
Research Article

Chao Kong, Bin Yin, Jiaxin Wu, Jianquan Huang, Dajun Lei, Chunzhi Jiang, and Haiming Deng*

Stability control in a helicoidal spin–orbit-
coupled open Bose–Bose mixture

https://doi.org/10.1515/phys-2022-0263
received January 03, 2023; accepted June 09, 2023

Abstract: In this article, the modulation instability (MI) of
open Bose–Bose mixtures with helicoidal spin–orbit cou-
pling (SOC) was studied. Unlike previous spin–orbit (SO)-
coupled Bose–Einstein condensate system with helicoidal
gauge potential, the purpose of this article to study the
input of the helicoidal SOC in the emergence of MI in
open Bose–Bose mixtures by taking into account the
Lee–Huang–Yang corrections to the coupled Gross–Pitaevskii
equations. We present the detailed analyses of system para-
meters on the characteristics of MI and analytically conclude
the parameter conditions for MI occurrence. Our results pro-
vide a potential way to manipulate the MI in the helicoidal SO-
coupled open Bose–Bose mixtures.

Keywords:modulation instability, Bose–Bosemixtures, spin–
orbit coupling, stability analysis, open system

1 Introduction

As a fundamental ingredient of the matter–wave dynamics,
the modulation instability (MI) is a result of the constructive
interplay between dispersion and nonlinearity and has been
addressed in dispersive nonlinear systems, such as in the
optical fiber [1], in electrical transmission lines [2,3], inmeta-
materials [4], and in biophysical systems [5–7]. Moreover, MI
in the single-component Bose–Einstein condensate (BEC)
with attractive atomic interaction and two-component BEC
even with repulsive interaction has been shown [8–11].
Clearly, MI is the keymechanism for the formation of soliton
trains in BEC [12].

The dynamics and stability of quantum droplets have
been presented [13–15]. For example, for a Bose–Bose mix-
ture with repulsive intra- and attractive interspecies inter-
actions, the quantum Lee–Huang–Yang (LHY) repulsion
neutralizes the mean field attraction and stabilizes the
system against collapse [13]. In one-dimensional (1D) weakly
interacting Bose–Bose mixtures, the beyond mean field
attractive energy stabilizes a repulsive mean field term
[14]. Moreover, spin–orbit coupling (SOC) can also stabilize
quantum droplets. SOC, the interaction between the spin
and momentum of a quantum particle, accounts for many
condensation phenomena as diverse as spin Hall effect
[16,17], topological insulators [18,19], and so on. Recently,
the 1D SOC has been realized in cold-atom system [20],
and the very recent works have revealed the tunability of
SOC strength by the magnitude and direction of the Raman
laser wave-vector [21]. Inspired by that, many activities have
been taken to understand the dynamics of a spin–orbit
(SO)-coupled BEC [22–30]. MI in 1D and two-dimensional
SO-coupled BEC has been recently investigated [31–34]. In
particular, the dynamical behavior of MI in helicoidal
SO-coupled BEC is addressed [35], and the helicoidal gauge
potential can arise in description of light propagation in
helical waveguide arrays [36]. On the other hand, the MI
growth rate of Bose–Bose mixture in the presence of SO
and Rabi couplings shows distinct signatures of the cou-
plings, in the form of multiple domains of instability [37].
Generation of matter waves in Bose–Bose mixtures with
helicoidal SOC is addressed [38], and they present that sym-
metry-breaking perturbations appear for suitably chosen
system and wave parameters, which manifest themselves
through the emergence of trains of quantum droplets.
Inspired by these achievements, we are curious what are
the characteristics of the MI in helicoidal SO-coupled open
Bose–Bose mixtures, which remains an open problem.

