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Abstract: Using the finite difference time domain (FDTD)
method based on the eight-element Dirac equation, we found
that a stable Dirac field wave packet with low velocity can be
created without explicit consideration of Zitterbewegung (the
rapid oscillatory motion of elementary particles), which is
difficult in one-dimensional simulations. Furthermore, we
successfully simulated the formation process of atomic orbi-
tals for the first time without any physical approximations by
calculating the eight-element Dirac field propagation in the
central electric force potential. Initially, a small unstable
orbital appears, which rapidly grows and results in a large
stable orbital with a radius equal to the Bohr radius divided
by the atomic number, as given by the solution of the
Schrodinger equation. The FDTD calculation based on the
conventional four-element Dirac equation cannot produce
such reasonable orbitals owing to the spatial asymmetry of
the 4 x 4 Dirac matrices. This method has the potential to be
used for transient analyses of not only atomic or molecular
orbitals but also interactions among elementary particles.

Keywords: Dirac equation, Maxwell’s equations, FDTD method,
Zitterbewegung, atomic orbital

1 Introduction

Transient analyses of spatial distributions of atomic and
molecular orbitals are crucial for understanding chemical
reactions. Experimental investigations of molecular orbitals
and their time-dependent spatial distributions have been
conducted using Penning ionization electron spectroscopy
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[1-10], photoelectron spectroscopy with angular distribution
[11-15], and electron momentum spectroscopy [16-21]. By
contrast, theoretical studies of molecular orbitals have pri-
marily focused on the Schrodinger equation [22-30]. Consid-
ering that the orbital spatial distributions change rapidly
occurring on a timescale comparable to the orbital length
divided by the speed of light, it is essential to solve the Dirac
equation instead of the Schrédinger equation for more accu-
rate analyses of the time-dependent spatial distributions of
atomic and molecular orbitals. The finite difference time
domain (FDTD) method [31,32], which can be used for transient
analysis of electromagnetic fields, could also be used for ana-
lyzing the Dirac field [33,34] as the Dirac equation is almost
equivalent to Maxwell’s equations, except for electron charge
and mass [35,36]. In this study, we demonstrate that the FDTD
method based on the eight-element Dirac equation successfully
calculates the time-dependent Dirac field. Moreover, it reveals
the first-ever simulation of the formation process of atomic
orbitals, starting from the initial state of a free electron and
an atomic nucleus without any physical approximations. This
is achieved by calculating the eight-element Dirac field propa-
gation in the central electric force potential.

2 Eight-element Dirac equation

The Dirac equation is given by:
(ihy#9, — me)yp = 0, M

where f is the Planck constant, ¥ is a wave function vector
consisting of four components, m is the mass, c is the light
speed in free space, and y* are the gamma matrices that
satisfy the following equation [37-40]:

1 1. u=v=0
E(yuyv + vty = pv =1 0: U#v 2
-1 u=v=1,23.
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For example, gamma matrices are given by:

100 0 0 001
s lo10 ol , o010
V )V_ 5
00 -1 0 0 -100
00 0 -1 1000
. 3)
000 i 001 0
,_[00i o ;_{000-1
Y o ioof?V |-100 of
00 0 0100

These matrices have spatial asymmetry, which means that
only one or two of y%, y2, and y3 include imaginary num-
bers. Since it is difficult to calculate the propagation of the
Dirac fields by the FDTD method in the aforementioned
case as shown later, the Dirac equation should be extended
to consist of spatially symmetric matrices as follows.

