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Abstract: This article investigates the potential Kadomtsev–
Petviashvili (pKP) equation, which describes the evolution of
small-amplitude nonlinear long waves with slow transverse
coordinate dependence. For the first time, we employ Lie
symmetry methods to calculate the Lie point symmetries
of the equation, which are then utilized to derive exact
solutions through symmetry reductions and with the help
of Kudryashov’s method. The solutions obtained include
exponential, hyperbolic, elliptic, and rational functions.
Furthermore, we provide one-parameter group of transfor-
mations for the pKP equation. To gain a better under-
standing of the nature of each solution, we present 3D, 2D,
and density plots. These obtained solutions, along with their
associated physical characteristics, offer valuable insights
into the propagation of small yet finite amplitude waves
in shallow water.In addition, the pKP equation conserved
vectors are derived by utilizing the multiplier method and
the theorems by Noether and Ibragimov.

Keywords: potential Kadomtsev–Petviashvili equation, Lie
symmetry methods, Kudryashov’s method, conservation
law, Noether’s theorem, Ibragimov’s theorem, multiplier
method

1 Introduction

Nonlinear partial differential equations (NLPDEs) are instru-
mental in the modeling of a wide range of nonlinear higher-
dimensional systems that reflect various natural phenomena.
Researchers have continuously studied NLPDEs in recent
years, as they are essential in understanding the compli-
cated behavior of such systems. The significance of
NLPDEs in our contemporary world has been well estab-
lished in literature [1–12]. It is, therefore, imperative for
scientists and researchers to solve NLPDEs and obtain
their exact solutions, as it provides insights into the mechan-
isms of the phenomena being investigated. Despite the
importance of obtaining explicit solutions for NLPDEs, to
date, there has been no general method for their determina-
tion. However, scientists have developed different special
methods such as wavefunction ansatz technique [13], tanh–
coth technique [14], extended homoclinic-test approach [15],
homotopy perturbation approach [16], rational expansion
method [17], Lie point symmetry analysis [18,19], bifurcation
approach [20], exponential function technique [21], Kudrya-
shov’s technique [22], tanh-function method [23], Painlevé
expansion approach [24], Weierstrass elliptic function method
[25], tan–cot method [26], extended simplest equation [27], and
many more.

Sophus Lie, a prominent mathematician from Norway
who lived between 1842 and 1899, is credited with introdu-
cing Lie symmetry analysis, which has proven to be a valu-
able method for deriving closed-form solutions to problems
described by differential equations (DEs) in fields like
applied mathematics, biology, physics, engineering, and
other related areas [28,29]. Sophus Lie was motivated to
develop his mathematical work by the achievements of
Abel and Galois in the realm of algebraic equations. Speci-
fically, Lie utilized similar mathematical tools to advance
the theory of continuous groups, which in turn has proven
to be applicable to the study of DEs [30,31].

Conservation laws are of significant importance in the
analysis of DEs. One practical application of this is the
assessment of the integrability of a partial differential
equation (PDE) through an examination of its conservation
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laws [19,29]. Furthermore, conservation laws serve as a
tool for assessing the precision of numerical solution tech-
niques, help identify special solutions that have important
physical properties and can be used to reduce the order of
DEs in a problem, making it easier to solve [28]. Thus, this is
the reason researchers find it useful to determine the con-
servation laws for a given DE. When DEs are derived from
variational principles, conservation laws can be deter-
mined by invoking Noether’s theorem [32], which involves
the symmetries admitted by the DE. However, for DEs that
do not arise from variational principles, scientists have
come up with various techniques to determine conserva-
tion laws. For instance, Ibragimov’s theorem [33], the gen-
eral multiplier method [19], and the partial Lagrangian
method [34] are some of the techniques used in this regard.
The Kadomtsev–Petviashvili (KP) equation was from the
study by the two Soviet physicists, Kadomtsev and Pet-
viashvili [35], in +2 1( )-dimensional form

+ + + =u u u γu u6 0,tx x xx yy xxxx

where = ±γ 1. The KP equation has many applications in
fields like adaptive optics, plasma physics, phase imaging,
and nonlinear mechanics, hence various communities of
researchers have employed a variety of effective methods
to derive its closed-form solutions, see, e.g., [36–40]. From
literature, we see that various forms of KP equation have
been considered.

Gupta and Bansal [41] in their work investigated the
2-D variable coefficient potential KP (vcpKP) equation in
the form

+ + + =u ω t u μ t u u ϕ t u 0,tx xxxx x xx yy( ) ( ) ( )

where, ω t μ t,( ) ( ), and ϕ t( ) are arbitrary functions of t. The
vcpKP was reduced to a lesser-dimensional PDE using Lie
group methods, and its solutions were derived through
application of the extended ′∕G G( )-expansion method.

Moreover, Wazwaz [42] examined the 3-D KP equation

+ + + − =u u u u u u3 0,ty tx x y x xxxy zz( )

where several soliton solutions were obtained using the
simplified Hirota’s technique. Iqbal and Naeem [43] stu-
died the fourth-order nonlinear generalized KP equation

+ + + =αu β m u γ n u σu 0,t

a

x

b

xxx x yy( ( ( ) ) ( ( ) ) )

whereby for various choices of a b m u, , ( ) and n u( ), the
equation was transformed into several forms of KP-like
equations. Using the multiplier method, they obtained con-
servation laws for unknown functions m u( ) and n u( ). The
obtained conservation laws were then used to construct
conservation laws for certain variants of KP-like equations
by choosing values of m u( ) and n u( ). Moreover, implicit

and explicit closed-form solutions were obtained for the
various KP-like equations through the utilization of the
derived conservation laws. Akinyemi and Morazara [44]
conducted an in-depth investigation on the extended KP
(EKP) equation

− + + + + =E EE E αE γE βE6 0,t x xxx x yy tt ty( )

where α, γ, and β are nonzero constants. They began by
validating the integrability of the equation through Painlevé
analysis using the WTC-Kruskal algorithm. This analysis con-
firmed that the EKP equation satisfies the compatibility cri-
teria for integrability. Next, the researchers employed various
ansatz functions based on bilinear formalism and symbolic
computation to determine analytical solutions for the EKP
equation.

Kumar et al. [45] conducted a comprehensive study on two
novel variable coefficients KP equations in (2+1)-dimensions,

+ + + =
+ + + =

u uu u g t u

u uu u h t u

0,

0,

t x xxx x xy

t x xxx x xy

( ) ( )

( ) ( )

where g t( ) and h t( ) are functions of variable t. By employing
the Lie symmetry technique, they successfully obtained
closed-form analytic solutions that exhibit various complex
wave structures, including solitons with distinct shapes,
both dark and bright soliton shapes, double W-shaped
soliton shapes, multi-peakon shapes, curved-shaped multi-
wave solitons, and solitary wave solitons.