In this article, we consider the helicoidal SO-coupled
open Bose–Bose mixtures through which we study the MI.
We restrict ourselves to the equal densities of the two
components. For the small perturbations to the wave func-
tions and considering the perturbations in plane wave
form, we obtain the linearized Gross–Pitaevskii (GP) equa-
tions and the dispersion relation. In the nondissipative
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regime, we focus on two special cases corresponding SOC
strength =α 0 and ≠α 0. In the absence of SOC, we analy-
tically present the dispersion relations of zero or nonzero
helicoidal gauge potential cases and conclude the para-
meter conditions for MI occurrence. In the presence of
SOC, we display the detailed analyses of the effects of the
helicoidal gauge potential, SO-coupled strength, and non-
linear interactions on MI. The results indicate that (a) the
MI gain ξ and the MI region in parameter plane (α, β) are
symmetry about =β 0 or =α 0; (b) the MI gain ξ increases
gradually, and the regions of MI have changed from a
complete one to two independent ones with the increase
of wave number k . The larger values of MI gain ξ and the
bigger MI region corresponding to the larger atomic inter-
actions g and g

0
∣ ∣ are also found. We clearly find that in

parameter plane (k , α), the presence of helicoidal gauge
potential β makes the effects of SOC on the MI more com-
plex and more abundant MI regions appear. We also dis-
play that more abundant MI regions appears and the MI
gain ξ of the system decreases gradually with the increase
in SOC strength. In the dissipative regime, we investigate
the effects of dissipative strengths on MI and find some
interesting results. Our results provide a potential way to
manipulate the MI in the helicoidal SO-coupled Bose–Bose
mixtures. A natural direction is to extend the present ana-
lysis to two- or three-dimensional systems in order to
explore more elaborated and composite structures.

2 Model and linear stability

Considering a uniform 1D Bose gas made of two species, in
the weak-interaction limit, the corresponding energy den-
sity including the LHY corrections is
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where =jΦ 1, 2j( ) are the bosonic states, and we have con-
sidered the units = =mℏ 1. The parameter δg is related to
the coupling constants in the two spinor components as

= +δg g g
12
, with g and g

12
being the intra- and inter-com-

ponent interactions that can be experimentally adjusted
independently [39,40]. Here, we have considered the repulse
intra-component interaction, >g 0, and the attractive inter-
component interaction, <g 0

12
. The single-particle Hamilto-

nian H0 of the system is given by:

= + ∕ + ∕H p αA x σ2 Δ 2,z0
2[ ( )] (2)

where = − ∂∕∂p i x , A x( ), Δ, and σz are, respectively, the
momentum operator, spatially varying gauge potential with
amplitude α, the Zeeman splitting, and Pauli matrices. A gauge
transformation, = − + ∕ −Φ e e Ψi α β t iσ βx2 z

2 2
( ) , is adopted to switch

to the rotating frame for the chosen gauge field A x( ) [41]. The
dynamics of the Bose–Bose mixtures for different components
is given by the nonlinear GP equations [38,42,43]:

⎟⎜

∂
∂

= ⎡
⎣⎢
−

∂
∂

+ − + +

− − − − + ⎤
⎦⎥

+ ⎡
⎣ −

∂
∂

−
∂

∂
⎤
⎦

+ ⎛
⎝

− +
∂

∂
⎞
⎠

−

∕

−
−

i

t x

δg

g

g

π

i β

x

α

x

i ε κ γ

x

Ψ 1

2
1

Δ

2 2
Ψ Ψ

1 Ψ Ψ Ψ Ψ Ψ

1 Ψ Ψ

Ψ Ψ ,

j
j

j

j

j

j j

j j

2

2

3
1

2
2

2

1
2

2
2

3 2

1
2

2
2

3
3

2

2

2

1

2

( ) (∣ ∣ ∣ ∣ )

( ) (∣ ∣ ∣ ∣ ) (∣ ∣ ∣ ∣ )

( )

