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Abstract: The problem of optimization of interatomic poten-
tials is formulated and solved by means of generalization of
the Morse, Kaxiras–Pandey, and Rydberg potentials. The
interatomic potentials are treated as solutions of some
second-order ordinary differential equations which will be
classified and analyzed. The most appropriate analytic form
of the understudied potentials will be proposed based on a
one-dimensional search for the parameter, γ, which is the
power of the interatomic distance, r . The optimal analytic
form will also be proposed for metals such as gold, copper,
aluminium, titanium, and the silver–copper alloy. The method
of least squares will be used to estimate the potential para-
meters. Phenomenological potentials such as the classical
Rydberg, classical Morse, generalized Morse, Kaxiras–
Pandey, and classical Lennard–Jones will be studied,
and new potentials based on the combination of some
of the aforementioned potentials will also be proposed.
Metrics such as the goal function values, will be used to
identify which optimal value of the parameter, γ, is most
appropriate to introduce into the preferred interatomic
potential for interaction between atoms.

Keywords: optimal interatomic potentials, least squares,
one-dimensional search, goal functions

1 Introduction

Phenomenological potential functions [1] are well known
to describe the interactions (or forces) between neighbour

and/or adjacent atoms [2]. It is therefore necessary to select
a potential function that is most appropriate towards the
intended aim of the particular experiment(s) or computa-
tional software. Although, in quantum mechanics, the Len-
nard–Jones potential seems to be the most preferred poten-
tial. We will be confirming this hypothesis by classifying
selected potentials, and after performing a one-dimen-
sional search, the most appropriate potential will be pro-
posed. Interatomic potentials theory is a field of study
teeming with possibilities due to its modern applications
in quantum mechanics [3], nanotechnology, and nanoengi-
neering [1]. In this modern times, a lot of scientific effort
has been channelled towards proposing and modifying
interatomic potentials for greater computational effi-
ciency. Between interatomic potentials, we often meet
with phenomenological potentials having the general-
ized mathematical representation

= +− −U ρ Ae Be˜

,

αρ βρ( ) (1)

where =U ρ U˜ ˜( ) is the interatomic potential depending on
=ρ ρ r( )-function of the interatomic distance, r . − >A B, 0

are scalars as well as > >α β 0, which are scalar expo-
nents. The interatomic distance, =ρ ρ r( ), largely deter-
mines which potential will result from the generalized
representation in Eq. (1). For example, at =ρ r r( ) , the clas-
sical Morse potential

= = = +− −U r U ρ r r Ae Be˜

,

βr βr2( ) ( ( ) ) (2)

will be obtained. In potential (2), = = −A εe B εe, 2

βr βr2 m m, ε

is the depth of the energy minimum, rm is the corre-
sponding minimum value of equilibrium distance between
two atoms, and β is the steepness of the negative exponent
term. At the same =ρ r r( ) , the generalized Morse poten-
tial, which is also mentioned in the study by Teik-Cheng [4]
as the Biswas-Hamann potential [5,6],

= = = +− −U r U ρ r r Ae Be˜

,

αr βr( ) ( ( ) ) (3)

will be obtained. Finally, the classical Rydberg poten-
tial [5,6]
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= = = + −U r U ρ r r A Br e˜

,

αr( ) ( ( ) ) ( ) (4)

is also obtainable. The original form of this potential was
proposed in the study by Rydberg [7]. Potentials presented
in Eqs. (2)–(4) are referred to as the second-order potentials
because they can be treated as solutions of the second-
order homogeneous ordinary differential equation (ODE)

+ ⋅ + ⋅ =
U ρ

ρ
a

U ρ

ρ
b U ρ

d

d

d

d

0,

2

2

( ) ( )
( ) (5)

where =ρ ρ r( ), e.g., = = =ρ r ρ r ρ r, ln ,

2. Values of a and
b are dependent on Eqs. (2), (3), or (4).

= = ( )
= + = ⋅ ( )
= = ( )

a β b β

a α β b α β

a α b α

3 ; 2 for Eq. 2 ,

; for Eq. 3 , and

2 ; for Eq. 4 .

2

2

Eigenvalues of ODE (5) are obtained from the characteristic
equation, + + =λ aλ b 0

2 and are

= − ±
−

λ
a a b

2

4

2

,

1,2

2

(6)

where = + >a α β 0, = ⋅ >b α β 0. If − >a b4 0

2 , and then
we obtain the generalized Morse potential (3), with

= −
+ −

= − = −
− −

= −λ
a a b

α λ
a a b

β
4

2

,

4

2

.