Ma et al. [46] studied the fourth-order NLPDE v

+ + + + +
+ + + + + + =

ω u u u μ u u u u u u

γ u γ u γ u γ u γ u γ u

3 3 6

0,

x t x xxxt x y x xxxy xxxx x xx

yt xx xt xy yy tt1 2 3 4 5 6

{ ( ) } { ( ) }

which possesses diverse lump solutions. For the above
equation, when = =ω μ 0, = − =γ γ 1

3 5
, and = = =γ γ γ

1 2 4

=γ 0
6

, the potential KP (pKP) equation in (2+1)-dimensional
form is obtained, e.g.,

+ + − =u u u u u6 0.tx x xx xxxx yy (1.1)

The aforementioned pKP equation (1.1) taken from the
study by Ma et al. [46] is an NLPDE that explains the evolu-
tion of nonlinear long waves of small amplitude with slow
transverse coordinate dependence [47–49]. In the existing
literature, Eq. (1.1) has been mentioned by many authors as
a special case of a combined pKp and B-type KP (BKP)
equation, see, e.g., [50–53]. For the first time, we derive
exact solutions of Eq. (1.1) using symmetry reductions
along with the help of Kudryashov’s method and construct
its conserved vectors.

In this work, we study the pKP equation (1.1). First, we
construct exact solutions of Eq. (1.1) by utilizing Lie symmetry
analysis along with Kudryashov’s method. The corresponding
one-parameter group of transformations are also obtained,
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and utilizing these transformations, new solutions are pre-
sented when a solution is given. Furthermore, conserved vec-
tors of Eq. (1.1) are derived using three approaches: Noether,
Ibragimov, and multiplier methods.

2 Exact solutions of the pKP
equation

We begin by deriving infinitesimal generators of the pKP
equation (1.1), which are vector fields that leave the equa-
tion invariant. We then utilize them to construct group-
invariant solutions.

2.1 Lie point symmetries of the pKP equation

The infinitesimal generators admitted by the pKP equation
(1.1) are determined by

= ∂ + ∂ + ∂

+ ∂

τ t x y u ξ t x y u ψ t x y u

η t x y u

, , , , , , , , ,

, , ,

t x y

u

� ( ) ( ) ( )

( )
(2.1)

if and only if

+ + − =u u u u u6 0.tx x xx xxxx yy

4
1.1� ( )∣[ ]

( ) (2.2)

Here, 4� [ ] is the fourth prolongation defined by

= ∂ + ∂ + ∂ + ∂ + ∂ζ ζ u ζ u ζ u ζ u ,x x xx xx tx tx yy yy xxxx xxxx

4� [ ]

where ζx , ζxx , ζtx , ζyy, and ζxxxx can be obtained using the
prolongation formulas [19] given by

= − − −
= − − −
= − − −
= − − −
= − − −
= − − −
= − − −

ζ D η u D ξ u D τ u D ψ

ζ D η u D ξ u D τ u D ψ

ζ D ζ u D ξ u D τ u D ψ

ζ D ζ u D ξ u D τ u D ψ

ζ D ζ u D ξ u D τ u D ψ

ζ D ζ u D ξ u D τ u D ψ

ζ D ζ u D ξ u D τ u D ψ

,

,

,

,

,

,

x x t x x x y x

y y t y x y y y

tx x t tt x tx x ty x

yy y y xy y ty y yy y

xx x x tx x xx x xy x

xxx x xx txx x xxx x xxy z

xxxx x xxx xxxx x txxx x xxxy x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(2.3)

with the total differential operators defined as follows:

= ∂ + ∂ + ∂ + ∂ + ∂ + ⋯
= ∂ + ∂ + ∂ + ∂ + ∂ + ⋯
= ∂ + ∂ + ∂ + ∂ + ∂ + ⋯

D u u u u u u u

D u u u u u u u

D u u u u u u u

,

,

.

t t t u tt t tx x ty y

x x x u xx x tx t xy y

y y y u yy y ty t xy y

(2.4)

By expanding the determining Eq. (2.2) and distributing it
among the different derivatives of u, it leads to the linear
homogeneous PDEs as follows:

= = = = = = + =

− =

− = − = − = = =

=
− = − =

τ τ τ ξ ψ ψ η τ

ξ ψ

η ξ ξ τ ψ τ ψ ψ

ψ

τ ψ η ξ

0, 0, 0, 0, 0, 0, 3 0,

2 0,

6 0, 3 0, 3 2 0, 0, 0,

0,

3 5 0, 6 0,

x y u u u x u t

y t

x t x t y t u v

x

t y yy tt

which upon solving yield the values of the infinitesimals τ ,
ξ , ψ, and η as follows:

=

= ′ + ‴ + ′ +

= ′ +

= ″ − ′ + ‴ + ′

+ ″″ + ‴ + ″ + +

τ a t

ξ xa t y a t f t g t

ψ ya t f t

η x a t ua t xy a t xg t

y a t y f t g t yi t j t

,

1

3

1

6

1

2
,

2

3
,

1

36

1

3

1

36

1

6

1

432

1

72

1

12
,

2

2 2

4 2

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

and hence the pKP equation (1.1) possesses the following
five Lie point symmetries:

=
∂

∂
j t

u

,1� ( ) (2.5)

=
∂

∂
yi t

u

,2� ( ) (2.6)

= ′
∂

∂
+

∂
∂

+ ″ + ‴
∂

∂

yf t

x

f t

y

xyf t y f t

u

36 72

6 ,

3

3

� ( ) ( )

( ( ) ( ))

(2.7)

=
∂

∂
+ ′ + ″

∂
∂

g t

x

xg t y g t

u

12 2 ,4
2� ( ) ( ( ) ( )) (2.8)

=
∂
∂

+ ′ + ″
∂

∂

+ ′
∂

∂
+ ″ − ′

+ ‴ + ″″
∂

∂

a t

t

xa t y a t

x

ya t

y

x a t ua t

xy a t y a t

u

432 144 72

288 12 144

12 .

5
2

2

2 4

� ( ) ( ( ) ( ))

( ) ( ( ) ( )

( ) ( ))

(2.9)

Applying the Lie equations

= =

= =

= =

= =

=

=

=

=

t

α

τ t x y u t t

x

α

ξ t x y u x x

y

α

ψ t x y u y y

u

α

η t x y u u u

d˜

d
˜, ˜, ˜ , ˜ , ˜ ,

d ˜

d
˜, ˜, ˜ , ˜ , ˜ ,

d˜

d
˜, ˜, ˜ , ˜ , ˜ ,

d ˜

d
˜, ˜, ˜ , ˜ , ˜ ,

α

α

α

α

0

0

0

0

( ) ∣

( ) ∣

( ) ∣

( ) ∣

we earn the following group of transformations:
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⟶ +
⟶ +

⟶ + ′ + ′

+ ″ + ″

+ ′ ″ + ′ ″

+ ′ ″ + ‴
+ ‴ + ‴
+ ‴

⟶ + + ′

+ ′ + ″

G t x y u t x y u αj t

G t x y u t x y u αyi t

G t x y u t x α yf t α f t f t u

α xyf t α xf t f t

α y f t f t α yf t f t f t

α f t f t f t α y f t

α y f t f t α f t f t

α f t f t

G t x y u t x α g t y u α g t

α g t g t α y g t

: ˜, ˜, ˜ , ˜ , , , ,

: ˜, ˜, ˜ , ˜ , , , ,

: ˜, ˜, ˜ , ˜ , 36 1,296 ,

6 216

108 7,776

139,968

108 5,184

93,312 ,

: ˜, ˜, ˜ , ˜ , 12 , , 2

12 .

