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Abstract: The dynamic cumulative residual (DCR) entropy
is a helpful randomness metric that may be used in sur-
vival analysis. A challenging issue in statistics and machine
learning is the estimation of entropy measures. This article
uses progressive censored type II (PCT-II) samples to esti-
mate the DCR Tsallis entropy (DCRTE) for the moment
exponential distribution. The non-Bayesian and Bayesian
approaches are the recommended estimating strategies.
We obtain the DCRTE Bayesian estimator using the gamma
and uniform priors via symmetric and asymmetric (linear
exponential and general entropy) loss functions (LoFs). The
Metropolis–Hastings algorithm is employed to generate
Markov chain Monte Carlo samples from the posterior dis-
tribution. The accuracy of different estimates for various
sample sizes, is implemented via Monte Carlo simulations.
Generally, we note based on the simulation study that, in
the majority of cases, the DCRTE Bayesian estimates under
general entropy followed by linear exponential LoFs are
preferable to the others. The accuracy measure of DCRTE
Bayesian estimates using a gamma prior has smaller values
than the others using a uniform prior. As sample sizes grow,

the Bayesian estimates of the DCRTE are closer to the true
value. Finally, analysis of the leukemia data confirmed the
proposed estimators.

Keywords: Tsallis entropy, moment exponential distribu-
tion, squared error loss function, Markov chain Monte
Carlo, maximum likelihood, general entropy loss function

1 Introduction

The concept of Tsallis (T ) entropy, which can be employed
to calculate the uncertainty in a random observation, was
first proposed in a study by Tsallis [1]. It has been widely
employed in the research of quantum communication pro-
tocols, quantum systems, and quantum correlations [2,3].
The entropy (T) of order q is provided via
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where >q 0, ≠q 1, and g z( ) is the probability density func-
tion (PDF). A number of authors have recently examined
the estimation of the entropy measures utilizing various
statistical distributions and sampling techniques (see, for
instance, [4–14]). Recently, several researchers have become
interested in alternative uncertainty measures of prob-
ability distributions, particularly in reliability and survival
analysis research. This is why [15] suggested cumulative
residual (CR) entropy. The following is the definition for
the dynamic form of CR entropy, known as dynamic cumu-
lative residual Tsallis entropy (DCRTE), as proposed by Sunoj
and Linu [16]
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where >q 0, ≠q 1, and = −G t G t¯ 1( ) ( ) is the survival function
(SF) and for t = 0, the DCRTE leads to CR Tsallis entropy (CRTE).
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Only a few studies from the literature were considered in
the case of inferential approaches to dynamic CR (DCR)
entropy for probability distributions. Kamari [17]
demonstrated the properties of the DCR entropy derived
from order statistics. The CR has been established in a
study by Kundu et al. [18] as extensions of the cumula-
tive entropies for truncated random variables. The DCR
entropy of the Pareto model was studied by the Bayesian
technique using a range of sampling approaches in a
few studies [19–23]. Almarashi et al. [24] used Bayesian
inference to estimate the DCR entropy of the Lindley
distribution.

A flexible strategy for analyzing lifetime datasets is
typically appealing to researchers. The moment exponen-
tial (MExp) distribution (or length-biased exponential dis-
tribution) was established in ref. [25] by weighting the
exponential distribution in accordance with Fisher’s (1934).
Dara and Ahmad in their study [25] offered many character-
istics and applications of the MExp distribution. The PDF of
the MExp distribution is
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The cumulative distribution function (CDF) and the SF
of the MExp model are as follows:
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Due to the MExp model’s versatility, it attracted a lot of
attention, and as a result, other authors investigated and
further generalized it for more complicated datasets. For
instance, the generalized exponentiated MExp distribu-
tion [26], the Marshall–Olkin length-biased exponential dis-
tribution [27], the Topp–Leone MExp distribution [28], the
Kumaraswamy MExp distribution [29], the Marshall–Olkin
Kumaraswamy MExp distribution [30], the Burr XII-MExp

distribution [31], and the alpha power MExp distribution
[32] and references therein.

In reliability experiments, investigators seek to know
how long it takes for units to malfunction. However, inves-
tigators are unable to observe the life of all units due to
time and money constraints, as well as a number of other
issues. This leads to the availability of data that have been
censored. Censoring types I (CT-I) and II (CT-II) are the two
most reasonably available methods. But in some situations,
like medical/engineering survival analysis, units might be
taken out at intermediate stages for a number of reasons
that are beyond the experimenter’s control. Since it allows
for the removal of surviving items prior to the test’s con-
clusion, a progressive censoring (PC) system is a suitable
censoring method in this context. The PC type-I (PCT-I)
takes place when the percentage of survivors falls to pre-
determined levels, whereas the PC type-II (PCT-II) takes
place when the percentage of survivors falls to specific
values.

A PCT-II sample is prepared in the manner described
below: A life-testing experiment that has n units and the PC
strategy ri, =i m1, 2,…, is implemented. Units are picked at
random from the remaining −n 1 surviving units at the
moment of the first failure z 1( ). After the second failure z 2( ),
units from the remaining − −n r2 1 are also randomly
removed. The test goes on until the mth failure happens,
at which point all remaining − − − − − −n m r r r… m1 2 1 units
are discarded. The number of failures m in addition
to the PC design r r r, ,…, m1 2 is predetermined and fixed.
Assume that z z z, ,…, m1 2( ) ( ) ( ) indicate a PCT-II sample with
(r r r, ,…, m1 2 ) being the PC. A useful description and good
summary of PC can be found in in a study by Balakrishnan
and Aggrawala [33]. It should be noted that, when

= = = =−r r r… 0m1 2 1 and = −r n mm , this censoring
reduces to CT-II. In addition, for =m n and =r 0i ,

=i n1, 2,…, , it reduces to a complete sample. Figure 1
represents this PC strategy.