∣ ∣

(3)

for =j 1, 2. Here, parameters β and α represent the heli-
coidal gauge potential and SOC, respectively. The SOC strength,
of course, can be adjusted by the magnitude and direction of
the Raman laser wave vector [21]. In one dimension, the
beyond-mean-field terms are directly obtained from the
second-order perturbation theory, and a positive mean-field
imbalance is needed, >δg 0 [14]. Three dissipative terms
are taken into account that are proportional to the positive
constants ε, κ, and γ, respectively. The constant ε models the
feeding strength from the thermal cloud, κ measures
the losses due to two-body recombination, and γ denotes
the losses that follow from the inhomogeneous dissipa-
tion process [44–46]. The total number of atoms are
∫ + = + =x N N NΨ Ψ d1

2
2

2
1 2(∣ ∣ ∣ ∣ ) .

In the framework of Eq. (3), the MI of the flat states
with equal densities = =n n n1 2 and the common chemical
potential μ of both components: = −

e nΨj

iμt . The densities,
Zeeman splitting, interactions, and chemical potential are
determined by the following algebraic equations:
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For perturbed wave functions of the form =Ψj
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( ), linearized equations for the small perturba-

tions are as follows:
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where ∗
ψ stands for the complex conjugate of ψ. We con-

sider the solutions of the perturbation as follows:

= − + −δψ ξ kx t iη kx tcos Ω sin Ω ,
j j j

( ) ( ) (6)

where k is the real wave number, Ω is the complex eigen-
frequency, and ξj and η

j
are amplitudes. By substituting

Eq. (6) into Eq. (5), we have a set of linearly coupled equa-
tions for perturbation amplitudes ξj and η

j

× =M ξ ξ η η, , , 0,T

1 2 1 2
( ) (7)

where M is a ×4 4 matrix. Under condition with det
=M 0, the dispersion relation is obtained
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Solving Eqs. (8) and (9), we can obtain the results
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Clearly, the value of Ω may be positive, negative, or com-
plex, depending on the signs and magnitudes of the terms
involved. The flat state is stable when Ω is real; otherwise,
the MI growth rate (gain) is determined by the largest
absolute value of the imaginary part of eigenfrequency:

=ζ Im Ω .max∣ ( )∣ (12)

It is well known that, the Zeeman splitting Δ has not
appeared in the dispersion relation for instability, which
means that it cannot affect the properties of the MI. In the
following research, we will focus on the effects of SOC, the
helicoidal potential, dissipative strengths, and the atomic
interactions on the MI.

3 MI without dissipative terms

3.1 MI in the absence of SOC

In the absence of SOC, we here focus on two special cases
corresponding to =β 0 and ≠β 0.

Case 1. Zero helicoidal gauge potential. For =β 0, the
model amounts to the usual two-component system with
Rabi coupling, and our solution for Ω2 is
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It is well known that, in this case, the Rabi coupling
strength Δ has not appeared in the dispersion relation
for instability and it means that it cannot affect the proper-
ties of the MI. Besides, for repulsive intracomponent and
attract intercomponent interactions, +Ω is always real,

and −Ω is imaginary with < −
∕

k nδg4
n g

π

2
2 2 3 2

, which is
consistent with the results in the study by Bhuvaneswar
et al. [37].

Case 2. Nonzero helicoidal gauge potential. In the pre-
sence of helicoidal gauge potential, Eqs. (8) and (9) are
simplified as:
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We have the dispersion relation
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Results show that stable configuration occurs for >±Ω 0
2 ,

whereas the MI takes place with complex ±Ω
2 . In the present

scenario, the dispersion relation is complex in the fol-
lowing cases: (a) when > ∕P P 40 2

2 , both ±Ω
2 are complex;

(b) when < < ∕P P0 40 2

2 and >P 02 , both ±Ω
2 are complex;

and (c) irrespective of the value of P2 but for <P 00 , +Ω
2 is

always positive, while −Ω
2 is negative.