1

2

2

2

In a particular case where =α β2 , we will obtain the clas-
sical Morse potential, (2). This situation is realized at

=a b2 9

2 in ODE (5). Another particular situation in ODE
(5), arises when =a b4

2 . In this case, the interatomic poten-
tial has the classical Rydberg form (4).

In the previously analyzed cases, we considered only
instances where − ≥a b4 0

2 . It is worthwhile to consider a
situation with − <a b4 0

2 . In this case, the interatomic
potential is described in a real form as follows:

= + −U r A ωr B ωr ecos sin ,

δr( ) [ ( ) ( )] (7)

where = −δ
a

2

and = − −
ω

b a4

2

2

. Potential (7) was referred
to as the modified generalized Morse potential in [8]. Other
different forms of the function, =ρ ρ r( ), will also give
some other classical interatomic potentials. For example,
at =ρ r rln( ) , we will obtain

= + = +− −U r Ae Be
A

r

B

r
,

α r β r

α β

ln ln( ) (8)

which is the generalized Lennard–Jones potential [4,9],
originally proposed by Jones [9]. In particular case, at

=α 12 and =β 6, we have the well-known classical −12 6

Lennard–Jones potential. Considering another example, at
=ρ r r2( ) , we have the two-body portion of the Kaxiras–

Pandey potential function [10,11]

= +− −U r Ae Be .

αr βr
2 2

( ) (9)

Elaborate discussions on the theory of interatomic poten-
tials are extensively detailed in previous studies [1,12–15].
In tandem with formula (8), let us propose analogues of the
Lennard–Jones-Rydberg potential

= +U r A B r
r

ln

1

,

α
( ) ( ) (10)

and along with formula (7), let us also propose the ana-
logue of the modified Morse–Lennard–Jones potential

= +U r A ω r B ω r
r

cos ln sin ln

1

.

δ
( ) [ ( ) ( )] (11)

Analogously, we propose further generalizations of the
Kaxiras–Pandey potential (9) in the following forms as
the Kaxiras–Pandey–Rydberg potential

= + −U r A Br e ,

αr2

2

( ) ( ) (12)

and the modified Morse–Kaxiras–Pandey potential

= + −U r A ωr B ωr ecos sin ,

δr2 2

2

( ) [ ( ) ( )] (13)

All these potentials were previously considered as func-
tions with real values of parameters [8,16– 25,27]. The first
generalization of the previously mentioned potentials is
being presented in this article, where potentials (3), (8),
and (9) were considered for both real and complex conjugate
pairs α β A, , , and B. This point of view is a substantial break-
through because it increases the domain in which the values of
parameters are being searched. This generalization directly
follows from the proposed approach in the frames of which
the functional forms of the potentials are considered as pos-
sible solutions of the second-order ODE (5) with constant (real)
values a b, . The research question we seek to answer in this
article is: What is the most appropriate form of = −ρ ρ r( )

function of the interatomic distance, r? Such that this optimal
potential will enable nano-scientists to adequately observe
interactions at the atomic level, and make sound judgments
or conclusions from their studies. To answer this question, we
will formulate a generalized form for each of the three forms
of =ρ ρ r( ) previously discussed and use the method of least
squares to estimate the unknown parameter, γ, of the general-
ized potentials.

2 Formulation of the optimization
problem

Synthesizing the previous mathematical representations,
let us now formulate the problem of optimization of the
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phenomenological interatomic potential representation in
either Lennard–Jones forms (8), (10), or (11). We can rather
consider the forms

= +− −U r γ α β A B Ae Be; ; , , , ,

αr βr
γ γ

( ) (14)

where we considered =ρ ρ r( ) as =ρ rγ and γ is the para-
meter subjected to optimization. Alternatively, we can also
consider the synthesized form

= + −U r γ α A B A Br e; ; , , ,

γ αr
γ

( ) ( ) (15)

or

= + −U r γ δ ω A B A ωr B ωr e; ; , , , cos sin .