This article looks into the DCRTE estimators for the
MExp model in the presence of PCT-II data. We construct

Figure 1: PCT-II scheme.
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analytical formulas for the proposed DCRTE metric. The
Bayesian estimator (BE) of the DCRTE measure is derived,
along with its maximum likelihood estimator (MLE). The
BE is regarded under squared error (SE), linear exponen-
tial (LIN), and general entropy (GE) loss functions (LoFs).
Using various sample sizes and censoring strategies, Monte
Carlo simulations are utilized to assess the performance of
the DCRTE measure. Using actual data, the inferential tech-
niques described in this study were also shown.

The article is broken down into six sections. Section 2
presents the formula for the DCRTE for the MExp distribu-
tion. PCT-II is used in Sections 3 and 4 to give DCRTE esti-
mators by using the proposed approaches to estimation. In
Section 5, data analysis and the numerical study of the
produced estimators are covered. The study’s summary
and conclusions are included in Section 6.

2 Formula of the DCRTE for MExp
distribution

The DCRTE formula for MExp distribution is shown in this
section. The MExp distribution’s DCRTE is determined by
inserting Eq. (5) into Eq. (2):
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Let =x qy, then, (7) can be expressed as follows:
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where xΓ .,( ) stands for incomplete gamma function. The
DCRTE for MExp distribution is expressed, as follows, after
putting Eq. (8) into Eq. (6):
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The plots of the DCRTE for the MExp distribution at
various values of q and λ are shown in Figure 2. This figure
shows that when the value of q is less than 1, the DCRTE for
the MExp distribution takes increasing and then decreasing
shapes. On the other hand, when the value of q is greater
than 1, the DCRTE for the MExp distribution has rising
forms. In addition, we see that when q is less than 1 and
as the value of λ increases, the DCRTE for the MExp distri-
bution exhibits increasing behavior.

3 Maximum likelihood estimation

Suppose ≤ ≤ ≤z z z… m1 2( ) ( ) ( ) represent a PCT-II sample of
size m from a sample of size n with PDF (3), CDF (4), and
censoring scheme r r r, ,…, m1 2 . The likelihood function, under
the PCT-II sample, is as follows:
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As a result, the constant is the number of different ways
in which the m PCT-II order statistics might arise if the
observed failure times are z z z, ,…, m1 2( ) ( ) ( ). The log-likeli-
hood function of Eq. (10) is supplied by
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Form Eq. (11), we derive the likelihood equation for λ

as follows:
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By solving the nonlinear Eq. (12) after setting it to 0, the
MLE of λ can be found using the numerical technique.
We can acquire the MLE of the DCRTE measure specified
in Eq. (9) after the MLE of λ, say λ̂, is computed. As a result,
the invariance property is used to generate the MLE of
DCRTE, designated by γ q tˆ ,( ), by putting in Eq. (9) as shown
below:
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The theoretical findings presented above can be further
specialized in two situations. First, the MLE λ̂ and γ q tˆ ,( ) are
yielded when = = = =−r r r… 0m1 2 1 and = −r n mm via CT-
II. Second, we obtain the recommended MLE of λ and γ q t,( )

for = = = =r r r… 0m1 2 .

4 Bayesian estimation

The BE of the DCRTE for MExp distribution under the PCT-II
scheme will be covered in this section. Different LoFs, such
as the SE, LIN, and GE, can be taken into consideration for
Bayesian estimation. For an informative prior (IP) distribu-
tion of the parameter λ of the MExp distribution, we can
suggest using independent gamma prior for λ having PDF
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Figure 2: Plots of DCRTE for the MExp distribution.
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where the parameters a and b are chosen to represent the
prior knowledge about the unknown parameter. The cor-
responding posterior density given the observed data,

= z z zz , , …, m1 2( )( ) ( ) ( ) , is given as follows:
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The BE of γ q t,( ), denoted by γ q tˆ ,
BESE

( ), under the SE LoF, is
given as follows:
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Based on LIN LoF, the Bayes estimator of γ q t,( ), say
γ q tˆ ,

BELIN
( ), is as follows:
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Furthermore, we consider the GE LoF where the Bayes
estimator of γ q t,( ), say γ q tˆ ,

BEGE
( ), is as follows:
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It is seen that the estimates given by Eqs. (15)–(17)
cannot be simplified into closed form expressions. There-
fore, we next apply the Markov chain Monte Carlo (MCMC)
approach and generate a posterior sample using Metropo-
lis–Hasting (MH) algorithm to obtain the desired DCRTE
under BEs. Note that, by selecting the hyper parameters

= =a b 0 and using the same MCMC approach, the pre-
vious BE is obtained in the case of noninformative prior
(Non-IP).

4.1 MH algorithm

In order to execute the MH algorithm for the DCRTE of
MExp distribution, a suggested distribution and the initial
values of the unknown parameter λ have to be specified.
For the proposal distribution, a normal distribution will be
taken into account, i.e., ′ ≡q λ λ N λ S, λ( ∣ ) ( ), where Sλ represents

the variance–covariance matrix (V-CM). For the initial values,
the MLE for λ is considered, i.e., =λ λ̂0

MLE
( ) . The choice of Sλ is

thought to be the asymptotic V-CM, say −I λ̂1
MLE( ), where I .( ) is

the Fisher informationmatrix. In thismanner, theMHmethod
uses the stages listed below to draw a sample from the pos-
terior density provided by Eq. (14):

Step 1. Set initial value of λ as =λ λ̂0
MLE

( ) .
Step 2. For =i M1, 2,…, repeat the following steps:

• Set = −λ λ i 1( ).
• Create a new candidate parameter value using N λ S, λ( ).

