⎟q
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γ μ
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2
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4

2
Ω ,k Ω
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( ) (2.5.7)

or

= +
+ ⎛

⎝
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γ μ
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2
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coth

4
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2 2 2 2

( ) (2.5.8)

Case 5: when − <γ μ4 02 2 and =ƙ μ,

=
−

+
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( ) (2.5.9)
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( ) (2.5.10)

Case 6: when − >γ μ4 02 2 and =ƙ μ,

=
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( ) (2.5.12)

Case 7: when =γ μƙ4 ,2

= −
+

q
γ

ƙ

2 Ω

2 Ω
.k Ω( ) (2.5.13)

Case 8: when < =μƙ γ0, 0, and ≠ƙ 0,

= −
−

−q
μ

ƙ
μƙtanh Ω ,k Ω ( )( ) (2.5.14)
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= −
−

−q
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ƙ
μƙcoth Ω .k Ω ( )( ) (2.5.15)

Case 9: when =γ 0 and = −μ ƙ ,

=
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− +

−

−q
e

e

1

1
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ƙ

ƙ

Ω
2 Ω

2 Ω
( )
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(2.5.16)

Case 10: when = =μ ƙ 0,

= +q γ γcosh Ω sinh Ω .k Ω ( ) ( )( ) (2.5.17)

Case 11: when = =μ γ φ and =ƙ 0,

= −q e 1.k φΩ Ω( ) (2.5.18)

Case 12: when = =γ ƙ φ and =μ 0,

=
−

q
e

e1
.k

φ

φ

Ω
Ω

Ω
( ) (2.5.19)

Case 13: when = +γ μ ƙ ,( )
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1
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(2.5.20)

Case 14: when = − +γ μ ƙ ,( )

=
−
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−

−q
μ e

ƙ e
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(2.5.21)

Case 15: when =μ 0,

=
−

q
γe

ƙe1
.k

γ

γ

Ω

Ω

Ω
( ) (2.5.22)

Case 16: when = = ≠ƙ γ μ 0,

⎜ ⎟=
⎧
⎨
⎩

⎛
⎝

⎞
⎠

−
⎫
⎬
⎭

q μ
1

2
3 tan

3

2
Ω 1 .k Ω( ) (2.5.23)

Case 17: when = =ƙ γ 0,

=q μΩ.k Ω( ) (2.5.24)

Case 18: when v = =γ 0,

=
−

q
ƙ

1

Ω
.k Ω( ) (2.5.25)

Case 19: when =ƙ μ and =γ 0,

=q μtan Ω .k Ω ( )( ) (2.5.26)

Case 20: when =ƙ 0,

= −q e
a

b
.k γΩ Ω( ) (2.5.27)

Stability analysis, phase plane analysis and isolated soliton solution  3



Substituting these values of =M i Y μ γ ƙ0, 1, 2, …. , , , ,i( ) ,
and function k Ω( ) into Eq. (2.4) produces numerous soliton
solutions to Eq. (2.1) [53].

3 Solutions of the LGH equation

The general and broad-ranging closed-form steady soliton
solutions to the LGH equation has been established, and
implementation of the new auxiliary equation method is
presented to the LGH equation in this section. We will
explore the gigantic amount of soliton solution of the
LGH equation, and all-wave phenomena play a significant
role in the modern science and engineering.

By means of the wave renovation =u x t u, Ω( ) ( ) and
= −x σtΩ , then Eq. (1.1) is converted to the NODE as

assumed:

− ″ − + =σ u m u n u1 0,2 2 2 3( ) (3.1)

where the notation denotes the derivatives comprising the
linear and nonlinear terms. Balancing ″u and u3 yields

=Y 1. The general solution of Eq. (3.1) is as follows:

= +U x t M M a, ,k
0 1

Ω( ) ( ) (3.2)

where ≠M 01 and the solution of the nonlinear Eq. (2.5) is
k Ω( ). Substitute Eq. (3.2) in place of Eq. (3.1), and the coeffi-
cients of like terms =q i 0, 1, 2, 3, 4ik Ω ( )( ) are equal to zero.
Take the algebraic equations below:
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0,

2 2
1

2
1

2
0
2

1
2

1 1
2

1
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1

2
0 1

2
1

+ − =σ ƙ M n M ƙ M2 2 0.2 2
1

2
1
3 2

1

To solve the aforementioned algebraic system, we
attain the solution set as:

=
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−
= ±

−
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−

σ
γ μƙ m
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4
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4
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4
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1

2

(3.3)

Substituting Eq. (3.3) into Eq. (3.2) and along with Eqs.
(2.5.1)–(2.5.27), we obtain the soliton solutions from the
LGH equation and the resulting solutions are listed below
in different clusters.