α

α

α

α

3 3

2

3 3

2

3

2 2
3

3

3

4 2
3

3

3

2 2
3

3

3

4 3

4 4

4

2
4

2

1

2

3

4

( ) ( ( ))

( ) ( ( ))

( ) ( ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ))

( ) ( ( ) ( )

( ) ( ) ( ))

Using the aforementioned groups, we state the following the-
orem, which provides new solutions from the known ones:

Theorem 2.1. If =u ω t x y, ,( ) is a solution of the pKP Eq.
(1.1) then the functions

= +
= +

= − ′ + ′ −

+ ″ − ′ − ′ ″

+ ′ ″ − ′ ″

+ ‴ − ‴ + ‴
− ‴

= − + ′ − ′

+ ″

u ω t x y αj t

u ω t x y αyi t

u ω t x αyf t α f t f t y αf t

αxyf t α xf t f t α y f t f t

α yf t f t f t α f t f t f t

αy f t α y f t f t α yf t f t

α f t f t

u ω t x αg t y αxg t α g t g t

αy g t

, , ,

, , ,

, 36 1,296 , 72

6 216 108

7,776 139,968

108 5,184

93,312 ,

, 12 , 2 12

,

1 1

2 2

3 3
2

2 2 2

3 4 2

3 2 2 3 2

4 3

4 4
2

2

( ) ( )

( ) ( )

( ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ( ) ) ( ) ( ) ( )

( )

are also solutions of the pKP equation (1.1).

2.2 Constructing group-invariant solutions
of Eq. (1.1)

We derive multiple group-invariant solutions of Eq. (1.1) in
this section by performing symmetry reductions via the
characteristic equations.

Case 1. We consider = ′ ∂∕∂yf t x363� ( ) + ∂∕∂f t y72 ( ) +

″ + ‴ ∂∕∂xyf t y f t u6 3( ( ) ( )) . Solving the characteristic equa-
tions associated with 3� leads to the following invariants:

= = −
′

= −
″
′

+ ‴
′

− ‴
′

J t J

y xf t

f t

J u

x f t

f t

x f t f t

f t

xy f t

f t

,
2

2
,

3

36

2

36 36
.

1 2

2

3

2 2

2

2

( )

( )

( )

( )

( ) ( )

( )

( )

( )

The above invariants imply that

= +
″
′

− ‴
′

+ ‴
′

= −
′

u t φ

x f t

f t

x f t f t

f t

xy f t

f t

φ

y xf t

f t

Φ ,
3

36

2

36

36
,

2

2
,

2 2

2

2 2

( )
( )

( )

( ) ( )

( )

( )

( )

( )

( )

whereΦ is an arbitrary function of t andφ. Substituting the
value of u into the pKP equation (1.1), we obtain the NLPDE

− ′ ‴ − ′
− ′ + ′ ‴
+ ‴ + ′ ″

− ′ − ′ =

″

f t φf t f t f t f t f t

f t f t f t f t f t

φf t f t φf t f t

f t φf t

864 Φ 2 108 Φ

2,592 Φ Φ 72 Φ

72 Φ 3

162 Φ 108 Φ 0.

φφφφ tφ

φφ φ φ

φ

φ φφ

4 3

3 2

2 3

4 4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

(2.10)

As a result, the similarity solution of Eq. (1.1) is

= +
″
′

− ‴
′

+ ‴
′

u t φ

x f t

f t

x f t f t

f t

xy f t

f t

Φ ,
3

36

2

36 36
,

2 2

2

2

( )
( )

( )

( ) ( )

( )

( )

( )

where Φ represents any solution of the NLPDE (2.10).
Particular case =f t t( ) . We consider the particular

case =f t t( ) , which transforms the NLPDE (2.10) into

− − − − =

= −

t t t φ

φ

y

tx

16 Φ 2 Φ 48 Φ Φ 3Φ 2 Φ 0,

2
2 .

φφφφ tφ φφ φ φ φφ

4 3

2 (2.11)

The NLPDE (2.11) has the following five symmetries:

=
∂

∂
=

∂
∂

=
∂
∂

+
∂

∂
−

∂
∂

=
∂

∂
+

∂
∂

=
∂
∂

+
∂

∂
+ −

∂
∂

∕ − ∕

∕ − ∕

t

φ

h t

t

t

φ

φ

ϕ

ϕ

t

φ

φt

t

t

t

φ

φt t

Γ , Γ
Φ

,

Γ 3 4 ,

Γ 48
Φ

,

Γ 192 288 96Φ
Φ

.

1 2

3

4
3 2 3 2

5
3 2 5 2

( )

( )

Weperform reductions using the last Lie point symmetry Γ5. This
gives us two invariants = − ∕

I φt1
3 2 and = − ∕ ∕

I t φ tΦ 962
2 5 2,

and consequently, we obtain the group invariant solution:

= + ⎛
⎝

⎞
⎠∕

φ

t t

G

φ

t

Φ
96

1
.

2

3 3 2

Substituting the value of Φ into Eq. (2.11), we obtain the
fourth-order nonlinear ordinary differential equation
(NLODE) as follows:

″″ − ′ ″ = = ∕G ξ G ξ G ξ ξ

φ

t

3 0, .
3 2

( ) ( ) ( )

When the above equation is integrated twice with respect
to ξ , we obtain the NLODE as follows:

″ − ′ + ′ + =G ξ G ξ k G ξ k

1

2

1

2
0,

2 3

1 2( ) ( ) ( )
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where k1 and k2 are constants. Solving the above NLODE
with the help of Maple and reverting to the original vari-
ables t , x , y, and u, we obtain our solution of Eq. (1.1) as
follows:

=
−

⎧
⎨
⎩

+ − +
⎫
⎬
⎭

+ −

+
−

+

u t x y

y tx k k k k

t k k k

y tx

t

k

, ,

4 27 3 81 24

6 27 3 81 24

4

384
,

2
2 2

2

1

3
1

2
2 2

2

1

3

2 2

3 3

2

3

1

3

( )

( ) ( )

( )

( )

(2.12)

where k3 is a constant. A dynamical picture of the solution
(2.12) is shown in Figure 1.