• Compute the formula = ′
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π λ z

π λ z
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, where ⋅π( ) is the pos-

terior density (Eq. (14)).
• Create a sample u from the uniform U 0, 1( ) distribution.
• Accept or reject the new candidate ′λ
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Eventually, a portion of the initial samples can indeed
be removed (burn-in), and the remaining samples can be
used to calculate Bayes estimates using random samples of
size M drawn from the posterior density. The BE of γ q t,( )

is assessed by employing MCMC with SE, LIN, and GE LoFs
as follows:
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where lB represents the number of burn-in samples.

5 Data analysis and simulation
study

This section’s goal is to examine the behavior of the sug-
gested DCRTE estimators for the MExp distribution under
the PCT-II scheme that was addressed in earlier parts.
For demonstration purposes, we investigate an actual
dataset. Furthermore, we conducted a simulation study
to investigate the behavior of the proposed approaches
and evaluate the estimates’ performance under various
censoring schemes. We used R, a statistical programming
language, for calculation. Furthermore, one can utilize
bbmle package to compute MLEs in R-language.
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5.1 Data analysis

A real dataset is analyzed for illustrative purposes as well
as to assess the statistical performances of the MLE and BEs
for DCRTE in the case of the MExp distribution under dif-
ferent PCT-II schemes.

According to the International BoneMarrow Transplant
Registry, 101 patients with advanced acute myelogenous leu-
kemia are linked to the following datasets (see [34]). Fifty-
one of these patients have received an autologous bone
marrow transplant. Fifty-one patients had an allogeneic
bone marrow transplant. The 51 autologous transplant
patients’ leukemia-free survival periods (in months) are
shown in Table 1.

We begin by determining if the MExp distribution is
appropriate for evaluating this dataset. To assess the quality
of fit, we provide the MLE of λ and the Kolmogorov–
Smirnov (K–S) test statistic value. The estimated K–S dis-
tance for the MExp distribution between the empirical
and fitted distributions is 0.13301, and its p-value is 0.3276
where =λ̂ 8.36519, indicating that this distribution may be
deemed an appropriate model for the current dataset. For
graphically fitting the given dataset, the empirical CDF
(ECDF), the empirical PDF (EPDF), the empirical SF (ECDF),
and probability–probability (PP)-plots are represented in
Figure 3 for the MExp distribution. This figure also indicates
that the MExp distribution provides a good fit for this
dataset.

For convergence of BEs, we divide real data by 100,
from the original data, hence one can generate, e.g., four
schemes, namely, Scheme 1 (Sch.1), Scheme 2 (Sch.2), Scheme
3 (Sch.3), and Scheme 4 (Sch.4) from PCT-II samples with the
number of stages =m 26 and eliminated items ri are pre-
sumed to be the following:
Sch.1: = = = = =r r r r… 0, 251 2 25 26

Sch.2: = = = = =r r r r… 1, 01 2 25 26

Sch.3: = = = =r r r26, … 01 2 25

Sch.4: = = = = = =r r r n m… 0, 511 2 26 .

Note that: Sch.1 represents the usual CT-II and Sch.4 repre-
sents a complete sampling case. Two distinct values of the
constant t are used, 0.5 and 1.5 given =q 2.

In Table 2, the MLEs of λ have been investigated and
then plugged into DCRTEmeasures at the proposed schemes
for PCT-II samples as in the suggested real dataset. In addi-
tion, BEs can be computed employing the MH algorithm
under Non-IP (uniform prior), i.e., the hyper-parameter
values are taken as = =a b 0. Different LoFs, including SE,
LIN-1 ( =v 0.5), LIN-2 ( = −v 0.5), GE-1 ( = −τ 0.5), and GE-2
( =τ 0.5) are assumed. It is indicated that, while generating
samples from the posterior distribution utilizing the MH
algorithm, initial values of λ are considered as =λ λ̂0

MLE
( ) .

Eventually, among the total 10,000 samples generated by the
posterior density, 2,000 burn-in samples were removed, and
a DCRTE estimate was derived.

From Table 2, one can infer that the behavior of Sch.3
is better for estimating γ q t,( ). In addition, as t increases,
the estimates of γ q t,( ) increase. The convergence (scatter
plot, histogram, and cumulative mean) of MCMC estima-
tion for λ and γ q t,( ) is shown in Figure 4 in the case of
complete sampling. From Figure 4, the normality of MCMC
estimates can be observed.

5.2 Simulation study

In this part, we use a Monte Carlo simulation analysis to
assess the effectiveness of estimate techniques, specifically
ML and Bayesian using MCMC, for MExp distribution
under the PCT-II scheme. We produce 1,000 MLEs from
the MExp distribution with the following principles:
1) The parameter of the MExp distribution λ is assumed to

be 0.4, 0.8, and 1.
2) The value of q is equal to 2, and the constant value of t is

equal 0.5, 1.5.
3) The true value of γ q t,( ), say γ

1
for simplified form, at

=t 0.5, =q 2, and =λ 0.4 is =γ 0.69135
1

. The true value
of γ q t,( ), say γ

2
for simplified form, at =t 1.5, =q 2, and

=λ 0.4, is =γ 0.75346
2

.
4) The true value of γ q t,( ), say γ

3
for simplified form, at

=t 0.5, =q 2, and =λ 0.8 is =γ 0.27811
3

. The true value
of γ q t,( ), say γ

4
for simplified form, at =t 1.5, =q 2, and

=λ 0.8 is =γ 0.43667
4

.