Cluster 1: when − <γ μƙ4 02 and ≠ƙ 0, we acquire
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where = ±− −
−

t xΩ
γ μƙ m
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4 2

4

2 2

2
.

Cluster 2: when − >γ μƙ4 02 and ≠ƙ 0, we have

= ×
⎛

⎝
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⎠
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m
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2
.

Cluster 3: when + < ≠γ μ ƙ4 0, 02 2 and = −ƙ μ, we
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.

Cluster 4: when + > ≠γ μ ƙ4 0, 02 2 and = −ƙ μ, we
attain
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Cluster 5: when − <γ μ4 02 2 and =ƙ μ, we gain
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Cluster 6: when − >γ μ4 02 2 and =ƙ μ, we attain
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Cluster 7: when < =μƙ γ0, 0 and ≠ƙ 0, we gain
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Cluster 8: when =γ 0 and = −μ ƙ , the solution is
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Cluster 9: when = =γ ƙ φ and =μ 0,

= ×
+
−

u
m

n

e

e
Ω

1

1
,

φ

φ31,32

Ω

Ω
( ) (3.19)

where = ± −
x tΩ

φ m

φ

22 2

2
.

Cluster 10: when = +γ μ ƙ ,( ) we acquire
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Cluster 11: when = − +γ μ ƙ ,( ) we acquire
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Cluster 12: when =μ 0, we obtain
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where = ± − +γ m t xγΩ 22 2 .

Cluster 13: when = = ≠ƙ γ μ 0, we become
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Cluster 14: when =ƙ ɤ and =γ 0, we become
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2
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When applying these three conditions, namely, = =ƙ 0,

= =μ γ φ, and =ƙ 0 and =ƙ 0, we have found a constant
function solution, which is not written in this literature
because it has no physical sense.

Comparison: Now, we will compare the AAEmethod, the
generalized Kudryashov method [56], and the improved Ber-
noulli sub-equation function method [49], through the solu-
tions of LGH equation. The generalized Kudryashov method
and the improved Bernoulli sub-equation function method are
two distinct approaches used to analyse equations in mathe-
matical physics, each with its characteristics and advantages.
i. Barman et al. investigated the LGH equation using
the generalized Kudryashov method in their research
[56]. They identified three solutions and derived 11
additional solutions for specific parameter values.
Nevertheless, in this article, we used the AAE method
and discovered 21 unique solutions expressed in hyper-
bolic, trigonometric, and exponential functions. The
solutions we obtained in our study differ from those
presented by Barman et al. [56].

ii. Islam and Akbar [49], on the other hand, used the
improved Bernoulli sub-equation function method to
analyse the LGH equation in their study. They were
able to find only two hyperbolic solutions. By introdu-

cing the parameter =
−

σ
γ μk4

2

2( )
, the solutions (Eqs. (19)

or (22) and Eqs. (20) or (23)) are in [49] align with our
solutions (3.7) and (3.6). In addition, using the AAEmethod,
we derived a total of 21 solutions expressed in hyperbolic,
trigonometric, and exponential functions. Consequently,
our AAE method provided 19 novel solutions for the
LGH equation when compared to the improved Bernoulli
sub-equation function method.

Remark: We were able to simplify the obtained solutions
and verified the accuracy with the help of Maple. All solu-
tions are corrected.

4 Graphical and physical
interpretation of the LGH equation

In this segment, we will transform exactly the properties of
the obtained solution and graphically display the results. It
can be noted that we have found unambiguous and steady
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wave solutions in different forms from the LGH equations.
The LGH equation gives us various types of solutions as
rational function solutions, hyperbolic function solutions,
trigonometric function solutions, and exponential function
solutions. Using the many precise values of the applicable
parameters for each solution, we generate the soliton profile.
The features of the computed results are drawn in 3D and 2D
wave profiles. All solutions are given physical meaning and
applied to the different branches such as plasma physics,
optical fibres, and nonlinear optic and mathematical physics.
Graphical and physical discussions are given below:

The solution (3.5) mollifies the ailment − <γ μƙ4 02

and ≠ƙ 0. We have drawn the 3D and 2D wave phenomena
of the solution (3.5), which is a trigonometric (cot) function.
The 3D wave phenomena exhibit the wave propagation and
periodic shape along the x and y axes, as shown in Figure 1(a)

because of the values of = = = =m n γ μ0.1, 2, 0.1, 0.25,

=ƙand 0.5 within the displacement − ≤ ≤x t5 , 5. We noted
that the phase component of the solution (3.5) is frequently
different for different soliton values of t, as illustrated in
Figure 1(b). In addition, the constant values of the parameters
are selected, and the soliton is stable, which is shown in
Figure 1(b).