γ γ δr
γ

( ) [ ( ) ( )] (16)

Let us remark that (14)–(16) can be treated as solutions of
the ODE

+ ⎡
⎣ + −

− ⎤
⎦

+ =

−

−

U r

dr
α β γr

γ

r

U r

r

αβγ r U r

d 1 d

d

0,

γ

γ

2

2

1

2 2 1

( )
( )

( )

( )( )

(17)

or after change of variables =ρ rγ by ODE (5). In this case,
we use form (14) if α and β are real and different; form
(15) if ≈ >α β 0, and form (16) if eigenvalues in ODE (5)
are complex conjugates, = ± = −λ δ iω i 1

1,2

2( ), where =δ

λRe

1,2

( ) and =ω λIm

1,2

∣ ( )∣.
We formulate the problem of optimization of the para-

meter representation of the interatomic potential as follows:

∑= − ⟶
=

G U U r γ α β A B
1

2

; ; , , , min,

i

N

i

1

exp

2( ( )) (18)

where =U U ri i

exp

exp ( ) are the experimental values of the
potential at interatomic distance, =r ri. To solve this problem,
we select interval of values of parameter ∈γ γ γ,

min max

[ ],
divide it by M subintervals, calculate, and then we minimize
the function G at every value

= +
−

⋅γ γ
γ γ

M
m

m min

max min

for =m M0, 1,…, . Further, we recalculate ⟶ =r ρ ri i i

γ
m

and integrate ODE (5) from ρ
min

to ρ

∫′ − ′ + − + =U ρ U a U ρ U b U σ σ˜ ˜ ˜ ˜ ˜

d 0,

ρ

ρ

min min

min

( ) [ ( ) ] ( ) (19)

where = =U U ρ ρ˜ ˜

min

min

( ) and ′ =U ρ˜

U ρ

ρ

d

˜

d

( )
( ) . Integrated

ODE (19) can also be expressed as follows:

+ ⋅ + ⋅ + =
U ρ

ρ
a U ρ b I ρ c

d

˜

d

˜ ˜

0,

1

( )
( ) ( ) (20)

where ∫=I ρ U σ σ˜ ˜

d

ρ

ρ

1

min

( ) ( ) , and = − ′ +c U aU˜ ˜

min min

( ) are
the new unknown parameters. After the second integra-
tion, we obtain

+ ⋅ + ⋅ + ⋅ =U ρ a I ρ b I ρ c ρΔ

˜ ˜ ˜

Δ ˜ 0,

1 2

( ) ( ) ( ) (21)

where
∫= − = = −U ρ U ρ U I ρ I σ σ ρ ρ ρΔ

˜ ˜ ˜

,

˜ ˜

d , Δ ˜

ρ

ρ

min 2 1

min

min

( ) ( ) ( ) ( ) .
Model (21) is linear with respect to unknown parameters
a b, , and c, which are calculated using the least squares
method through the goal function minimization:

∑= = + + +

⟶
=

G G a b c aI bI c ρ U

G a b c

, ,

1

2

Δ Δ ,

, , min,

i

N

i i i i1 1

1

1, 2,

2

1

( ) ( )

( )

(22)

where = = = − =I I ρ I I ρ ρ ρ ρ U U ρ˜

,

˜

, Δ , Δ Δ

˜

i i i i i i i i1, 1 2, 2

min

( ) ( ) ( ).
The solution of this problem is

= − −abc M M M UΔ ,

T T T
1

1

1

1

[ ] ( ) ( ) (23)

where =M I I ρΔ

1 1 2

[ ] is ×N 3( ) matrix, = =I I I,i1 1, 2

( )

=I ρ ρ, Δ Δi i2,

( ) ( ) and = × −U U NΔ Δ are 1i( ) ( ) columns.
System (23) was obtained by partially differentiating
goal function (22) with respect to a b c, , , setting the deri-
vatives to 0 and writing the resulting equations in the
matrix form.

By calculating eigenvalues λ
1,2

using formula (6), we
make a choice between the representations (14)–(16). Namely,
if λ

1

and λ
2

are real and well separated, we use (14); if they are
complex conjugates, we use (16). If λ

1

and λ
2

are close to each
other, it is reasonable to use representation (15). To find the
proper value of α in (15), it is worthwhile to repeat the pro-
cedure of the algorithm explained by Kikawa et al. [22], for
the classical Rydberg potential identification.

Next step involves definition of parameters A and B in
(14)–(16). In this case, we use basic functions f r˜

1

( ) and
f r˜

2

( ), which are equal to

= = ( )

= = ( )

= = ( )

− −

− −

− −

f r e f r e

f r e f r r e

f r e ωr f r e ωr

˜

,

˜

, for 14 ;

˜

,

˜

, for 15 ;

˜

cos ,

˜

sin , for 16 .