Case 2.We now consider the symmetry =4� ∂∕∂ +g t x12 ( )

′ + ″ ∂∕∂xg t y g t u2 2( ( ) ( )) . Resolving the Lagrange system that
corresponds to it yields three invariants:

= = = −
′ + ″

J t J y J u

x g t xy g t

g t

, ,
12

,
1 2 3

2 2( ) ( )

( )

and hence the group-invariant solution is given as follows:

= +
′ + ″

u t y

x g t xy g t

g t

Φ ,
12

,

2 2

( )
( ) ( )

( )

where Φ is any function of t and y. Inserting this value of u

into Eq. (1.1) gives

− ‴ =g t y g t12 Φ 0,yy

2( ) ( )

whose solution is

= ‴ + +t y

y g t

g t

yk t l tΦ ,
144

,

4

( )
( )

( )
( ) ( )

where k and l are any functions of t. Hence, the group-
invariant solution under 4� is

= ‴ +
′

+
″

+

+

u t x y

y g t

g t

x g t

g t

xy g t

g t

yk t

l t

, ,
144 12 12

.

4 2 2

( )
( )

( )

( )

( )

( )

( )
( )

( )

(2.13)

A dynamical picture of the solution (2.13) is shown in
Figure 2.

Case 3. We consider

=
∂
∂

+ ′ + ″
∂

∂
+ ′

∂
∂

+ ″ − ′ + ‴ + ″
∂

∂
″

a t

t

xa t y a t

x

ya t

y

x a t ua t xy a t y a t

u

432 144 72 288

12 144 12 .

5
2

2 2 4

� ( ) ( ( ) ( )) ( )

( ( ) ( ) ( ) ( ))

Resolving the associated characteristic equations to 5� , we
obtain the following three invariants:

= = −
′

= −
′

+
′

−
″

−
′

− ‴ +
′ ″

∕
− ∕

∕

∕

J

y

a t

J xa t

y a t

a t

J ua t

x a t

a t

xy a t

a t

xy a t

a t

y a t

a t

y a t

a t

y a t a t

a t

,
6

,

36 54

36

5

1,944

432 2,116
.

1 2 3 2

1 3

2

4 3

3

1 3

2 2 2

2

2 4 3

3

4 4

2

( )
( )

( )

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( )

The similarity solution is

= +
′

−
′

+
″

+
′

+ ‴ −
′ ″

∕u

a t

σ φ

x a t

a t

xy a t

a t

xy a t

a t

y a t

a t

y a t

a t

y a t a t

a t

1
Φ ,

36 54 36

5

1,944 432 2,116
,

1 3

2 2 2

2

2

4 3

3

4 4

2

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( )

with

= = −
′

∕
− ∕

∕σ

y

a t

φ xa t

y a t

a t

,
6

,
2 3

1 3

2

4 3( )
( )

( )

( )

Figure 1: (a) 3D graph of singular solution (2.12) for = = =k k k0.4, 0.6, 0.81 2 3 , and =y 180, within the interval ≤ ≤t x‒10 , 10. (b) 2D density plot of
solution (2.12). (c) 2D graph of solution (2.12) for =x 0 within the interval ≤ ≤t‒10 10.
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where Φ is any function of σ and φ. Substituting this value
of u into Eq. (1.1), we obtain

− − =Φ 6Φ Φ Φ 0.σσ φ φφ φφφφ (2.14)

The NLPDE (2.14) has five infinitesimal generators as follows:

=
∂

∂
=

∂
∂

=
∂

∂
=

∂
∂

=
∂

∂
+

∂
∂

−
∂

∂

σ φ

σ

φ

φ

σ

σ

, ,

Φ
,

Φ
,

2 Φ
Φ

.

1 2

3 4

5

� �

� �

�

Utilizing the translational symmetries as = + c1 2� � � ,
yields the invariants =J Φ

1
and = −J φ cσ

2
, and conse-

quently, we have = χ ξΦ ( ) and = −ξ φ cσ . Substituting
the value of Φ into Eq. (2.14), we obtain the NLODE as
follows:

″″ + ′ ″ − ″ =χ χ χ c χ6 0.2 (2.15)

We can now use Kudryashov’s method as outlined in [54]
to find the exact solution of Eq. (2.15). We start by assuming
that the solution of Eq. (2.15) takes the form

∑=
=

χ ξ B ξ ,

i

n

i

i

0

�( ) ( ) (2.16)

where � satisfies

′ = −ξ ξ ξ ,2� � �( ) ( ) ( ) (2.17)

whose solution is given by

=
+

ξ

ξ

1

1 exp
.�( )

( )
(2.18)

Using the balancing procedure, Eq. (2.15) gives =n 1, and
hence

= +χ ξ B B ξ .o 1�( ) ( ) (2.19)

Applying the above value of χ ξ( ) into Eq. (2.15) and using
Eq. (2.17), we obtain an equation that, when split on on
powers of � , yields

+ =
+ =

− − =
− − =

− =

ξ B B

ξ B B

ξ c B B B

ξ c B B B

ξ c B B

: 2 0,

: 2 0,

: 12 25 0,

: 2 5 0,

: 0.

5
1

2
1

4
1

2
1

3 2
1 1

2
1

2 2
1 1

2
1

2
1 1

�

�

�

�

�

( )

( )

( )

( )

( )

Solving the above equations, we obtain = −B 21 and =c 12 ,
and hence Eq. (2.19) becomes

= −
+

χ ξ B

ξ

2

1 exp
.0( )

( )
(2.20)

Reverting to the original variables, the exact solutions of
Eq. (1.1) are

=

×
⎛

⎝
⎜ −

⎡
⎣⎢

+ ⎧
⎨
⎩

−
′

+ ⎫
⎬
⎭
⎤
⎦⎥

⎞

⎠
⎟

+
′

−
′

+
″

+
′

+ ‴ −
′ ″

∕

− ∕
∕ ∕

−

u t x y

a t

K xa t

y a t

a t

cy

a t

x a t

a t

xy a t

a t

xy a t

a t

y a t

a t

y a t

a t

y a t a t

a t

, ,
1

2 1 exp
6

36 54 36

5

1,944 432 2,116
,

1 3

1 3

2

4 3 2 3

1

2 2 2

2

2

4 3

3

4 4

2

( )
( )

( )
( )

( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( )

(2.21)

where =K B0 is an arbitrary constant and = ±c 1. The solu-
tion profile of (2.21) is presented in Figure 3.