[)7“611 + %f‘*]w =0, @
where 71, 2, and j° are the real number matrices and y*
(u =0,1,2,3,4) satisfy

1 1. u=v=0,4
E()jl-lf" +pvpiy = qv =1 0: U#v (5)
-1 u=v=123,

where y# cannot be represented by 4 x 4 matrices. Egs. (4)
and (5) give the Klein-Gordon equation:

2 202
[yuay + %)74] Y= [D + thC ]l/) =0, (6)

where [J is d’Alembertian defined by [ = 33 - V2 To
obtain y*, we introduce the following spatially symmetric
delta matrices:

i 000 0100
60_01’0061_—1000
=looiof%=|{o 00 -1

000 i 001 0

7

0 010 000 1
, o001 . foo-10
=11 0 00/,%={0 1 0 of

0 -100 100 0

Now, we define matrices y* (u = 0,1, 2,3) and y* as:

0 6!‘*] L,
1V =

VE=lsue 0

L 0
0 -L ®)

where I, is the 4 x 4 unit matrix. Since y#(1 =0,1,2,3,4)
satisfy Eq. (5), we obtain the eight-element Dirac equation
of Eq. (4). When we introduce the four-element wave func-
tions ¥, and ¥, which satisfy
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Vg
Eq. (4) is rewritten as:
mc/h 649,
549, —me/h “loo (10)
u l/’B
Then, we obtain
. mc
0oy, + 5k6kl,bA - Tl/)B =0,
(1D

mc
-iaol/’B + 5k6kl,bB + TwA =0.
When 1 means the Hermite conjugate, we obtain

. mc
_laOIPAT - aklpAT‘Sk - ?lpBT =0,

id0Wy" — xS + %I/JAT -0 (12)
Here, we define four current C* as follows:
CO= 4, + YTy = Yy, 13)
C=-i(y,'8" ¢, - vp'6"Yp).
Then, Eqgs. (11)-(13) give
3,Ct = 0. (14)
Now, we define IF as:
g'=ylyp° (15)
Then, we obtain
ct = §pry., (16)

Therefore, C° and C¥ can be regarded as probability den-
sity and probability current density, respectively.
Next, we consider spin. When we introduce ¢, and ¢._ as

V=Y Y Y=Y - Y a7
Eq. (11) is rewritten as:
i0ot, + 8. - S, =0,
(18)

100, + 8k, + %l/)_ - 0.

Under vector potential A and scalar one ¢, we should sub-
stitute 9y + ieAx/hc for 9y and 9y — ie¢/hc for 9, in the
equations. When we assume that E is the total energy and
the time dependence of the wave functions is exp(—iEt/h),
we could substitute —iE/Ac for 9, as:

E e mc] ie
P A T
fg,‘ hc h f.lC (19)
E e  mc k[ e ] _
[hc+hc * h]¢'+a O * Ak, =0.
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Considering the nonrelativistic condition, E is given as:

E=Eyg + mCZ, (20)

where Eyy is the nonrelativistic energy. When we assume
|Exg|l < mc? and |e¢| < mc?, Eq. (18) gives

ie

A
he'k

h
~ " sk
v 2m05 [ak *

¥, @1)

Then, Eqgs (19) and (21) give
e
hc

hZ[ ie ]2
-—|V+ —A| +
2m

O +

n? ie
(B + €90, =551+ 150 + 1o
ieh (22)
Sk
2mc 8Bk

hC ¢+'

Therefore, the second term of the right side of the afore-
mentioned equation shows the magnetic moment -ih/2mc.
When we define s as:

=g (23)
2
we obtain
sls2 — s2sl = jnsd,
s2s3 — s3s% = jhsl,
s3s! - sls3 = jhs?, 24

()2 + (s2)% + (s3)? = %hz.

Therefore, s is a spin operator with a spin quantum
number of 1/2. Eq. (22) can be regarded as the wave equa-
tion of a particle with a spin quantum number of 1/2 under
vector potential A and scalar one ¢.