3.2 MI in the presence of SOC

To explore the effect of the SOC and the helicoidal gauge
potential on MI, Figure 1 illustrates the MI gain ξ in the α β,( )

plane with different wave numbers k when the atomic inter-
actions g

0
and g satisfy the condition of + =g g 0.5

0
. Figure 1

shows that the MI takes place when α and β satisfy certain
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Figure 1: The contour plot of the MI gain ξ as a function of α and β for different atomic interactions and wave number. The first column: k = 1 in (a), 3
in (b) and 6 in (c). In this column, g0 = −5.5 and g = 6 are fixed. The second column: k = 1 in (d), 3 in (e) and 6 in (f). In this column, g0 = −9.5 and g = 10
are fixed.
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conditions. It is interesting to note that the MI gain ξ and the
MI region for β (α) are symmetry about =β 0 ( =α 0). To
interpret the symmetry of the MI regions in Figure 1, we
make the following analysis. From the dispersion relation
Eqs. (9) and (10), we can find that the helicoidal gauge poten-
tial β appears in the form of β

2, which leads to the symmetric
region of the MI and the MI gain about =β 0. The symmetry
of MI about α is described by the parameter P1. Replacing the
coefficient P1 with −P1 in Eq. (10), we obtain ′ = −Ω Ω1 3,

′ = −Ω Ω2 4, ′ = −Ω Ω3 2, and ′ = −Ω Ω4 1, which has not affected
the MI gain ξ . In other words, because the condition

− =P α P α1 1∣ ( )∣ ∣ ( )∣ is satisfied, the regions of the MI are sym-
metric about =α 0. We also find that the MI gain ξ increases
gradually, and the regions of MI have changed from a com-
plete one to two independent ones with the increase of
wave number k for two different sets of atomic interactions

= −g g, 5.5, 6
0

( ) ( ) and −9.5, 10( ). Besides, the system remains
stable for larger wave number k when both =α 0 and =β 0

are satisfied as shown in Figure 1(c) and (f). Under the con-
dition of =α 0 and =β 0, the dispersion relation Eq. (10) can
be simplified to Eq. (13). For the fixed parameters g , g

0
, and n,

the larger wave number k satisfies > −
∕

k nδg4
n g

π

2
2 2 3 2

,
which leads to stable configuration; however, the MI takes

place when < −
∕

k nδg4
n g

π

2
2 2 3 2

is satisfied. The larger values
of atomic interactions g and g

0
∣ ∣ corresponding to the larger

MI gain ξ are also found.
In Figure 2, we plot the MI gain ξ in the plane of the

k α,( ) plane with different atomic interactions and heli-
coidal gauge potential β. For zero helicoidal gauge poten-
tial =β 0, the MI gain ξ in the k α,( ) plane remains con-
stant with the increase of α, as shown in Figure 2(a) and (c).
Under conditions =β 0 and ≠α 0, the dispersion relation

Eq. (10) can be simplified to = ± + −k k gn kαΩ 8 21,2

1

2

2( )

and = ± − +
∕

kα k nδgΩ 4
k n g

π
3,4 2
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2 2 3 2

, which means that

the MI gain ξ is independent of SO-coupled strength α.
From Figure 2(b) and (d), we clearly find that the presence
of helicoidal gauge potential β makes the effects of SOC on
the MI more complex and more abundant MI regions appear.
Besides, the larger values of MI gain ξ corresponding to the
larger atomic interactions g and g

0
∣ ∣ are also found.
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Figure 2: The contour plot of the MI gain ξ in the k α,( ) with different atomic interactions and helicoidal gauge potential β. The first row: β = 0 in
(a), and 4 in (b). In this row, g0 = −5.5 and g = 6 are fixed. The second row: β = 0 in (c), and 4 in (d) where g0 = −9.5 and g = 10 are fixed.
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In order to illustrate the effects of helicoidal gauge
potential β on the MI, we will give some detailed analysis
in Figure 3, where we plot the MI gain ξ in the plane of the
k β,( ) plane with different atomic interactions = −g 5.5