Direct integration of (2.15).
Integrating NLODE equation (2.15) twice with respect

to ξ yields

″ + ′ − ′ + ′ + =χ χ c χ k χ k

1

2

1

2
0,

2 3 2 2

1 2
(2.22)

Figure 2: (a) 3D graph of periodic solution (2.13) for =g t 1( ) , =x 1, =k t tsin( ) ( ), and =l t tcos( ) ( ) within the interval ≤ ≤π t y π‒2 , 2 . (b) 2D density
plot of solution (2.13). (c) 2D graph of solution (2.13) for =y 10 within the interval ≤ ≤π t π‒2 2 .
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where k1 and k2 are constants of integration. By letting
= ′v χ , Eq. (2.22) becomes

′ + − + + =v v c v k v k2 2 2 0.
2 3 2 2

1 2
(2.23)

If the algebraic equation

− + + =v

c

v k v k

2
03

2

2
2 2

has the real roots α α,1 2, and α3 such that > >α α α1 2 3, then
the NLODE equation (2.23) becomes

′ = − − −v v α v α v α2 ,
2

1 2 3( )( )( )

whose solution can be written as follows [55,56]:

= − − ⎧
⎨⎩

− ⎫
⎬⎭

=
−
−

v ξ α α α

α α

ξ M

M

α α

α α

cn
2

,

,

2 1 2
2 1 3 2

2 1 2

1 3

( ) ( )

(2.24)

where cn denotes the cosine elliptic function. Since = ′v χ ,
the above expression (2.24) is integrated with respect to ξ

to obtain the solution to the pKP equation after returning
to the original variables as follows:

⎟

=

+
⎧
⎨
⎩

− −
− ⎫

⎬
⎭

+
⎞
⎠

+
′

−
′

+
″

+
′

+ ‴ −
′ ″

∕u t x y

a t

ξ M M

α α α

M

M

ξ k

x a t

a t

xy a t

a t

xy a t

a t

y a t

a t

y a t

a t

y a t a t

a t

, ,
1

EllipticE sn ,

1

36 54 36

5

1,944 432 2,116
,

1 3 1 2
2 2

2 1 2

4

4 3

2 2 2

2

2

4 3

3

4 4

2

� �( )
( )

( [ { ( ∣ ) }]

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( )

(2.25)

where = − −− ∕ ′
∕ ∕ξ xa t

y a t

a t

cy

a t

1 3

6

2

4 3 2 3( )
( )

( ) ( )
, = −

−
α α

α α M
1

2 1 2
2

1 3
8

�
( )

( )
, =2�

−α α

2

1 3 , k3 is a constant, and

∫=
−
−

q r

r n

n

nEllipticE ,
1

1
d

r

0

2 2

2
[ ]

is the incomplete elliptic integral [57]. Figure 4 depicts the
wave profile of the periodic solution (2.25).

Special case = =k k 01 2 .
We consider the special case of Eq. (2.22) where =k1

=k 02 , which upon solving yields the solution

=
⎧
⎨
⎩

+
⎫
⎬
⎭

+χ ξ c c ξ A Atanh
1

2
,1 2( ) ( )

where A1 and A2 are constants. Returning to the original
variables yields

⎟

⎜

⎟

=
⎛
⎝

⎧
⎨
⎩

−
′

− + ⎞
⎠
⎫
⎬
⎭

+
⎞

⎠

+
′

−
′

+
″

+
′

+ ‴ −
′ ″

∕
− ∕

∕ ∕

u t x y

a t

c c xa t

y a t

a t

cy

a t

A A

x a t

a t

xy a t

a t

xy a t

a t

y a t

a t

y a t

a t

y a t a t

a t

, ,
1

tanh
1

2

6

36 54 36

5

1,944 432 2,116
.

1 3

1 3

2

4 3 2 3 1 2

2 2 2

2

2

4 3

3

4 4

2

( )
( )

( ( )

( )

( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( )

(2.26)

The solution profile of Eq. (2.26) is presented in Figure 5.

2.3 Traveling wave solution

Traveling wave solutions of Eq. (1.1) are obtained by con-
sidering the special values of the functions f t( ), g t( ), and
a t( ) in the symmetries 3� , 4� , and 5� , respectively. By
taking = ∕f t 1 72( ) , = ∕g t 1 12( ) , and = ∕a t 1 432( ) in Eqs.
(2.7), (2.8), and (2.9), we obtain

=
∂

∂
=

∂
∂

=
∂
∂y x t

, , .3 4 5� � �

We now take the linear combination

+ + =
∂
∂

+
∂

∂
+

∂
∂

a b

t

a

x

b

y

,5 4 3� � �

whose associated Lagrange system gives the similarity
variables and solution

= − = − =p x at q y bt u p q, , Θ , .( ) (2.27)

Utilizing these invariants, Eq. (1.1) transforms into the fol-
lowing NLPDE in two independent variables:

+ − − − =a bΘ 6Θ Θ Θ Θ Θ 0.pppp p pp pp pq qq (2.28)

The above equation has five point symmetries, namely

=
∂

∂
=

∂
∂

=
∂

∂
=

∂
∂

= +
∂

∂
+

∂
∂

− − +
∂

∂

p q

p

bq p

p

q

q

pb pa

, ,
Θ

,
Θ

,

6 12 4 12Θ
Θ

.

1 2 3 4

5
2

� � � �

� ( ) ( )

The symmetry = + c1 2� � � gives two invariants =I1

−q cp and =I Θ2 , and consequently, the invariant solution
is = −F q cpΘ ( ). Substituting the value of Θ into Eq. (2.28),
we obtain the fourth-order NLODE as follows:

− − ″ − ′ ″ + ″″ =bc ac F z c F z F z c F z1 6 0,2 3 4( ) ( ) ( ) ( ) ( ) (2.29)
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which we rewrite as

″ − ′ ″ + ″ =″
AF z BF z F z CF z 0,( ) ( ) ( ) ( ) (2.30)

where = − −A bc ac 12 , =B c6 3, =C c
4, and =z

− − +ac b t cx y( ) . We observe that Eq. (2.30) takes the
same form as the NLODE equation (2.15). Therefore, fol-
lowing similar steps as presented in the section “Direct inte-
gration of (2.15)”, the pKP equation (1.1) solution is given by

=
−

−

×
⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝

− ⎞
⎠

⎤
⎦⎥
⎫
⎬
⎭

+
⎧
⎨
⎩

− −
− ⎫

⎬
⎭

+

u t x y

C r r

B r r S

B r r

C

z S S

r r r

S

S

z k

, ,
12

EllipticE sn
12

, ,

1
,

1 2
2

1 3
8

1 3 2 2

2 1 2

4

4 3

( )
( )

( )

( )

( )

(2.31)

where k3 is a constant and q vEllipticE ,[ ] represents the
incomplete elliptic integral as follows [57]:

∫=
−
−

q v

v n

n

nEllipticE ,
1

1
d .

v

0

2 2

2
[ ]

The wave profile of solution (2.31) is illustrated in Figure 6.

3 Graphical and physical
explanation of the obtained
solutions

In this section, we provide more details on the obtained
group-invariant solutions to the pKP equation (1.1) by

Figure 4: (a) 3D graph of periodic soliton solution (2.25) for = = = = =a t α α α k1, 10, 5, 2, 01 2 3 3( ) , and =c 1 within the interval ≤ ≤x y‒20 , 20.
(b) 2D density plot of solution (2.25). (c) 2D graph of solution (2.25) for =y 0 within the interval ≤ ≤x‒20 20.