3 Dirac field propagation analysis
by FDTD method

The FDTD method is one of the simplest methods for tran-
sient analysis of field propagation, because it can give field
spatial distribution dependence on time by only substi-
tuting a pair of field vectors each other to discretized equa-
tions starting from a given initial state. Since the Dirac equa-
tion is quite similar to Maxwell’s equations, the Dirac field
propagation could be calculated by the FDTD method, which
is popularly used for propagation analysis of electromag-
netic field. We compared the calculation results of the
FDTD method based on the 1D-like two-element, the conven-
tional four-element, and the extended eight-element Dirac
equations. Figure 1 shows the analyzed structure consisting
of a cube with a side length L, where the origin exists at the
center of the cube. The Dirac field wave packet is created by
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Figure 1: Analyzed structure.

the vibration of the top surface of the structure. We adopt
the following wave function as the initial wave packet of the
Dirac field, which has finite values in the whole region and
satisfies the Klein-Gordon equation:

_ sin(kr’) exp(-iwt’)

= 25
= (25)

where r” and t” satisfy the following equations of Lorentz
transformation using the wave packet moving velocity v
and B = v/c.

Y
r’=\/x2+yz+%,
(26)
ey
1-p0 )

k and w are wave number and angular frequency, respec-
tively, and satisfy

w*  mic?

2 = _
c? h?

@7

3.1 Discretization for the two- and four-
element Dirac equation

The four-element Dirac equation of Eq. (1) is rewritten as:

% + %]w‘) + (91 - i0)° + g = 0,
[ao + % Y+ (01 + i9)Y* - 039° =0,

. (28)
[—ao + %]wz + (=01 + 10y -~ 0y =0,

[—60 + %]w?’ + (=01 - laz)wo + 631,01 =0.

Here, y# is written by the sum of real and imaginary
parts as:

Y =g+, (29)
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where ¢ and ¥/ are the real

aforementioned equations are discretized by the FDTD method,
assuming that i, j, k, and n of ¢/

functions of space-time. The

i kon and ”] kn denote the

grid address along x,y, z, and time axes, respectively. The
aforementioned functions are defined at the position in
the cell of the FDTD method as shown in Figure 2(a), where
the real and imaginary parts are defined at different positions
and the element positions are spatially asymmetric. The dis-
cretized equations of Eq. (28) are

u _ ol
ll) .. G w .. IG
i rijk,n+1-°5 riij,k,n-=5
&n Therefore
(AN s
1 1
mc
- = u
ah zz :i-EMLj-m,k,n+C* l/) IS
1=0m=0 r:l,],k,n+1—7
v — v
3 riij,k,n+ ri-&4j kn+£
+ z E‘l 1 ) 2 ) Ky 2
v A
v=0 X
v v = v Y
i'i,j,k,n+{2 i:i,j- 1kn+(
+
u Ay
v Y
ij,kn+ riijJenine s
rij,kn+y L k=ntn+cy
+ gy J Pkt |
w A, ’
u _ wv = wv
u u u
- k=S T iijkn-% Eijknd-G ki
gk A
t
1 1
mc
+ —
ah g Zz i+ EMLj+mk,n+ (M
3 v v = v v
ol piretikney  iijkonty
* 218 A (30)
v=0 X
v — v
¢ ¢
) riij+lk,n+ =g i k,n+g-
v A
Y
v Y where
AT A
N “)/3 ixi,f, k,n+ iijkonfney 0
uv A, ’

Figure 2: Definition position of the Dirac field elements in the cell of the
FDTD method. (a) The four-element Dirac field and (b) the eight-element
Dirac field, where the white, red, blue, and green circles denote ¥°, ¥,

¥?, and Y3, respectively.
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where Ay, Ay, A, and A, denote the grid spaces of x, y, z,
and time axes, respectively, and