αr βr

αr γ αr

δr γ δr γ

1 2

1 2

1 2

γ γ

γ γ

γ γ

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

(24)

In this case, the general representation of formulas (14)–(16)
reduces to:

= +U r Af r Bf r˜ ˜ ˜

,

1 2

( ) ( ) ( ) (25)

and the second goal function, which is subjected to mini-
mization is:

∑= = + − ⟶
=

G G A B Af Bf U,

1

2

min.

i

N

i i i2 2

1

1, 2,

2( ) ( ) (26)

The solution of this conventional problem is

= − −A B M M M U ,

T T T
2

2

1

2

[ ] ( ) ( ) (27)

where = ×M f f Nis 2

2

1 2

[ ] ( ) matrix, and = =f f f,

i1 1, 2

( )

f
i2,

( ), and = ×U U Nare 1i( ) ( )-vector-columns.
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Repeating this algorithm M times for the selected
=γ m M1, 2, …,

m
( ), we find =γ γ˜ min

m
mmin

( )
( )

. This value

can be used as guess value for further search of the optimal
value of γ. It is also possible to round γ̃

min

to the closest
integer for faster calculations of values of the interpolated
interatomic potential.

As we have explained earlier, γ can be 1 (like in the
case of generalized Morse, classical Morse, and classical Rydberg
potentials); can be 2 (like in the case of Kaxiras–Pandey
potential and it’s analogues); or can also be 3 for some
modified potentials. The treatment of all potentials as
solutions of the corresponding ODE (5) immediately
defines the form of the potential and domain (real or
complex) for its parameters. Moreover, ODE (5) is linear
with respect to parameters a and b, which guarantees
unique solution to the problem of determination of expo-
nential parameters α and β. This is the novelty of the
presented research instead of the conventional “brute
force” fitting of the original transcendent potentials. It
is necessary to mention that this fitting is performed on
the last stage of fitting when the guess values of the para-
meters are determined by means of the subtle method of
minimization of two quadratic goal functions, which was
previously formulated in [26] and has been extensively
used by the authors in previous studies [8,16– 25,27].

3 Numerical simulations

In what follows, we will be performing numerical simula-
tions of goal functions (18), (22), and (26). We will start by
first assuming numerical values for the parameter, γ, to be

=γ 0.5 or 3; then we obtain estimates for α and β, and use
these estimates to calculate the estimates for A and B.
Finally, we carry out the one-dimensional search in order
to determine the most appropriate value of γ. The process
will be carried out for experimental data sets of metals
such as gold [28], copper [29], aluminium [30], titanium
[30], and copper–silver alloy [29]. The experimental data
sets of the metals were downloaded from the online repo-
sitory, Interatomic Potentials Repository website1. The form
of the interatomic potentials considered has already been
presented in Eqs. (14)–(16). It should be noted that the closer
the values of the goal function to 0, the more accurate the
parameter estimates are. The closer the goal function values
are to 1, the more inaccurate the parameter estimates are.

For gold atoms [28], and =γ 0.5, the following values were
obtained

=a b c 18.16111 71.66146 2.6754 ,

T T[ ] [ ] (28)

hence, =α 12.36613 and =β 5.79498. The form (14) is pre-
ferred since both values are real, and distinct. Numerical simu-
lations then yield = ×A 2.00117 10

8, and = − ×B 4.94973 10

3.
The one-dimensional search for parameter, γ (steepest point of
the presented curve), yielded =γ 0.38847 (estimated from
Figure 1)

When we considered the form, =ρ r rln( ) , for the
Lennard–Jones potential and its analogues, the following
values were obtained

=
= +
= −
= +
= −

a b c

α i

β i

A i

B i

14.08055 53.39848 2.13488 ,

7.04028 1.9578 ,

7.04028 1.9578 ,

467.52858 146.78342 ,

467.52858 146.78342 .

T T[ ] [ ]

The estimated value for parameter γ was then used to
construct and reconstruct potential energy curves (PECs)
using downloaded experimental data sets of gold atoms
and parameter values fitted to potential (14).

The error curves between the two PECs in Figure 2
shows a dimension of magnitude × −

4 10

3. In Figure 2
(and other subsequent figures), Un represents the fitted
experimental data, UUUn represents the fitted estimated
parameters, while ρ

n
represents the interatomic distance.