Figure 3: (a) 3D graph of a kink-shaped soliton solution (2.21) for =a t 1( ) , =k 1, =c 1, and =y 1 within the interval ≤ ≤t x‒20 , 20. (b) 2D density
plot of solution (2.21). (c) 2D graph of solution (2.21) for =t 0 within the interval ≤ ≤x‒20 20.
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discussing their geometrical representation. 3D, 2D, and
corresponding density plots in Figures 1–6 are constructed
by utilizing the mathematical software tool Mathematica.
This involves taking acceptable values of the parameters
under certain limits in order to visualize the mechanism of
the equation under study. Graphs of solution (2.12) are
shown in Figure 1, which represent singular solitons.
Figure 2 shows graphs of the periodic solution (2.13). The
solutions given in Eqs. (2.25) and (2.31) are periodic solitons
shown in Figures 4 and 6. The kink-shaped soliton solu-
tions (2.21) and (2.26) are presented in Figures 3 and 5.

4 Conservation laws for the pKP
equation

We derive the conserved vectors of the pKP equation (1.1)
by using three approaches: the theorem by Noether [32],

Ibragimov’s theorem [33], and the multiplier method [19]
as given in their respective references.

4.1 Conservation laws for pKP via Noether’s
theorem

Here, we apply Noether’s theorem [32] to construct conser-
vation laws for the pKP equation (1.1). It is easy to verify
that Eq. (1.1) has the Lagrangian

= − + −u u u u u

1

2

1

2

1

2
.

xx t x y x

2 2 3
� (4.1)

We now use the Lagrangian (4.1) in the determining equation

+ + + − −

− =

D τ D ξ D ψ D B D B

D B 0,

t x y t

t

x

x

y

y

2� � �{ ( ) ( ) ( )} ( ) ( )

( )

[ ]

(4.2)

Figure 5: (a) 3D graph of a kink-shaped soliton solution (2.26) for = = = =a t A A c1, 1, 1, 11 2( ) , and =y 5 within the interval ≤ ≤t x‒20 , 20. (b) 2D
density plot of solution (2.26). (c) 2D graph of solution (2.26) for =t 0 within the interval ≤ ≤x‒20 20.

Figure 6: (a) 3D graph of periodic soliton solution (2.31) for =r 101 , =r 52 , =r 33 , = =k c1, 0.93 , and =t 1 within the interval ≤ ≤x y‒5 , 10. (b) 2D
density plot of solution (2.31). (c) 2D graph of solution (2.31) for =y 0 within the interval ≤ ≤x‒5 10.
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where =B B t x y u, , ,t t( ), =B B t x y u, , ,x x( ), and =B
y

B t x y u, , ,y( ) are gauge functions and 2�[ ] is the second-
order prolongation given by

= + ∂ + ∂ + ∂ + ∂ζ u ζ u ζ u ζ u .t t x x y y xx xx

2� �[ ]

Expanding Eq. (4.2) and splitting on derivatives of u, we
obtain the system of PDEs as follows:

= = = = = =

=
+ = − = − = − =

− + = + − + =

− − − =

− = + = + =

+ + =

τ τ τ ξ ψ ψ

η

ψ η ξ η ψ ξ ξ η

τ ξ ψ τ ξ ψ η

ξ τ ψ η

η B η B η B

B B B

0, 0, 0, 0, 0, 0,

0,

2 0, 0, 2 0, 6 0,

0, 2 0,

2 3 0,

0, 2 0, 2 0,

0.

x y u u x u

xx

y u xx xu t y t x

t x y t x y u

x t y u

y u

y

t u

x

x u

t

t

t

x

x

y

y

Solving the above system of PDEs, we gain gauge functions
and Noether symmetries listed below:

=
∂
∂

= = =

= ′
∂

∂
+

∂
∂

+ ⎛
⎝ ″ + ‴ ⎞

⎠
∂

∂

= − ″ = − ‴ − ″″

= ″ + ‴

=
∂

∂
+ ⎛

⎝ ′ + ″ ⎞
⎠

∂
∂

= − ′ = − ″ − ‴

= ″

=
∂

∂
= = − ′ =

=
∂

∂
= = − ′ =

t

B B B

yi t

x

i t

y

xyi t y i t

u

B yui t B xyui t uy i t

B xui t uy i t

j t

x

xj t y j t

u

B uj t B xuj t uy j t

B uyj t

yn t

u

B B uyn t B un t

m t

u

B B um t B

, 0, 0, 0,

1

2

1

12

1

72
,

1

24
,

1

24

1

144
,

1

12

1

24
,

1

6

1

12
,

1

12
,

1

12

1

24
,

1

6
,

, 0,
1

2
, ,

, 0,
1

2
, 0.

t x y

t x

y

t x

y

t x y

t x y

1 1 1 1

2

3

2 2
3

2
2

3
2

3 3
2

3

4 4 4 4

5 5 5 5

�

�

�

�

�

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( )

Utilizing the formulae [58]

⎜ ⎟

= +
∂
∂

−

= +
⎧
⎨
⎩
∂
∂

− ⎛
⎝

∂
∂

⎞
⎠
⎫
⎬
⎭

+
∂

∂
−

= +
∂
∂

−

T τ W

u

B

T ξ W

u

D

u

W

u

B

T ψ W

u

B

,

,

Ł
,

t

t

t

x

x

x

xx

x

xx

x

y

y

y

�
�

�
� �

�

where = − − −W η u τ u ξ u ψt x y , the corresponding con-
served vectors are given, respectively, as follows:

= + −

= + + −

= −

T u u u

T u u u u u u u

T u u

1

2

1

2
,

3
1

2
,

;

t

y xx x

x

x t t xxx t xx tx

y

t y

1

2 2 3

1

2 2

1

= − ‴ − ″

+ ″ + ′ +

= ″ − ‴ − ‴

− ‴ + ‴ − ″

+ ″ − ″ − ″ + ′

+ ′ − ′ + ′ +

− + +

= ‴ − ‴

+ ″ − ″ − ′ −

− + −

″

T y i t u xyi t u

yi t u yi t u i t u u

T y i t u y i t u y i t u

y i t u xyi t u xyi t u

yi t u xyi t u xyi t u yi t u

yi t u yi t u yi t u u i t u u

i t u u i t u u i t u u

T y i t u y i t u

xyi t u xi t u yi t u u i t u

i t u i t u i t u u

1

144

1

24

1

24

1

4

1

2
,

1

144

1

24

1

72

1

144

1

24

1

4

1

12

1

12

1

24

1

4

1

4

1

2
3

1

2
,

1

72

1

24

1

12

1

12

1

2

1

2

1

2

1

2
;

t

x x

x y x

x

x xxx

t x

xx xxx t x

y xx x xxx y x

xy xx y xxx y t

y

y

y y x x

y xx x t

2
3

2

2
3 3 2 3

3 2

3

2 2 2

2
3 2

3

2 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

= − ″ − ′

+ ′ +

= ‴ − ″

− ″ − ″ + ″

− ′ + ′ − ′

− ′ + + + −

= ″ − ″ + ′ −

T y j t u xj t u

j t u j t u

T y j t u y j t u

y j t u y j t u xj t u

xj t u j t u xj t u

xj t u j t u j t u u j t u j t u

T y j t u yj t u xj t u j t u u

1

24

1

12

1

12

1

2
,

1

24

1

4

1

12

1

24

1

12

1

2

1

6

1

6

1

12
2

1

2

1

2
,

1

12

1

6

1

6
;

t

x x

x

x

x

xxx t

x xx xxx

t x xxx x y xx

y

y y y x

3
2

2

3
2 2 2

2 2

2

3 2 2

3
2

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= −

= ′ − − −

= −

T yn t u

T yn t u yn t u yn t u yn t u

T yn t u n t u

1

2
,

1

2
3

1

2
,

;

t

x

x

x xxx t

y

y

4

4

2

4

( )