1. u=0,2
§h=1-1; u=13
1. u=0,3
=01 p=1,2 3
- : y =%
(h= 1. u=273
+ &Y, !1—
(H 5’7 IZOmZO ii-1j- mkn—(—“
3
H Qa v = v v
g h Vyv ! r4i,j,k,n+% l/)Tl 1]kn+(—
+ v v =YY v
2[lpi:i,j,k,n+<’2 ¢i:i,j—1,k,n+(2]
+ a [ v v = v v,
3E y‘uv‘wr ij,k, n+£ wr:i,j,k—l,m(z'
o 1 1 (32)
-t ) Y ¢+
i:ij,kn="5" 1=0m=0 UitLj+mk,n-=5
3
- H Qa v v = v v
vg 1 VHV ! lpl 1+1]kn+% l/)i:i,j,k,n+%
- Q v v = v v
z[lpr:i,jﬂ,k,m(2 wr:i,j,k,n+(2’
+ a [ v v v vy
36 VHV‘¢1 ij kn+£ l/)i:i,j,k—l,m(z]
0= mecA, A
0 = —) 1 = bl
h A
* (33)
cA cA
H=E—"— WBE——
Ay A,

When we consider the one-dimensional analysis of the Dirac
field propagation along z-axis, assuming 9;¥* = 9,¥* = 0
Eq. (28) is rewritten as:

9o + imTCI/)O’fasl/’Z:O

[‘50 + % ¥ - 05y’ =0
(34)

[ao+ imTcl/)l‘asl/Jg:O

[‘ao + % Y3 + 05! =0
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Since we can define the real and imaginary parts at the
same position in this case, we obtain the discretized one-
dimensional Dirac field as follows:

o = (1 1GOY0 — a [wl el “Y 1n+2]
'1[)12] el ™ =1+ lao)wz 3(‘!’1] k+Ln wi,,-,k,n),
(35)
=1+ l-aow,.?,.,k R L |
¢111 kned =(- laO)wl a3(¢1} k+in i,j,k,n)'

The one-dimensional Dirac field propagation along z-axis
can be calculated by the two elements, the pair of ¥° and 2
or that of ' and ¥3, because the upper two and lower two
equations of Egs. (34) and (35) are independent.

3.2 Discretization for the eight-element
Dirac equation

As same as the four-element case, we can obtain discre-
tized equations for the eight-element Dirac field y*

and yp# ko
the real and imaginary parts can be defined at the same
position and the element positions are spatially symmetric.
The discretized equations of Eq. (18) are

:i,j,k,n
defined at the positions in Figure 2(b), where

u — Y
'vb+:i,j,k,n+1 l/)+:i,j,k,n

imc
+ —yYH .
A h +:,7,k,n
3 l/}v. UaV ; 1 = lpv” 1
. ol e Ak -k n+y
iy A\ -
v=0 X
. P
g LMY kg ~i,j,k,n+
+ 611\/ A
Yy
v T
3 —:i,,k+ M2 n+ g —iijk,nty
+ 6[,,, =0,
AV
(36
Wiiinss ~ Wit i )
=i, k,n+y —:i,j,k,n-3 mc ’,[)'u
- . 1
CA¢ h "-ijkn-5
4 - I’DV
+:i,j,k,n -2 j,k,n

3
7AW

v=0 Dy

-y
i, j-AEAY k,n
Ay

\%
+ij,kn

2
+ 5;4\»

v _ l/)v
+:1,j,k,n +:0,j, k-2 A", n
(24 A,

|-

where
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(37

Therefore,

w+ i), k,n+1 =(1- laO)wf'ij k,n

—W’ZA

v=0
— l/}v
—ij ke

+ C(262

al

lﬁ ARAY ) K, n+f

l/l A ARV K, n+

_ 4
lp—:i,j,k,n+%]

(38)
- w—vzi,j,k,m%”’

+ (1353

w HARSYLIAR n+—

1=+ lao)w

3
+ i ZAV{alajv(wa:};i,j,k,n -

v=0
2
+ S (W kn ™

3
+ 38 (W n ™

lpﬂ

1,7k, n+y
v
l/)+:i—/\“A",j,k,n)

v
¢+:i,j—/1"/l",k,n)

v
¢+:i,j,k—)L“A",n)}'