For copper atoms [29], and =γ 3, the following values were
obtained

=a b c 0.40176 0.01726 0.08458 ,

T T[ ] [ ] (29)

therefore, =α 0.35283 and =β 0.04893. The form (14) is
preferred since α and β are real, and distinct. Hence, =A

18.66203 and = −B 0.50888. The one-dimensional search
for parameter, γ (steepest point of the presented curve),
yielded =γ 0.01659

From Figure 3, we can infer that the minimum of the
optimized goal function has two values, 0or 3. This means
we can use =ρ r rγ( ) , where =γ 3, or we could also use

=ρ r rln( ) for the optimal potential. In principle, it will be
more efficient to use =ρ r rln( ) . When we considered the
form, =ρ r rln( ) , for the Lennard–Jones potential and its
analogues, the following values were obtained

=
= +
= −
= − +
= − −

a b c

α i

β i

A i

B i

11.83134 50.43664 2.87322 ,

5.91567 3.92956 ,

5.91567 3.92956 ,

4.90159 50.80379 ,

4.90159 50.80379 .

T T[ ] [ ]


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The estimated values using =ρ r rln( ) was then used to
construct and reconstruct, PECs using experimental data
sets of copper atoms and parameter values.

The error curves between the two PECs in Figure 4
shows a dimension of magnitude × −

1 10

3. For aluminium
atoms [30], and =γ 3, the following values were obtained

= × −a b c 0.23568 7.90764 10 3 0.04798 ,

T T[ ] [ ] (30)

therefore, = =α β0.19517, 0.04052. The form (14) is preferred
since α and β are real, and distinct. Hence, =A 6.06236 and

=B 0.92577. The one-dimensional search for parameter, γ,
yielded =γ 1.43507.

In the case of Figure 5, the minimum lies between 1
and 2. Hence, =γ 1 or 2 can be used. This means for alu-
minium atoms, the optimal potential is either the general-
ized Morse or the Kaxiras–Pandey potential. When we
considered the form, =ρ r rln( ) , for the Lennard–Jones
potential and its analogues, the following values were
obtained

= −
= +
= −
= − +
= − −

a b c

α i

β i

A i

B i

6.11622 26.8393 5.23628 ,

3.05811 4.18178 ,

3.05811 4.18178 ,

1.44602 3.97718 ,

1.44602 3.97718 .

T T[ ] [ ]

The estimated value for parameter γ was then used to
construct and reconstruct PECs using experimental data
sets of aluminium atoms and parameter values.

The error curves between the two PECs in Figure 6
shows a dimension of magnitude × −

2 10

2. For titanium
atoms [30], and =γ 3, the following values were obtained

= × −a b c 0.29073 9.04733 10 0.37452 ,

T T3[ ] [ ] (31)

therefore, =α 0.25529 and =β 0.03544. The form (14) is
preferred since α and β are real, and distinct. Hence,

=A 22.14025 and = −B 2.47284. The one-dimensional search
for parameter, γ, yielded =γ 0.16645.

Figure 7 shows the optimized goal function having a
minimum of ≈γ 0, which means the optimal potential is
obtained when =ρ r rln( ) . When we considered the form,

Figure 1: One-dimensional search for parameter, γ, using gold atoms.

Figure 2: Comparison of PECs for original data sets and estimated
parameters.

Figure 3: One-dimensional search for parameter, γ, using copper atoms.

Figure 4: Comparison of PECs for original data sets and estimated
parameters.
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=ρ r rln( ) , for the Lennard–Jones potential and its analo-
gues, the following values were obtained

=
= +
= −
= +
= −

a b c

α i

β i

A i

B i

6.93548 25.91699 10.54998 ,

3.46774 3.72717 ,

3.46774 3.72717 ,

6.39238 21.20525 ,

6.39238 21.20525 .

T T[ ] [ ]

The estimated value for parameter γ was then used to
construct and reconstruct PECs using experimental data
sets of titanium atoms and parameter values fitted to
potential.

The error curves between the two PECs in Figure 8
shows a dimension of magnitude × −

2 10

2. Finally, when
we analyze the silver–copper alloy [29], with =γ 3, the
following values were obtained

= × −a b c 0.3431 8.59718 10 0.05223 ,

T T3[ ] [ ] (32)

therefore, = =α β0.31588, and 0.02722. The form (14) is pre-
ferred sinceα and β are real, and distinct. Hence, =A 24.46179

and = −B 0.28071. The one-dimensional search for parameter,
γ, yielded =γ 2.98832 (estimated from Figure 9).