Table 1: The leukemia-free survival times (in months) dataset

0.658 0.822 1.414 2.500 3.322 3.816 4.737 4.836 4.934 5.033 5.757
5.855 5.987 6.151 6.217 6.447 8.651 8.717 9.441 10.329 11.480 12.007
12.007 12.237 12.401 13.059 14.474 15.000 15.461 15.757 16.480 16.711 17.204
17.237 17.303 17.664 18.092 18.092 18.750 20.625 23.158 27.730 31.184 32.434
35.921 42.237 44.638 46.480 47.467 48.322 56.086
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Figure 3: The EPDF, ECDF, ESF, and PP plots for MExp model.

Table 2: The estimate values of (γ q t,( )) for MExp distribution under different PCT-II schemes for leukemia-free survival times data

t Sch. ML BE-MCMC: Non-IP

SE LIN-1 LIN-2 GE-1 GE-2

0.5 Sch.1 0.84347 0.84124 0.84142 0.84106 0.84103 0.84059
Sch.2 0.93009 0.92865 0.92868 0.92861 0.92861 0.92854
Sch.3 0.95671 0.95574 0.95576 0.95573 0.95573 0.95570
Sch.4 0.95176 0.95116 0.95117 0.95115 0.95115 0.95113

1.5 Sch.1 0.84347 0.84739 0.84750 0.84729 0.84727 0.86702
Sch.2 0.93772 0.93660 0.93662 0.93658 0.93658 0.93653
Sch.3 0.96017 0.95939 0.95940 0.95938 0.95937 0.95935
Sch.4 0.95176 0.95543 0.95543 0.95542 0.95542 0.95541

Bayesian and non-Bayesian estimation of DCR Tsallis entropy  7



5) The true value of γ q t,( ), say γ
5
for simplified form, at

=t 0.5, =q 2, and =λ 1 is =γ 0.05556
5

. The true value of
γ q t,( ), say γ

6
for simplified forms, at =t 1.5, =q 2, and

=λ 1 is =γ 0.26000
6

.
6) The sample sizes are =n 30 and =n 60.

7) The number of stages of the PCT-II scheme are =m 10, 20,
and 40.

8) Removed items ri are assumed at n and m values as

shown in Table 3 where = − (∑ + )=
−

r n r mm i

m

i1

1 and r is
the number of failure items.
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Figure 4: Convergence of MCMC estimates for γ q t,( ) using MH algorithm. (a) Graphs of MCMC estimates for = =γ q t2, 0.5( ), (b) Graphs of MCMC
estimates for = =γ q t2, 1.5( ).
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MLEs are determined employing PCT-II based on the
generated data and the preceding assumptions. When cal-
culating MLEs, the initial estimate values are assumed to
be the same as the actual parameter values. These values,
known as MLEs, are then employed to compute the DCRTE
(γ q t,( )) given q and t.

For the Bayesian method, BEs using the MH algorithm
using Non-IP and IP under different LoFs are computed. Thus:
– For Non-IP, the hyper-parameter values are = =a b 0,

thus =π λ
λ

1
( ) .

– For IP, the hyper-parameter values are taken as =a 0.5

and =b 1.5.
– Different LoFs, including SE, LIN-1 ( =v 0.5), LIN-2 ( = −v 0.5),

GE-1 ( = −τ 0.5), and GE-2 ( =τ 0.5) are assumed.

These values are then employed to determine the
estimated values. When using the MH technique, the
MLEs take into consideration the related V-CM Sλ of λ̂MLE

as initial estimate values. Finally, 2,000 burn-in samples
are removed from the total 10,000 samples created by the
posterior density, and the estimates of DCRTE (γ q t,( )) are
derived.

The mean squared error (MSEr) for all DCRTE esti-
mates is reported in Tables 1–6 covering all inputs of
Monte Carlo simulation. From tabulated result values, it
can be noted that:
1) For MLEs, higher values of n and m lead to a decrease

in MSEr and convergence to the initial values of γ q t,( )

as expected.
2) The MSEr of Bayes estimates under IP gradually decreases

as n and m increase.
3) As the true value of γ q t,( ) increases, the values of

(γ q tˆ ,( )) approach to true values implying that there
is more information.

4) As can be seen in Tables 4 and 6, in the majority of
cases, the precision measure of DCRTE under GE-1 and
LIN-1 for IP and Non-IP are more effective than those
under GE-2 and LIN-2 for all schemes (Table 7).

5) At true value =γ 0.05556
5

, the Bayes estimates of γ q t,( )

under LIN-1 and GE-2 are preferable to the corre-
sponding estimates under LIN-2 and GE-1 in both IP
and Non-IP (see Tables 8 and 9) for all schemes.

Table 3: Different patterns for removing items from life test at different
number of stages

n m Censoring schemes

Sch.1 Sch.2 Sch.3 Sch.4

30 10 ∗20, 0 9( ) ∗10, 0 , 108( ) ∗ ∗0 , 10, 10, 04 4( ) ∗0 , 209( )

20 ∗10, 0 19( ) ∗5, 0 , 518( ) ∗ ∗0 , 5, 5, 09 9( ) ∗0 , 1019( )

60 20 ∗40, 0 19( ) ∗20, 0 , 2018( ) ∗ ∗0 , 20, 20, 09 9( ) ∗0 , 4019( )

40 ∗20, 0 39( ) ∗10, 0 , 1038( ) ∗ ∗0 , 10, 10, 019 19( ) ∗0 , 2039( )

Here, 1 , 03( )( ) , for example, means that the censoring scheme employed
is 1, 1, 1, 0( ).