3.3 Comparison among the two-, four-, and
eight-element Dirac field propagation

Figure 3 shows the wave packet shape dependence on the
propagation time for the two-, four-, and eight-element
fields in the cube of L =10 pm. Figure 4(a) shows that
the moving distance of the wave packet peak is equal to
the product of the wave packet velocity and the propaga-
tion time in the four- and eight-element cases, although the
wave packet speed by 1D-like calculation in the two-element
case is equal to the light speed in free space. We found that
explicit consideration of Zitterbewegung [41,42] is unnecessary
for the three-dimensional calculation. As shown in Figure 4(b),
the wave packet peak intensity decreases with increasing pro-
pagation time in the four-element case, although it is almost
constant except early period in the eight-element case. The
instability of the four-element Dirac field propagation seems
to be caused by the asymmetric definition position of the field
elements shown in Figure 2(a).

4 Simulation for formation process
of atomic orbitals
In the electric central force potential ¢ = Ze/4megr gener-

ated by an atomic nucleus with its atomic number of Z, the
eight-element Dirac equations are given by:
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Figure 3: Time dependence of the Dirac field intensity distribution. (a), (b), (c), and (d) are the two-element field at t = 0.01, 0.02, 0.03, and 0.04 as, (e),
(f), (g), and (h) are the four-element field at ¢ = 0.01, 0.02, 0.03, and 0.04 as, (i), (j), (k), and (I) are the eight-element field att = 0.01, 0.02, 0.03, and 0.04

as, respectively.
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Figure 4: Comparison among the two-, four-, and eight-element Dirac field propagation with § = 0.5, (a) peak z-coordinate dependence on time and
(b) peak intensity dependence on time, where the blue, green, and red lines show the two-, four-, and eight-element fields, respectively, and the

broken black line denotes the theoretical value.
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Figure 5: Time dependence of the eight-element Dirac field intensity in the potential of Ze/4megr with Z = 50 for (a) ¢ = 0.03 as, (b) t = 0.0325 as, and

(c) t = 0.035 as, and (d) the initial orbital radius dependence on 1/Z.
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Figure 6: Time dependence of the eight-element Dirac field intensity in the potential of Ze/4meyr, with Z = 50. (a) t = 0.045 as, (b) t = 0.05 as, (c) t =
0.055 as, (d) t = 0.06 as, (e) t = 0.065 as, (f) t = 0.07 as, (g) t = 0.08 as, (h)t = 0.09 as, (i)t = 0.12 as, (j) t = 0.145 as, (k) t = 0.17 as, and (I) t = 0.2 as.
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; e o _mc. _
[zao + ne +§ ak]l/)A n Y =0,

6 (39)
. e mc
[i20- 58 = s oo
and
[iao + @]u + 8o - Ty, =0,
hc h
(40)

. e mc
[160 + h—qz]l/)_ + 8Fop, + 7 =0

In the discretized equations of Egs. (36) and (38), mc is
replaced with mc + e¢/c. We calculated the eight-element
Dirac field propagation in the cube of L = 10 pm based on
the aforementioned equations and assuming an injected
electron velocity parameter B of 0.5. Figure 5(a)-(c) show
the log-scale intensity on xz-plane at early propagation times
of 0.03 as, 0.0325 as and 0.035 as. We found that after t = 0.03
as, a cone-shaped peak appears at the origin and rapidly
grows with increasing propagation time, while the injected
wave packet peak intensity simultaneously decreases. During
this phase, the cone-shaped wave function surrounding the
origin is proportional to exp(—r/finit), where riy;; denotes the
initial orbital radius. As shown in Figure 5(d), rin; is inver-
sely proportional to the atomic number Z and considerably
smaller than the analytical value of rz/Z provided by the
Schrodinger equation, where rz denotes the Bohr radius.
This is explained by the following equations as derived
from Eq. (39):

2ieg e2p?  mict e

‘D The T TR T ac @ OO0
2ied 22 2,2 41
ie e mic? e

[D "R TR T T a(‘s"""“’)"”f"'

Assuming that the time-dependent wave function is pro-

portional to exp(—r/npi — iwt), Eq. (41) gives the terms of

rexp(-r/rpi — iwt) forn = 0, 1, 2. The term corresponding
ton = 0 provides

w1 .\ m2c?