Figure 5: One-dimensional search for parameter, γ, using aluminium
atoms.

Figure 6: Comparison of PECs for original data sets and estimated
parameters.

Figure 7: One-dimensional search for parameter, γ, using titanium
atoms.

Figure 8: Comparison of PECs for original data sets and estimated
parameters.

Figure 9: One-dimensional search for parameter, γ, using silver–copper
alloy.
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Without a doubt, the optimal potential for silver–-
copper alloy is realized when =γ 3. This potential will be
an analogues or a modification of the generalized Morse
potential. When we considered the form, =ρ r rln( ) , for
the Lennard–Jones potential and its analogues, the fol-
lowing values were obtained

=
= +
= −
= +
= −

a b c

α i

β i

A i

B i

12.59213 45.86721 2.29246 ,

6.29606 2.49535 ,

6.29606 2.49535 ,

114.7729 98.41003 ,

114.7729 98.41003 .

T T[ ] [ ]

The estimated value for parameter γ was then used to
construct and reconstruct PECs using experimental data
sets and parameter values.

The error curves between the two PECs in Figure 10
shows a dimension of magnitude × −

2 10

3. As was graphi-
cally illustrated in Figures 2, 4, 6, 8, and 10, the obtained
parameter estimates for α β A, , , and B used to plot PECs, all
showed reasonable agreement with the experimental data
sets. The obtained PECs were graphically indistinguishable
through a large range of the interatomic distance, r . Table 1
illustrates the values of the goal function for both forms of
ρ r( ) considered and for each metal atoms used for experi-
mental values. It should be recalled that the closer the

numerical values are to 0, the more accurate the para-
meter estimates calculated.

The goal function values were obtained by minimizing
the goal functions (26) and (18) through built in functions in
Mathcad®.

Table 2 concisely summarizes the results obtained from
numerical simulations. The preferred choice of potential
used for numerical simulation was based on the agreement
of the reconstructed PECs with experimental data sets.

4 Discussion and conclusion

In this article, interatomic potentials that can be treated as
solutions of some second-order ODE were classified and
identified. A generalization of three forms of potentials
were presented, and the most appropriate form of a gen-
eralized potential will be based on the estimated value of
parameter, γ. The goal function values were also stated in
Table 1. Reconstructed PECs showed good agreement for a
relatively large vicinity of the potential minimum, between
the estimates and experimental data sets. It should be
noted that there are two ways of optimization: the first
one relates to the selection of the “γ” exponent. (In the
available literature, the authors used =γ 1 for the general-
ized Morse potential [4] and =γ 2 for the Kaxiras–Pandey

potential [10,11]. The question is why not =γ
3

2

, for example,
or some other value?.) The second optimization relates to
either real or complex conjugate exponents and the corre-
sponding factors (in the direct brute force optimisation, it is
impossible to change the field of real valued parameters to
the field of complex conjugate ones, it is possible only in the
frames of the authors approach using the multiple (double)
goal functions method).

In general, we can infer that the formwith Lennard–Jones
potential has the lower goal function values and hence is the
optimal interatomic potential (most preferable potential), for
many cases. The one-dimensional search for the most appro-
priate value of the parameter, γ, fails when copper, titanium,
and aluminium were analyzed. However, this defect does not
affect the reconstructed PECs. Having performed numerical

Figure 10: Comparison of PECs for original data sets and estimated
parameters.

Table 1: Goal function values for estimated parameter values

Metal/alloy (( )) ==ρ r rγ (( )) ==ρ r rln

Gold ×3.06046 10

‒3 ×3.06781 10

‒3

Copper ×7.9118 10

‒4 ×7.54664 10

‒4

Aluminium ×1.815 10

‒2 ×1.74 10

‒2

Titanium ×1.915 10

‒2 ×1.728 10

‒2

Silver–copper ×1.70836 10

‒3 ×3.23332 10

‒3

Table 2: Summary of results

Metal/alloy γ value (in (( )) ==ρ r rγ) Preferred potential form

Gold 0.38847 Potential form (14)
Copper 0.01659 =ρ r rln( )

Aluminium 1.43507 Potential form (14)
Titanium 0.16645 Potential form (14)
Silver–copper 2.98832 Potential form (14)

Optimal potential functions  7



simulations using different values of γ, we can also infer that
when =γ 3, the optimal potential is obtained and is more
preferable as compared to other cases when =γ 1 or 2.
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