Table 4: MSEr of DCRTE estimates based on MExp distribution at =λ 0.4 under different PCT-II schemes at =n 30

m Sch. MLE BE-MCMC: IP BE-MCMC: Non-IP

SE LIN-1 LIN-2 GE-1 GE-2 SE LIN-1 LIN-2 GE-1 GE-2

t = 0.5, γ1 = 0.69135
10 Sch.1 0.00562 0.00691 0.00669 0.00735 0.00718 0.00814 0.00759 0.00716 0.00785 0.00903 0.01026

Sch.2 0.00499 0.00594 0.00579 0.00643 0.00628 0.00704 0.00661 0.00610 0.00681 0.00738 0.00853
Sch.3 0.00493 0.00583 0.00568 0.00625 0.00615 0.00688 0.00644 0.00600 0.00666 0.00719 0.00847
Sch.4 0.00431 0.00490 0.00479 0.00546 0.00511 0.00589 0.00562 0.00503 0.00580 0.00590 0.00706

20 Sch.1 0.00281 0.00302 0.00298 0.00310 0.00311 0.00325 0.00314 0.00306 0.00319 0.00333 0.00350
Sch.2 0.00273 0.00295 0.00291 0.00294 0.00303 0.00307 0.00298 0.00299 0.00303 0.00321 0.00332
Sch.3 0.00267 0.00289 0.00285 0.00289 0.00296 0.00302 0.00293 0.00293 0.00297 0.00316 0.00323
Sch.4 0.00261 0.00286 0.00282 0.00298 0.00295 0.00313 0.00303 0.00291 0.00308 0.00314 0.00335

t = 1.5, γ2 = 0.75346
10 Sch.1 0.00318 0.00388 0.00380 0.00433 0.00404 0.00467 0.00445 0.00397 0.00457 0.00441 0.00520

Sch.2 0.00267 0.00321 0.00315 0.00344 0.00334 0.00369 0.00352 0.00328 0.00362 0.00366 0.00410
Sch.3 0.00282 0.00347 0.00339 0.00389 0.00363 0.00417 0.00399 0.00355 0.00408 0.00403 0.00466
Sch.4 0.00262 0.00319 0.00312 0.00331 0.00331 0.00353 0.00338 0.00325 0.00346 0.00360 0.00396

20 Sch.1 0.00171 0.00189 0.00187 0.00194 0.00192 0.00200 0.00196 0.00191 0.00198 0.00199 0.00208
Sch.2 0.00160 0.00167 0.00166 0.00177 0.00169 0.00182 0.00179 0.00168 0.00181 0.00174 0.00188
Sch.3 0.00161 0.00177 0.00175 0.00170 0.00179 0.00174 0.00172 0.00178 0.00173 0.00186 0.00180
Sch.4 0.00157 0.00166 0.00165 0.00170 0.00168 0.00174 0.00171 0.00167 0.00173 0.00173 0.00180
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6) In both IP and Non-IP, Bayes estimates of γ q t,( ) under
LIN-1 and GE-2 are commonly chosen over similar esti-
mates under those LIN-2 and GE-1 at true value

=γ 0.26000
6

for all schemes (see Tables 8 and 9).

7) Bayes estimate under Non-IP has a decreasing pattern
as compared to the others under IP. However,
Bayesian estimates under Non-IP provide larger esti-
mate values.

Table 5: MSEr for DCRTE estimates based on MExp distribution at =λ 0.4 under different PCT-II schemes at =n 60

m Sch. MLE BE-MCMC: IP BE-MCMC: Non-IP

SE LIN-1 LIN-2 GE-1 GE-2 SE LIN-1 LIN-2 GE-1 GE-2

t = 0.5, γ1 = 0.69135
20 Sch.1 0.00260 0.00291 0.00287 0.00307 0.00301 0.00324 0.00313 0.00296 0.00319 0.00327 0.00351

Sch.2 0.00249 0.00264 0.00262 0.00265 0.00269 0.00273 0.00268 0.00267 0.00270 0.00281 0.00287
Sch.3 0.00247 0.00271 0.00268 0.00269 0.00278 0.00278 0.00272 0.00275 0.00275 0.00296 0.00293
Sch.4 0.00238 0.00257 0.00254 0.00257 0.00263 0.00265 0.00260 0.00260 0.00263 0.00276 0.00279

40 Sch.1 0.00163 0.00168 0.00168 0.00166 0.00170 0.00168 0.00166 0.00169 0.00167 0.00173 0.00171
Sch.2 0.00133 0.00134 0.00134 0.00133 0.00135 0.00134 0.00133 0.00134 0.00134 0.00136 0.00136
Sch.3 0.00136 0.00135 0.00135 0.00138 0.00136 0.00140 0.00139 0.00136 0.00139 0.00138 0.00142
Sch.4 0.00141 0.00137 0.00137 0.00141 0.00138 0.00142 0.00141 0.00138 0.00142 0.00140 0.00145

t = 1.5, γ2 = 0.75346
20 Sch.1 0.00173 0.00191 0.00189 0.00199 0.00195 0.00206 0.00202 0.00193 0.00204 0.00203 0.00215

Sch.2 0.00136 0.00148 0.00147 0.00152 0.00151 0.00156 0.00153 0.00150 0.00155 0.00156 0.00162
Sch.3 0.00129 0.00137 0.00136 0.00141 0.00140 0.00145 0.00142 0.00139 0.00144 0.00144 0.00150
Sch.4 0.00136 0.00148 0.00147 0.00147 0.00150 0.00150 0.00148 0.00150 0.00150 0.00155 0.00155