S

=0. (42)
Therefore, if 11y is smaller than A/mc= 0.39 pm, w? becomes
negative, resulting in an imaginary w value. This implies that
the absolute value of the wave function exp(-r/rin; — iwt)
will exponentially increase over time, eventually leading to
an overflow of peak intensity. To prevent this overflow, we
imposed a limit of 10% for the absolute value of each wave
function element within the spherical region of r < 0.5 pm.

Figure 6 shows the log-scale Dirac field intensity as
a function of the propagation time on xz-plane in the
cube of L = 20 pm, considering the aforementioned limit.
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Figure 7: Final orbital radius dependence on 1/Z. The solid line shows

the calculation value by the FDTD method based on the eight-element

Dirac equation, and the broken line denotes a1 = 78/Z obtained by the
analytical solution of the Schrédinger equation.

Att = 0.05 as, a small cone-shaped orbital appears; similar
to that observed in Figure 5, the radius of the orbital
expands with time after 0.055 as. Beyond t = 0.09 as, the
high-intensity region of the wave function extends across
the entire calculation structure, with the orbital shape sta-
bilizing after t = 0.17 as in the region of r > 3 pm. At the
final moment of t = 0.2 as, the outer part of the wave func-
tion appears to be proportional to eXp(—r/Tinar), where rsina
denotes the radius of the final orbital. In Figure 7, the solid
line illustrates rx,, dependence on 1/Z, while the broken
line represents the ) = 73/Z. Considering that 1s atomic
orbitals are known to be proportional to exp(-Zr/rg) [43],
our calculations can be considered accurate, as rna closely
aligns with the theoretical value provided by the Schro-
dinger equation.

5 Conclusion

The transient analysis of the Dirac fields has been success-
fully implemented using the FDTD method based on the
eight-element Dirac equation, which includes dual four-
element wave functions and five spatially symmetric 8 x 8
matrices. We found that a stable three-dimensional Dirac
field wave packet with low velocity can be created without
explicitly considering Zitterbewegung, which is difficult in
one-dimensional analysis. Furthermore, we achieved the
first-ever simulation of the formation process of atomic
orbitals starting from the initial state of a free electron
and an atomic nucleus, using the eight-element Dirac
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equation without any physical approximations. Initially, a
small unstable orbital appears, which rapidly grows and
results in a large stable orbital with a radius equal to the
Bohr radius divided by the atomic number, as given by the
solution of the Schrodinger equation. The FDTD calculation
based on the conventional four-element Dirac equation
cannot produce such reasonable orbitals because of the
spatial asymmetry of the 4 x 4 Dirac matrices. This method
has the potential to be used for transient analyses of not
only atomic or molecular orbitals but also interactions
among elementary particles.

Funding information: The author states no funding involved.

Author contributions: The author has accepted responsi-
bility for the entire content of this manuscript and approved
its submission.

Conflict of interest: The author states no conflict of interest.

References

[11  Ohno K, Mutoh H, Harada Y. Application of Penning ionization
electron spectroscopy to the study of chemical reactions on the
solid surface; Photooxidation of naphthacene and rubrene. Surface
Sci. 1982;115(3):L128-32.

[21 Ohno K, Fujisawa S, Mutoh H, Harada Y. Application of Penning
ionization electron spectroscopy to stereochemistry. Steric
shielding effect of methyl groups on Penning ionization in substi-
tuted anilines. ] Phys Chem. 1982;86(4):440-1.

[31 Ohno K, Mutoh H, Harada Y. Study of electron distributions of
molecular orbitals by Penning ionization electron spectroscopy.