( ) ( ) ( ) ( )

( ) ( )

= −

= ′ − − −

=

T m t u

T m t u m t u m t u m t u

T m t u

1

2
,

1

2
3

1

2
,

.

t

x

x

x xxx t

y

y

5

5

2

5

( )

( ) ( ) ( ) ( )

( )
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4.2 Conservation laws for pKP equation by
applying Ibragimov’s theorem

We invoke the conservation theorem of Ibragimov, which
has been outlined in [33], to find conserved vectors for the
pKP equation (1.1). The Euler–Lagrange operator for the
pKP equation (1.1) is given as follows:

=
∂

∂
−

∂
∂

+
∂

∂

+
∂

∂
+

∂
∂

+
∂

∂
+ ⋯

δu

u

D

u

D D

u

D

u

D

u

D

u

,

x

x

t x

tx

x

xx

y

yy

x

xxxx

2 2 4

(4.3)

where D D,t x , and Dy are given in Eq. (2.4). The adjoint
equation for Eq. (1.1) is given by the formula

= + + − =F δu v u u u u u* 6 0,tx x xx xxxx yy[ ( )] (4.4)

where =v v t x y, ,( ). Eq. (4.4) yields

= + + + − =F v v u u v v v* 6 6 0.tx x xx x xx xxxx yy (4.5)

It is observed that the pKP equation is not self-adjoint. The
formal Lagrangian for Eqs (1.1) and (4.5) is

= + + −v u u u u u6 .tx x xx xxxx yy� ( ) (4.6)

The conserved vectors for the pKP equation (1.1) are for-
mulated as follows [58,59]:

⎟⎜

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

= +
⎧
⎨
⎩
∂
∂

− ⎛
⎝

∂
∂

⎞
⎠
⎫
⎬
⎭

= +
⎧
⎨
⎩
∂
∂

− ⎛
⎝

∂
∂

⎞
⎠ + ⎛

⎝
∂

∂
⎞
⎠

− ⎛
⎝

∂
∂

⎞
⎠
⎫
⎬
⎭

+
⎧
⎨
⎩

∂
∂

− ⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠
⎫
⎬
⎭

+
∂
∂

+
⎧
⎨
⎩

∂
∂

− ⎛
⎝

∂
∂

⎞
⎠
⎫
⎬
⎭

+
∂

∂

= +
⎧
⎨
⎩
∂
∂

−
⎛
⎝

∂
∂

⎞
⎠

⎫
⎬
⎭

+
∂
∂

T τ W

u

D

L

u

T ξ W

u

D

u

D

u

D

u

W

u

D

u

D

L

u

W

u

W

u

D

u

W

u

T ψ W

u

D

u

W

u

,

,

,

t

t

x

xt

x

x

x

xx

xx

xxx

xxx

xxxx

x

xx

x

xxx

xx

xxxx

t

xt

xx

xxx

x

xxxx

xxx

xxxx

y

y

y

yy

y

yy

�
�

�
� � �

� � �

� �

� �

�
� � �

(4.7)

where = − − −W η τu ξu ψut x y.
Case 1. For the symmetry = ∂∕∂j t u1� ( ) , the conserved

vector T T T, ,
t x y

1 1 1( ) using Eq. (4.7) is

= −
= ′ − −
=

T j t v

T j t v j t v u j t v

T j t v

,

6 ,

.

t

x

x

x x xxx

y

y

1

1

1

( )

( ) ( ) ( )

( )

Case 2. For = ∂∕∂yi t u2� ( ) , the conserved vector is

= −
= ′ − −
= −

T yi t v

T yi t v yi t v u yi t v

T yi t v i t v

,

6 ,

.

t

x

x

x x xxx

y

y

2

2

2

( )

( ) ( ) ( )

( ) ( )

Case 3. For the symmetry

= ′
∂

∂
+

∂
∂

+ ″ + ‴
∂

∂

yf t

x

f t

y

xyf t y f t

u

36 72

6 ,

3

3

� ( ) ( )

( ( ) ( ))

we obtain

= ′ − ‴
− ″ +

= ″″ − ‴
− ‴ + ‴ − ″
+ ″ − ″ + ′
− ′ + ′
+ ′ − ′ − ′

+ −

+ + −

− −

= + ′ −
− ″ − ‴ + ″

+ ‴ − ′ + ′

+ +

T yf t u v y f t v

xyf t v f t u v

T y f t v y f t u v

y f t v xyf t v xyf t u v

yf t v xyf t v yf t u v

yf t u v yf t u v

yf t u v yf t u v f t u v

f t u u v f t u v

f t u v f t u v f t u u v

f t u v f t u v

T f t vu f t vu f t v u

xf t v y f t v xyf t v

y f t v yf t v u yf t vu

f t vu u f t vu

36

6 72 ,

6

6 36

6 6 216

36 36

36 36 72

432 72

72 72 432

72 72 ,

72 36 72

6 3 6

36 36

432 72 .

t

x x x

x y x

x

x x

xxx x x

xx xxx x x

xx xx xxx x

x xxx yy y

y x x ty xx

xxy x y xxx x ty

xxxy ty

y

tx x y y

y

y y x xy

x xx xxxx

3
3

3
3 3

3

2

3

2

3

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

Case 4. For the symmetry

=
∂

∂
+ ′ + ″

∂
∂

g t

x

xg t y g t

u

12 2 ,4
2� ( ) ( ( ) ( ))

we have

= + ′ − ″ − ′
= ‴ − ″

− ″ + ″ − ′ + ′
− ′ + −
+ + −

= − ″ + ′ −

T g t v u g t v y g t v xg t v

T y g t v y g t u v

y g t v xg t v xg t u v g t v

xg t v g t u v g t u v

g t u v g t u v g t u v

T g t vu yg t v xg t v g t v u

12 2 ,

6

2 12 2

2 72 12

12 12 12 ,

12 2 2 12 .