0
,

=g 6, and = −g 9.5
0

, =g 10. As shown in Figure 3(a) and
(c), there exist two MI regions for SO-coupled strength

=α 1 and the regions are symmetric about =β 0 and
=k 0. The MI gain ξ increases gradually, and the MI region
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Figure 3: The contour plot of the MI gain ξ in the k β,( ) with different atomic interactions and SOC α. The first row: α = 1 in (a), and 4 in (b). In this row,
g0 = −5.5 and g = 6 are fixed. The second row: α = 1 in (c), and 4 in (d) where g0 = −9.5 and g = 10 are fixed.
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Figure 4: The contour plot of the MI gain ξ in the k g,( ) with different helicoidal gauge potential (a) =β 0 and (b) =β 4. The other parameters are
taken as =g 5.5

0
, =α 1, =κ 0.05, and =γ 0.01.
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for k shrinks and shifts toward large k∣ ∣ region with the
increase of β∣ ∣. The larger values of MI gain ξ and the bigger
MI region corresponding to the larger atomic interactions
g and g

0
∣ ∣ are also found. By comparing Figure 3(a) and (c)

with Figure 3(b) and (d), we find that the MI regions change
from two to four and the MI gain ξ of the system decreases
gradually with the increase in SOC strength.

4 MI with dissipative terms

In Figure 4(a), the MI gain ξ is plotted as a function of intra-
atomic interaction and wave number for helicoidal gauge
potential =β 0. The other parameters are taken as = −g 5.5

0
,

=α 1, =κ 0.05, and =γ 0.01. It is observed that the MI region
is symmetry about =k 0, which can be interpreted by the
condition − =P k P k1 1∣ ( )∣ ∣ ( )∣. For Figure 4(b) with helicoidal
gauge potential =β 4, the larger values of MI gain ξ appears,

and MI increases with increasing intra-atomic interaction. To
explore the effect of dissipative strengths on MI, we plot the MI
gain ξ in the α β,( ) plane with different dissipative strengths:
Figure 5(a) =κ 0.05, =γ 0.01, and Figure 5(b) =κ 0.5, =γ 0.1.
Obviously, the instability zones with the maximum growth rate
become larger with the increase of dissipation strengths. We
also plot the MI gain ξ in the k β,( ) in Figure 6 to illustrate the
effects of dissipative for the labeled parameters. By comparing
Figure 6(a) with Figure 6(b), we find that the larger values of MI
gain ξ and more abundant MI regions appear for larger dis-
sipative parameters.

5 Conclusion and discussion

In this article, we study the characteristics of MI of open
Bose–Bose mixtures with helicoidal SOC by linear-stability
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approach. For comprehensive research, we analyze the
effects of the helicoidal gauge potential, SOC, different
atomic interactions, and dissipative strengths on the MI
and find some interesting results. Our analysis illustrates
that for the nondissipative regime, the MI gain increases as
wave number, helicoidal gauge potential, and the value of
atomic interactions increase, while the opposite effect on
MI gain occurs for SOC. Besides, more abundant MI regions
appear for the larger SOC, wave number, helicoidal gauge
potential, and the value of atomic interactions. In the dis-
sipative regime, we also present the effects of dissipative
strengths on MI. Our results present a feasible scheme to
manipulate stability of helicoidal SO-coupled Bose–Bose
mixtures.

A natural direction is to extend the present analysis to
two- or three-dimensional systems in order to explore more
elaborated and composite structures. It is well known that
the solution of nonlinear equations is an important scientific
problem. Under strongly nonlocal conditions, the nonlinear
Schrödinger equation can also be simplified into a linear
differential equation, and various soliton solutions and
dynamic characteristics have been obtained [47–49], which
are helpful to expand the method of solving nonlinear
equations.
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