40 Sch.1 0.00089 0.00091 0.00090 0.00090 0.00091 0.00091 0.00091 0.00091 0.00091 0.00092 0.00092
Sch.2 0.00080 0.00081 0.00080 0.00080 0.00081 0.00081 0.00080 0.00081 0.00081 0.00082 0.00081
Sch.3 0.00074 0.00076 0.00075 0.00079 0.00076 0.00079 0.00079 0.00076 0.00079 0.00077 0.00081
Sch.4 0.00078 0.00078 0.00078 0.00079 0.00078 0.00080 0.00079 0.00078 0.00080 0.00079 0.00081

Table 6: MSEr for DCRTE estimates based on MExp distribution at =λ 0.8 under different PCT-II schemes at =n 30

m Sch. MLE BE-MCMC: IP BE-MCMC: Non-IP

SE LIN-1 LIN-2 GE-1 GE-2 SE LIN-1 LIN-2 GE-1 GE-2

t = 0.5, γ3 = 0.27811
10 Sch.1 0.02942 0.03725 0.03627 0.04669 0.01988 0.01905 0.04843 0.03834 0.05032 0.02386 0.02461

Sch.2 0.02481 0.02967 0.02897 0.03516 0.01682 0.01682 0.03653 0.03048 0.03808 0.02079 0.02262
Sch.3 0.02613 0.03250 0.03167 0.03965 0.01723 0.01718 0.04108 0.03346 0.04265 0.02117 0.02269
Sch.4 0.02436 0.03032 0.02950 0.03558 0.01746 0.01659 0.03685 0.03127 0.03825 0.02184 0.02162

20 Sch.1 0.01589 0.01940 0.01911 0.02021 0.01331 0.01308 0.02065 0.01973 0.02114 0.01725 0.01796
Sch.2 0.01488 0.01709 0.01688 0.01828 0.01195 0.01179 0.01865 0.01734 0.01906 0.01553 0.01623
Sch.3 0.01503 0.01763 0.01739 0.01742 0.01285 0.01193 0.01774 0.01792 0.01809 0.01670 0.01641
Sch.4 0.01464 0.01638 0.01620 0.01756 0.01233 0.01198 0.01792 0.01659 0.01832 0.01630 0.01692

t = 1.5, γ4 = 0.43667
10 Sch.1 0.01941 0.02356 0.02305 0.02801 0.01948 0.02036 0.02889 0.02411 0.02985 0.02683 0.02852

Sch.2 0.01540 0.01999 0.01956 0.02278 0.01687 0.01775 0.02350 0.02046 0.02429 0.02368 0.02626
Sch.3 0.01444 0.01844 0.01793 0.02171 0.01554 0.01709 0.02250 0.01900 0.02334 0.02239 0.02560
Sch.4 0.01522 0.01807 0.01766 0.02261 0.01517 0.01814 0.02326 0.01853 0.02396 0.02134 0.02630

20 Sch.1 0.01014 0.01156 0.01140 0.01223 0.01146 0.01191 0.01247 0.01175 0.01273 0.01535 0.01620
Sch.2 0.00890 0.01013 0.00998 0.01138 0.01007 0.01126 0.01163 0.01031 0.01190 0.01369 0.01570
Sch.3 0.00896 0.01053 0.01039 0.01097 0.01038 0.01081 0.01120 0.01068 0.01147 0.01342 0.01528
Sch.4 0.00861 0.00975 0.00962 0.01053 0.00945 0.01040 0.01075 0.00990 0.01099 0.01239 0.01430
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8) The MSEr of all estimates based on Sch.3 has the smallest
values, at true value =γ 0.75346

2
, when compared to

others at =m 20, 40, and =n 60 (see Table 5). In addi-
tion, at =γ 0.69135

1
, as seen in Table 5, the MSEr of all

estimates based on Sch.3 also obtains the smallest values
in comparison to other estimates at =m 40, and =n 60.

9) As shown in Table 6, the MSEr of all estimates based on
Sch.3 typically has the fewest values, when compared
to other estimates, in the majority of cases, for =m 10,
and =n 30 with a real value of =γ 0.43667

4
.

10) The MSEr of all estimates based on Sch.2 generally
yields the smallest values when compared to others,

Table 7: MSEr for DCRTE estimates based on MExp distribution at =λ 0.8 under different PCT-II schemes at =n 60

m Sch. MLE BE-MCMC: IP BE-MCMC: Non-IP

SE LIN-1 LIN-2 GE-1 GE-2 SE LIN-1 LIN-2 GE-1 GE-2

t = 0.5, γ3 = 0.27811
20 Sch.1 0.01483 0.01623 0.01604 0.01756 0.01200 0.01185 0.01792 0.01647 0.01834 0.01595 0.01663

Sch.2 0.01267 0.01496 0.01473 0.01518 0.01080 0.01065 0.01549 0.01522 0.01584 0.01492 0.01550
Sch.3 0.01401 0.01657 0.01628 0.01784 0.01172 0.01170 0.01828 0.01690 0.01877 0.01605 0.01695
Sch.4 0.01183 0.01336 0.01313 0.01444 0.00978 0.00984 0.01480 0.01363 0.01521 0.01412 0.01515