t

x x x x x

x

x x

xxx x x xx

xxx x x xx xx

xxx x x xxx yy

y

xy y y x

4
2

4
2 2

2

2

4

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

Case 5. Finally, for the symmetry

=
∂
∂

+ ′ + ″
∂

∂
+ ′

∂
∂

+ ″ − ′ + ‴ + ″
∂

∂
″

a t

t

xa t y a t

x

ya t

y

x a t ua t xy a t y a t

u

432 144 72 288

12 144 12 ,

5
2

2 2 4

� ( ) ( ( ) ( )) ( )

( ( ) ( ) ( ) ( ))

we obtain
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= ″ − ″″ − ‴
− ″ + ′ + ′

+ ′ + −

+ + +

T y a t u v y a t v xy a t v

x a t v ya t u v xa t u v

a t uv a t u v a t u v

a t u u v a t u v a t u v

72 12

12 288 144

144 432 432

2592 432 432 ,

t

x x x x

x y x x x

x t x yy

x xx xxxx tx

5
2 4 2

2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= − ″″ − ″″
+ ″″ − ″

+ ″ − ‴
+ ‴ − ″
+ ″ − ‴
+ ″ − ″
+ ′ − ′
− ′ + ′
+ ′ − ′ − ′

− ′ − ″ + ‴
− ′ + ′ − ″

+ ′ − ″ + ′
+ ″ − ′ − ′
− ′ + ′ + ′
− ″ + ′
− ′ + +
− −
+ − −

T y va t y a t u v y a t v

xy va t y va t u

y a t u v xy a t u v

y a t v y a t u v

y a t v u xy a t v

y a t u v yva t u

ya t u u v yva t u u

ya t u v ya t v u

ya t u v yva t u yva t u

va t u uva t x va t

xva t u xa t u v a t v

ua t u v x a t u v a t v u

xa t v a t u v xa t u v

va t u xa t v u ua t v

x a t v xa t u v

va t u a t u v u a t v u

a t vu u a t v u

a t v u a t vu a t vu

6

12 72

432 72

12 72

72 12

72 288

1728 1728

288 288

288 288 288

1728 144 12

144 864 24

864 72 432

24 288 144

576 144 144

12 144

576 2592 432

2592 432

432 432 432 ,

x

x x xxx

yy

x x x x

xx xx xx

x xxx xxx

x xxx y

y x x x xy

xy xx x xxy

y xxx xxxy ty

x

yy x x x

x x x x x xx

xx x xx xx xx

xxx x xxx xxx

xxx x xxx

t x x t xxx t

x tx xx tx

x txx txxx tt

5
4 5 4 4

2 2

2 2 2

2 2

2 2

2

2 2

2

2

2

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

= ″ + ′ − ‴
− ″ − ′ + ″

+ ″ − ′ + ″
− ′ − ″ + ′
+ ″ + ′ −
+ + ′ + ′

″

″

T x a t v a t vu xya t v

y a t v a t v u xy a t v

y a t v ya t v u ya t vu

xa t v u y a t v u xa t vu

y a t vu ya t vu u a t v u

a t vu ya t vu ya t vu

12 432 24

4 144 12

288 144

144 72 144

72 1728 432

432 288 288 .

y

y y

y y

y y y x

y x y x xy

xy x xx y t

ty ty xxxx

5
2

3 2

4

2

2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

4.3 Conservation laws for pKP equation
using the multiplier method

We utilize the multiplier method to obtain the conserved
vectors of the pKP equation (1.1) by seeking zeroth-order
multipliers = t x y u, , ,� �( ). The determining equation for
gaining multipliers of the pKP is

+ + − =δ u u u u u6 0,u tx x xx xxxx yy�{ ( )} (4.8)

with δu being the Euler operator given as follows:

=
∂

∂
−

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

δ

u

D

u

D D

u

D

u

D

u

D

u

,

u x

x

t x

tx

x

xx

y

yy

x

xxxx

2

2 4

where Dt , Dx , and Dy are total differential operators.
Expanding Eq. (4.8) and splitting on derivatives of u yields
the following system of PDEs:

= = =0, 0, 0.yy x u� � �

Solving the above PDE system, we obtain

= +f t yg t ,� ( ) ( )

where, f and g are arbitrary functions of t . The conserva-
tion laws of Eq. (1.1) are then derived by invoking the
divergence identity

+ + = + + −D T D T D T u u u u u6 .t

t

x

x

y

y

tx x xx xxxx yy�( ) (4.9)

Here, T
x and T

y represent the spatial fluxes and T
t repre-

sent the conserved density [19]. Utilizing Eq. (4.9), we gain
conserved vectors under each multiplier.

Case 1. For = f t1� ( ), we have

=
= + − ′
= −

T f t u

T f t u f t u f t u

T f t u

,

3 ,

.

t

x

x

xxx x

y

y

1

1

2

1

( )

( ) ( ) ( )

( )

Case 2. For = yg t2� ( ), we obtain

=
= + ′ −
= −

T g t yu

T g t yu yg t u g t yu

T ug t yg t u

,

3 ,

.

t

x

x

x xxx

y

y

2

2

2

2

( )

( ) ( ) ( )

( ) ( )

Remark 4.1. We observe that the conserved quantities
obtained through Noether’s theorem, Ibragimov’s approach,
and the multiplier method contain arbitrary functions, and
the presence of these functions in the conserved vectors
indicates the existence of infinitely many conserved quan-
tities in the pKp equation. Moreover, it is well known that
these conserved quantities have diverse applications in phy-
sical systems. They play a crucial role in establishing the
existence and uniqueness of solutions, investigating integr-
ability and linearization mappings, analyzing the stability
and global behavior of solutions, and so on. In addition,
we note that some of these conserved quantities represent
momentum and energy, which makes them very useful in
studying physical systems.
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5 Conclusion

In this article, we studied the pKP equation (1.1). Using Lie
symmetry methods, its symmetries were computed and
used to obtain exact solutions through symmetry reduc-
tions and with the aid of Kudryashov’s method. Moreover,
its one-parameter group of transformation is given. The
constructed solutions were in terms of rational, exponen-
tial, elliptical, and hyperbolic functions, which were pre-
sented in 3D, 2D and density plots to help analyze the
diverse nature of each obtained solution. We noted that
from Figures 1–6, the achieved solutions of the pKP equa-
tion comprised singular, periodic, periodic soliton, and
kink-shaped solitons. Finally, we derived its conservation
laws using Noether’s theorem, Ibragimov’s theorem, and
the multiplier method. In addition to the numerous advan-
tages of the obtained solutions presented in this study
across various scientific fields, the investigated conserva-
tion laws hold significant importance. In classical physics,
these laws encompass the conservation of energy, linear
momentum, and angular momentum. Conserved quanti-
ties play a vital role in our understanding of the physical
world, representing fundamental laws of nature. As a result,
they have a broad range of applications in physics and var-
ious other fields of study. Therefore, the outcomes of this
research can be employed for experimental and applied
purposes, facilitating further investigations in diverse areas
of scientific research.
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