J Am Chem Soc. 1983;105(14):4555-61.

[4] HaradaY, Ohno K, Mutoh H. Penning ionization electron spectro-
scopy of CO and Fe (CO) 5. Study of electronic structure of Fe (CO) 5
from electron distribution of individual molecular orbitals. ] Chem
Phys. 1983;79:3251.

[5] Veszprémi T, Harada Y, Ohno K, Mutoh H. Photoelectron and
Penning ionization electron spectroscopic investigation of tri-
methylsilyl- and t-butyl-thiophenes. | Organometallic Chem.
1983;252(2):121-5.

[6] Veszprémi T, Harada Y, Ohno K, Mutoh H. Photoelectron and
Penning ionization electron spectroscopic investigation of tri-
methylphenylsilane. ] Organometallic Chem. 1983;244(2):115-8.

[71 Veszprémi T, Harada Y, Ohno K, Mutoh H. Photoelectron and
Penning electron spectroscopic investigation of phenylhalosilanes.
J Organometallic Chem. 1984;266(1):9-16.

[8] Veszprémi T, Harada Y, Ohno K, Mutoh H. Photoelectron and
Penning ionization electron spectroscopic investigation of some
silazanes. ] Organometallic Chem. 1985;280(1):39-43.

[91 Mutoh H, Masuda S. Spatial distribution of valence electrons in
metallocenes studied by Penning ionization electron spectroscopy.
J Chem Soc. Dalton Trans. 2002;9:1875-81.

(0]

(1]

2]

(3]

4]

(3]

[e]

(7

(18]

(9]

[20]

[21]

[22]

[23]

[24]

[23]

[26]
[27]
[28]

[29]

[30]

31

[32]

DE GRUYTER

Yamazaki M, Horio T, Kishimoto N, Ohno K. Determination of outer
molecular orbitals by collisional ionization experiments and com-
parison with Hartree-Fock, Kohn-Sham, and Dyson orbitals. Phys
Rev A. 2007;75:032721.

Eland JHD. Photoelectron spectroscopy. 2nd ed. London:
Butterworth; 1984.

Paul PM, Toma ES, Breger P, Mullot G, Agostini P. Observation of a
train of attosecond pulses from high harmonic generation. Science.
2001;292:1689.

Itatani ), Levesque , Zeidler D, Niikura H, Pepin H, Kieffer JC, et al.
Tomographic imaging of molecular orbitals. Nature. 2004;432:867-71.
Yagishita A, Hosaka K, Adachi J. Photoelectron angular distributions
from fixed-in-space molecules. J Electron Spectrosc Relat Phenom.
2005;142:295-312.

Niikura H, Wérner HJ, Villeneuve DM, Corkum PB. Probing the
spatial structure of a molecular attosecond electron wave packet
using shaped recollision trajectories. Phys Rev Lett.
2011;107:093004.

Weigold E, Hood ST, Teubner PJO. Energy and angular correlations
of the scattered and ejected electrons in the electron-impact ioni-
zation of argon. Phys Rev Lett. 1973;30:475-8.

McCarthy IE, Weigold E. (e, 2e) spectroscopy. Phys Rep.
1976;27:275-371.

Brion CE. Looking at orbitals in the laboratory: the experimental
investigation of molecular wavefunctions and binding energies
by electron momentum spectroscopy. Int ] Quant Chem.
1986;29:1397-428.

McCarthy IE, Weigold E. Electron momentum spectroscopy of
atoms and molecules. Rep Prog Phys. 1991;54:789-879.

Coplan MA, Moore JH, Doering JP. (e, 2e) spectroscopy. Rev

Mod Phys. 1994;66:985-1014.

Yamazaki M, Oishi K, Nakazawa H, Zhu C, Takahashi M. Molecular
orbital imaging of the acetone S 2 excited state using time-resolved
(e, 2e) electron momentum spectroscopy. Phys Rev Lett.
2015;114:103005.