40 Sch.1 0.00767 0.00793 0.00792 0.00833 0.00710 0.00728 0.00839 0.00795 0.00846 0.00944 0.01008
Sch.2 0.00771 0.00780 0.00779 0.00849 0.00707 0.00747 0.00855 0.00782 0.00861 0.00927 0.01029
Sch.3 0.00806 0.00862 0.00857 0.00882 0.00780 0.00787 0.00889 0.00867 0.00898 0.01060 0.01105
Sch.4 0.00719 0.00752 0.00749 0.00775 0.00691 0.00697 0.00779 0.00755 0.00785 0.00923 0.00968

t = 1.5, γ4 = 0.43667
20 Sch.1 0.00909 0.01108 0.01090 0.01147 0.01074 0.01140 0.01172 0.01128 0.01201 0.01419 0.01638

Sch.2 0.00765 0.00862 0.00851 0.00951 0.00880 0.00952 0.00970 0.00874 0.00991 0.01153 0.01300
Sch.3 0.00835 0.00917 0.00904 0.01026 0.00905 0.01030 0.01046 0.00931 0.01068 0.01168 0.01397
Sch.4 0.00684 0.00746 0.00739 0.00890 0.00749 0.00898 0.00908 0.00755 0.00927 0.00945 0.01217

40 Sch.1 0.00468 0.00486 0.00485 0.00512 0.00497 0.00535 0.00516 0.00487 0.00520 0.00562 0.00628
Sch.2 0.00471 0.00478 0.00477 0.00523 0.00490 0.00541 0.00526 0.00479 0.00530 0.00545 0.00628
Sch.3 0.00493 0.00528 0.00526 0.00543 0.00543 0.00568 0.00547 0.00532 0.00552 0.00617 0.00656
Sch.4 0.00439 0.00461 0.00459 0.00477 0.00472 0.00498 0.00480 0.00463 0.00483 0.00527 0.00573

Table 8: MSEr for DCRTE estimates based on MExp distribution at =λ 1 under different PCT-II schemes at =n 30

m Sch. MLE BE-MCMC: IP BE-MCMC: Non-IP

SE LIN-1 LIN-2 GE-1 GE-2 SE LIN-1 LIN-2 GE-1 GE-2

t = 0.5, γ5 = 0.05556
10 Sch.1 0.04913 0.06328 0.06216 0.07966 0.03555 0.03164 0.08217 0.06460 0.08494 0.02255 0.01960

Sch.2 0.04143 0.05078 0.05001 0.05995 0.02982 0.02630 0.06189 0.05171 0.06410 0.01862 0.01586
Sch.3 0.04361 0.05532 0.05434 0.06697 0.03016 0.02681 0.06910 0.05650 0.07147 0.01863 0.01630
Sch.4 0.04070 0.05226 0.05123 0.06142 0.03050 0.02649 0.06330 0.05350 0.06541 0.01975 0.01616

20 Sch.1 0.02655 0.03405 0.03363 0.03589 0.02076 0.01851 0.03664 0.03455 0.03750 0.01277 0.01073
Sch.2 0.02562 0.03206 0.03153 0.03572 0.01875 0.01645 0.03669 0.03269 0.03778 0.01134 0.00964
Sch.3 0.02368 0.02824 0.02774 0.03289 0.01627 0.01410 0.03386 0.02883 0.03493 0.00942 0.00765
Sch.4 0.02111 0.02530 0.02491 0.02821 0.01591 0.01460 0.02889 0.02578 0.02967 0.00914 0.00799

t = 1.5, γ6 = 0.26000
10 Sch.1 0.03169 0.04137 0.04060 0.05345 0.02259 0.02097 0.05506 0.04223 0.05678 0.02526 0.02507

Sch.2 0.02667 0.03313 0.03258 0.03986 0.01885 0.01846 0.04109 0.03375 0.04244 0.02162 0.02285
Sch.3 0.02819 0.03628 0.03561 0.04489 0.01938 0.01877 0.04625 0.03704 0.04773 0.02222 0.02295
Sch.4 0.02615 0.03409 0.03339 0.04102 0.01968 0.01793 0.04222 0.03489 0.04354 0.02283 0.02199

20 Sch.1 0.01704 0.02208 0.02178 0.02353 0.01459 0.01389 0.02401 0.02241 0.02454 0.01774 0.01812
Sch.2 0.01647 0.02085 0.02051 0.02358 0.01353 0.01303 0.02418 0.02125 0.02483 0.01727 0.01776
Sch.3 0.01530 0.01838 0.01805 0.02178 0.01211 0.01181 0.02237 0.01874 0.02301 0.01616 0.01695
Sch.4 0.01357 0.01640 0.01614 0.01847 0.01125 0.01170 0.01890 0.01670 0.01937 0.01474 0.01667
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in the majority of cases, at =m 20 and =n 30 with a
real value of =γ 0.27811

3
, as seen in Table 6.

11) The MSEr of all estimates based on Sch.2 typically pro-
duces the smallest values when compared to
other estimates at =m 10 and =n 30, in most of the
situations, as seen in Table 8, when =γ 0.05556

5
and

=γ 0.26000
6

. Also, we observe that estimates for Sch.4
provide the least MSEr compared to others at =m 20

and =n 30, when =γ 0.05556
5

and =γ 0.26000
6

.
12) The MSEr of all estimates based on Sch.4 generally

yields the smallest values when compared to other
estimates at =m 10, 20 and =n 30, as seen in Table 4.

13) The smallest MSEr results are often produced for all
estimates in Sch.2 when compared to other estimates, in a
majority of situations at =m 10, as provided in Table 9.

14) Figure 5 demonstrates that the precision measure of
the Bayesian estimates in the Non-IP case has the big-
gest values when compared to the other estimates in
the IP case. Also, as the value of m increases, the MSEr
for all estimates decreases.