In the circumstance of − >γ μƙ4 02 and ≠ƙ 0, the
solution of Eq. (3.6) represents the kink-type wave shape
and wave propagation along with x and y axes conforming
to the static parameters = =m n1, = =γ μ2, 8, 0.25, and

=ƙ 0.25 within the boundary − ≤ ≤x t5 , 5, as depicted in
Figure 2(a). The wave shape comes from the hyperbolic
trigonometric function. We observed that the phase compo-
nent of the solution (3.6) remains unchanged and changed for
the different parameters. In addition, the constant values of

Figure 1: 3D wave profile and 2D combined chart of the solution u x t, .3( )

Figure 2: 3D wave profile and 2D combined chart of the solution u x t,5( ).

6  S. M. Rayhanul Islam et al.



the parameters are selected, and the soliton is stable, which is
shown in Figure 2(b). Figure 2(b) displays the 2D wave profile
of the same solution as Figure 2(a) in − ≤ ≤t5 5.

The 3D wave structure displays the physical appear-
ance of wave phenomena of the NLEEs. The solution of
Eq. (3.11) is a hyperbolic trigonometric function solution,
which is embraced on condition + > ≠γ μ ƙ4 0, 02 2 , and

= −ƙ μ. Figure 3(a) represents the 3D wave structure
called the singular periodic wave profile and the wave
propagation along x and y axes, for the parameters =m

= = =n γ μ0.1, 2, 0.1, 0.25, and the limit − ≤ ≤x t5 , 5.
Figure 3(b) shows a 2D line diagram that illustrates the
effects of the phase and amplitude component for various
values of the soliton parameters.

Finally, in the case of < =μƙ γ0, 0, and ≠ƙ 0, the
exact solution of Eq. (3.16) represents the wave perfor-
mance. Figure 4(a) indicates the behaviour of Solution
(3.16) that affords the 3D wave profile named kink shape
and wave propagation along with x and y axes, for the
parameters = = = = −m n ƙ μ0.01, 0.02, 0.01, and 19.4 and
the range − ≤ ≤x t5 , 5. The 2D line diagram displays
the effects of the phase component for the different values
of soliton parameters, which is portrayed in Figure 4(b). In
addition, the constant values of the parameters are selected,
and the soliton is stable, which is shown in Figure 4(b).

5 Stability analysis

This paragraph will analyse the stability [54,55] of the
leading Eq. (1.1) along with the perturbed solution of the
following form [54]:

= +u x t αv x t V, , .0( ) ( ) (5.1)

It is clear that any constantV0 is a steady-state solution
for (1.1). Persisting (5.1) into (1.1), one reaches at

− − − + +
+ + =

αv αv m αv m V n α v n α v

n αvV n V

3

3 0.

tt xx
2 2

0
2 2 2 2 2

2
0

2
0
3

(5.2)

Linearizing the aforementioned equation in α

− − + =αv αv m α n αV3 0,tt xx
2 2

0 (5.3)

and let that Eq. (5.3) has a solution as

= +v x t e, ,i Qx ωt( ) ( ) (5.4)

where Q is the normalized wave number, plugging (5.4)
into (5.3) and solving for ω, we obtain

= − − +ω Q m n V3 .2 2 2
0 (5.5)

The sign of the aforementioned relation is always
negative for all values of − + >Q m n V3 02 2 2

0 , as can be
seen from Eq. (5.5). Thus, the dispersion is stable.

6 Phase plane analysis

To begin the phase plane analysis for the LGH equation, we
offer =u ϕ and ′ =ϕ ψ and can rewrite Eq. (3.2) as a first-
order dynamical system of the following form:

⎪

⎪
⎧
⎨
⎩

′ = =

′ =
−

−
−

=

ϕ ψ f ϕ ψ

ψ
m

σ
ϕ

n

σ
ϕ g x y

, ,

1 1
, .

2

2

2

2
3

( )

( )
(6.1)

The Hamiltonian function of the planar system Eq. (6.1) is

Figure 3: 3D wave profile and 2D combined chart of the solution u x t,15( ).
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( )
( ) ( )

( )= −
−

+
−

=H ϕ ψ
ψ m

σ
ϕ

n

σ
ϕ h,

2 2 1 4 1
.