Mulliken RS. The assignment of quantum numbers for electrons
in molecules II. Phys Rev. 1928;32:761.

Hiickel E. Quantum theory of double linkings. Z Phys. 1930;60:423.
Hartree DR. The wave mechanics of an atom with a non-Coulomb
central field. Part I. Theory and methods. Proc Camb Phil Soc.
1928;24:89.

Fock V. Naherungsmethode zur L6sung des quantenmechanischen
Mehrkérperproblems. Z Phys. 1930;61:126.

Slater JC. Atomic shielding constants. Phys Rev. 1930;36:57.
Hoffman R. An extended Hiickel theory. I. Hydrocarbons. ] Chem
Phys. 1963;39:1397.

Pople JA, Segal GA. Approximate self-consistent molecular orbital
theory. III. CNDO results for AB2 and AB3 systems. ] Chem Phys.
1966;44:3289.

Roothaan C(J. Self-consistent field theory for open shells of elec-
tronic systems. Rev Mod Phys. 1960;32:179.

Hay PJ. Gaussian basis sets for molecular calculations. The repre-
sentation of 3d orbitals in transition-metal atoms. | Chem Phys.
1977,66:4377.

Yee KS. Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media. IEEE Trans
Antennas Propagat. 1966;14:302.

Taflove A, Hagness SC. Computational electrodynamics: the finite-
difference time-domain method. third edition. Norwood, MA:
Artech House; 1995.



DE GRUYTER

[33]

[34]

[35]

[36]

[37]

Simicevic N. Three-dimensional finite difference-time domain
solution of Dirac equation. 2008. arXiv:physics.comp-
ph:0812.1807v1.

Simicevic N. Finite difference-time domain solution of Dirac
equation and the Klein paradox. 2009. arXiv:quant-
ph:0901.3765v1.

Mutoh H. Extension of Maxwell’s equations for charge creation-
annihilation and its applications. In: Proceedings on 2018 Progress
in Electromagnetics Research Symposium. 2018. p. 2537-45.
Mutoh H. Extended Maxwell’s Diamond equations to unify elec-
tromagnetism, weak gravitation, and classical and quantum
mechanics and their applications for semiconductor devices.

In: Proceedings on 2019 Progress in Electromagnetics Research
Symposium. 2019. p. 1749-56.

Dirac PAM. The principles of quantum mechanics, 4th edition.
Oxford: Oxford University Press; 1958.

[38]

[39]

[40]

[41]

[42]

[43]

Simulation for formation process of atomic orbitals == 11

Peskin ME, Schroeder DV. An introduction to quantum field theory.
Boulder, Colorad: Westview; 1995.

Mandl F, Shaw G. Quantum field theory. 2nd edition. Chichester,
West Sussex, UK: Wiley; 2010.

Sakurai JJ. Modern quantum mechanics. 2nd edition. San Francisco,
CA: Addison-Wesley; 2011.

Schrédinger E. Zur Quantendynamik des Elektrons.
Sitzungsberichte der PreuRischen Akademie der Wissenschaften.
Physikalisch-mathematische Klasse. In: Proceedings of the
Prussian Academy of Sciences, Physical-mathematical class. Berlin:
Deutsche Akademie der Wissenschaften (German Academy of
Sciences); 1931. p. 63-72.

Sakurai JJ. Advanced quantum mechanics. San Francisco, CA:
Addison-Wesley; 1967.

Schiff LI. Quantum mechanics. 3rd edition. New York: McGraw-
Hill; 1970.



	1 Introduction
	2 Eight-element Dirac equation
	3 Dirac field propagation analysis by FDTD method
	3.1 Discretization for the two- and four-element Dirac equation
	3.2 Discretization for the eight-element Dirac equation
	3.3 Comparison among the two-, four-, and eight-element Dirac field propagation

	4 Simulation for formation process of atomic orbitals
	5 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