15) As t increases, a slight decrease in most estimates
(MLE, SE, LIN-1, and LIN-2) and a slight increase in
GE estimates were observed.

Figure 5 represents the MSEr for DCRTE at different
sample sizes n( ) and different number of stages m( ) when

=λ 0.8 under scheme Sch.1 as a PCT-II.

6 Concluding remarks

The PCT-II method is used in this study to provide Bayesian
and non-Bayesian estimations of the DCRTE measure for a
MExp distribution. In the case of IP and Non-IP functions
for three LoFs, the BEs of the DCRTE measure are pro-
duced. The MH algorithm-based MCMC approach is used
to compute the BEs. The accuracy of the DCRTE estimations
for the MExp distribution is examined, and applications to
the leukemia data and simulation issues are given. We
deduce from the simulation results that, as sample sizes
grow, the Bayesian estimate of DCRTE gets closer to the
genuine value. DCRTE Bayesian estimates under GE LoF
followed by LIN LoF are generally preferred to the other
competing estimates. The DCRTE Bayesian estimates using
IP have lower values than those using Non-IP in terms of
their accuracy. Sch.3 is frequently the one that yields the
lowest MSEr findings, followed by Sch.2, when compared to

Table 9: MSEr for DCRTE estimates based on MExp distribution at =λ 1 under different PCT-II schemes at =n 60

m Sch. MLE BE-MCMC: IP BE-MCMC: Non-IP

SE LIN-1 LIN-2 GE-1 GE-2 SE LIN-1 LIN-2 GE-1 GE-2

t = 0.5, γ5 = 0.05556
20 Sch.1 0.02692 0.03384 0.03326 0.03810 0.01965 0.01730 0.03916 0.03452 0.04035 0.01194 0.01018

Sch.2 0.02112 0.02494 0.02453 0.02827 0.01453 0.01252 0.02906 0.02543 0.02994 0.00834 0.00671
Sch.3 0.02000 0.02383 0.02347 0.02635 0.01501 0.01380 0.02697 0.02427 0.02768 0.00861 0.00761
Sch.4 0.02109 0.02608 0.02569 0.02613 0.01530 0.01385 0.02669 0.02655 0.02733 0.00908 0.00778

40 Sch.1 0.01380 0.01543 0.01542 0.01546 0.01061 0.00935 0.01561 0.01547 0.01579 0.00632 0.00525
Sch.2 0.01258 0.01422 0.01419 0.01373 0.00937 0.00833 0.01382 0.01428 0.01395 0.00520 0.00452
Sch.3 0.01405 0.01519 0.01516 0.01551 0.01016 0.00948 0.01562 0.01525 0.01577 0.00603 0.00547
Sch.4 0.01218 0.01348 0.01346 0.01368 0.00906 0.00833 0.01377 0.01352 0.01388 0.00525 0.00465

t = 1.5, γ6 = 0.26000
20 Sch.1 0.01731 0.02202 0.02164 0.02518 0.01404 0.01351 0.02584 0.02245 0.02655 0.01771 0.01825

Sch.2 0.01364 0.01621 0.01594 0.01866 0.01113 0.01095 0.01914 0.01651 0.01966 0.01513 0.01605
Sch.3 0.01285 0.01545 0.01521 0.01724 0.01077 0.01126 0.01762 0.01572 0.01805 0.01426 0.01622
Sch.4 0.01355 0.01694 0.01669 0.01709 0.01154 0.01110 0.01744 0.01724 0.01783 0.01497 0.01567

40 Sch.1 0.00885 0.00991 0.00989 0.01000 0.00857 0.00819 0.01010 0.00995 0.01022 0.01109 0.01144
Sch.2 0.00808 0.00917 0.00914 0.00887 0.00753 0.00737 0.00894 0.00922 0.00902 0.00973 0.01029
Sch.3 0.00902 0.00977 0.00974 0.01003 0.00833 0.00829 0.01010 0.00982 0.01020 0.01074 0.01120
Sch.4 0.00781 0.00867 0.00865 0.00883 0.00755 0.00758 0.00889 0.00870 0.00897 0.00986 0.01039
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Figure 5: The MSEr for different estimates of DCRTE when =λ 0.8 under Sch.1. (a) MSEr for =n 30 and =t 0.5, (b) MSEr for =n 30 and =t 1.5,
(c). MSEr for =n 60 and =t 0.5, (d) MSEr for =n 60 and =t 1.5.
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other estimates, in most cases. In future research, one may
use the E-Bayesian technique to estimate additional metrics
of uncertainty, such as DCR Shannon entropy. Bayesian and
non-Bayesian estimation of the DCRTE in the presence of
outliers can be considered [35]. In addition, other methods
such as Tierney–Kadane approximations can be used along
with the MCMC approach.

Abbreviations

BE Bayesian estimator
CDF cumulative distribution function
CR cumulative residual
CT-I censoring type I
CT-II censoring type II
DCR dynamic cumulative residual
DCRTE DCR Tsallis entropy
ECDF empirical cumulative distribution function
EPDF empirical probability density function
ESF empirical survival function
IP informative prior
GE general entropy
K–S Kolmogorov–Smirnov
LIN linear exponential
LoFs loss functions
MCMC Markov chain Monte Carlo
MLE maximum likelihood estimator
MH Metropolis–Hasting
MSEr mean squared error
MExp moment exponential
Non-IP non-informative prior
PC progressive censoring
PCT-I PC type I
PCT-II PC type II
PDF probability density function
PP probability–probability
Sch. scheme
SE squared error
SF survival function
T tsallis
V-CM variance–covariance matrix
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