2 2

2
2

2

2
4 (6.2)

The equilibria of the system Eq. (6.1) are ( )0, 0 and
( )± , 0

m

n
.

If either =m 0 or =n 0, then the planar system (6.1)
provides only one equilibrium point ( )0, 0 .

Jacobian matrix of the system (6.1) is ( ) =J ϕ ψ,

⎛

⎝
⎜ −

⎞

⎠
⎟

− − ϕ

0 1

0
m

σ

n

σ1

3

1

2
2

2

2

2

. The eigenvalues of J are given by

( )− =×J λIdet 0,2 2 which implies

( ) ( )− + =λ tr J λ Jdet 02 ,

where ( ) ( )= = −− −J J ϕtr 0and det
n

σ

m

σ

3

1

2

1

2

2

2

2 .

Case i. Stability of (0, 0): for this case if >−
− 0

m n

σ

3

1

2 2

2

and ≠σ 1, then the eigenvalues = −
−

λ
m n

σ
1

3

1

2 2

2
and =λ1

− −
−

m n

σ

3

1

2 2

2
are the real, opposite sign. Hence, the equili-

brium point ( )0, 0 is an unstable saddle. If <−
− 0

m n

σ

3

1

2 2

2 and

≠σ 1, then the eigenvalues = −
−

λ i
m n

σ
1

3

1

2 2

2
and =λ1

− −
−

i
m n

σ

3

1

2 2

2
are pure imaginary. And so the equilibrium

Figure 4: 3D wave profile and 2D combined chart of the solution ( )u x t,25 .

Figure 5: Phase portrait and corresponding solution of the planar system (3.25) for the values of = = =m n σ1, 2, 0.9. The equilibria ( )±0.50,0 are
unstable saddle and ( )0, 0 is a centre.
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point 0, 0( ) is a stable centre. We may conclude that the
stability of the equilibrium point 0, 0( ) can alter due to the
change in the values of the parameters (Figures 5–8).

Case ii. Stability of ±±⎛⎝
⎞
⎠, 0

m

n

: for this case if >− 0
m

σ

2

1

2

2

and ≠σ 1, then the eigenvalues =
−

λ i
m

σ
1

2

1

2

2
and

= −
−

λ i
m

σ
1

2

1

2

2
are purely imaginary and provide a stable

centre at ⎛
⎝±

⎞
⎠, 0

m

n
. If <− 0

m

σ

2

1

2

2 and ≠σ 1, then the eigenva-

lues are =
−

λ
m

σ
1

2

1

2

2
and = −

−
λ

m

σ
1

2

1

2

2
(real, opposite sign).

So the equilibrium point ⎛
⎝±

⎞
⎠, 0

m

n
is an unstable saddle. This

analysis concludes that the stability of the equilibrium

point ⎛
⎝±

⎞
⎠, 0

m

n
can alter from a stable centre to an unstable

Figure 6: Phase portrait and corresponding solution of the planar system (3.25) for the values of = = =m n σ1, 2, 1.1. The equilibria ±0.50,0( ) are
centre and 0, 0( ) is an unstable saddle.

Figure 7: Phase portrait and corresponding solution of the planar system (3.25) for the values of = = =m n σ0, 2, 1.1. 0, 0( ) is a degenerate
equilibrium.
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saddle due to the change in the values of the parameters
(Figures 5 and 6).

7 Conclusion

Using the AAE method, we have successfully acquired a
range of soliton solutions, including solitons with kink-
shaped profiles, singular periodic profiles, singular bell-
shaped profiles, and V-shaped soliton solutions of the
LGH equation. We have provided graphical and physical
explanations by creating 2D and 3D diagrams, illustrating
how the dynamic behaviour of the solutions changes as the
values are altered. The utilization of these diagrams show-
cases the simplicity, effectiveness, and user-friendliness of
the suggested method. Furthermore, we have examined
the bifurcation and stability of the system in proximity to
the equilibrium points. The system’s dynamics underwent
modifications as a result of variations in the parameter
values (Figures 5–8). We also provided a discussion on
the comparisons between the AAE method and two other
well-known approaches: the generalized Kudryashov
method and the improved Bernoulli sub-equation func-
tion method. By discussing these comparisons, we pro-
vided insights into the advantages and characteristics of
the AAE method in relation to the generalized Kudrya-
shov method and the improved Bernoulli sub-equation
function method. This analysis aids in understanding
the strengths and limitations of each method and assists
researchers in choosing the most appropriate approach

for their specific problem. In addition, we will use an
alternative approach in future research to solve the LGH
equation, which promises to be highly advantageous in
obtaining precise solutions for NLEEs.
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