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Abstract: Today, the use of artificial intelligence in electron
optics, as in many other fields, has begun to increase. In
this scope, we present a machine learning framework to
predict experimental cross-section data. Our framework
includes 8 deep learning models and 13 different machine
learning algorithms that learn the fundamental structure
of the data. This article aims to develop a machine learning
framework to accurately predict double-differential cross-
section values. This approach combines multiple models such
as convolutional neural networks, machine learning algo-
rithms, and autoencoders to create a more robust prediction
system. The data for training the models are obtained from
experimental data for different atomic and molecular targets.
We developed a methodology for learning tasks, mainly using
rigorous prediction error limits. Prediction results show that
the machine learning framework can predict the scattering
angle and energy of scattering electrons with high accuracy,
with an R-squared score of up to 99% and a mean squared
error of <0.7. This performance result demonstrates that the
proposed machine learning framework can be used to predict
electron scattering events, which could be useful for applica-
tions such as medical physics.

Keywords: differential cross section, machine learning algo-
rithm, regression algorithms, autoencoders, deep learning
algorithm

1 Introduction

Electron—atom/molecule collisions have been extensively
studied over the past century and remain an important
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area of research due to their wide range of applications
in various fields [1-7]. The study of electron impact ioniza-
tion has contributed significantly to our understanding of
the fundamental properties of atoms and molecules and
ionization dynamics [8-13]. In mass spectrometry, electron
ionization is employed to generate ions from gaseous
samples, which are then separated and detected based
on their mass-to-charge ratio [14,15]. Electron impact
ionization experiments allow for the study of reaction
mechanisms and kinetics of organic molecules [16-20].
In plasma physics, electron ionization plays a crucial
role in initiating and maintaining plasmas, which are
ionized gases with unique properties [21,22]. In addition,
electron ionization has implications in atmospheric phy-
sics, astrophysics, and radiation physics [23-25]. The
ongoing research in electron ionization focuses on advan-
cing our knowledge of the underlying mechanisms, exploring
new applications, and developing more accurate theoretical
models and computational methods to describe ionization
processes.

In ionization dynamics, cross-section measurements
provide valuable insights into the ionization dynamics
and help understand the underlying processes involved.
Single differential cross-section (SDCS), double differential
cross-section (DDCS), and triple differential cross-section
(TDCS) measurements provide information about the energy
and angular distributions of the emitted electrons, offering
insights into the dynamics of ionization reactions. The SDCS
represents ionization probability as a function of the scat-
tering angle or the energy of the ejected electron while
integrating over other variables. It provides information
about the angular distribution and energy dependence of
the ionization process [3]. The DDCS describes ionization
probability as a function of both the energy and scattering
angle of the ejected electron. It provides more detailed infor-
mation about the energy-angular correlation of the ionized
electrons [2,26]. The TDCS represents ionization probability
as a function of the energy and scattering angles of both the
ejected and scattered electron. TDCS measurements provide
a more comprehensive picture of the ionization process by
considering the correlations between the outgoing and scat-
tered electrons [8-13]. These measurements allow researchers
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to explore the complete scattering dynamics and energy
transfer involved in the ionization reaction.

The accuracy and reliability of the models can be eval-
uated by comparing the theoretical calculations with the
experimental data. Inconsistencies between experimental
measurements and theoretical calculations may highlight
areas where the theoretical model needs improvement, such
as incorporating additional physical effects or refining com-
putational methodologies [27,28].

In the last decade, the burgeoning development of
artificial intelligence (AI) has begun transforming many
aspects of science. Al has been introduced as an alternative
solution to many problems encountered in optics [29-34],
atomic and molecular physics [35-42], and high-energy
physics [43-46]. Al-based techniques have been used to
predict a complex relationship between input and output
data. It is one of the most promising techniques used to
improve the understanding and utilization of data. Al-based
algorithms are quite capable of predicting and classifying
physics data, but their limitations must be considered [47].
These algorithms typically require large amounts of training
data to generalize and make accurate predictions. Limited
data may lead to overfitting or under-generalization of the
model [48].

Machine learning (ML) algorithms are a subset of AL
These algorithms can learn by drawing meaningful conclu-
sions from specific data [49]. ML algorithms are used to
recognize patterns in large datasets and make decisions
based on those patterns. ML algorithms are trained using
large amounts of data and powerful computing resources.
ML algorithms aim to create models that can learn complex
tasks from data without relying on task-specific rules. By
using these algorithms, computers learn from past experi-
ences and improve performance without being explicitly
programmed [47,48]. In recent years, ML algorithms have
shown great potential in addressing complex prediction pro-
blems in optics [34] and references therein and high energy
physics [43-45]. ML algorithms have emerged as promising
tools for accurate predictions of cross-section values in
atomic and molecular physics [38,41]. By leveraging large
datasets and powerful computational algorithms, ML models
can capture complex patterns and relationships in data,
enabling more accurate predictions.

In atomic and molecular physics, experimental observa-
tions are often compared to theoretical models to validate
our understanding of the underlying physical processes.
Theoretical predictions rely heavily on the accurate predic-
tion of cross-section values, as they provide crucial infor-
mation about the probabilities of different interactions
occurring. By comparing experimental data to theoretical
predictions, physicists can test the validity of existing
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theories or search for new physics phenomena. The accu-
rate prediction of cross-section values for particle inter-
actions is a crucial aspect of physics research. However,
predicting cross-section values accurately is a highly com-
plex task. It involves considering numerous factors, such
as the properties of the interacting particles, their ener-
gies, and the specific conditions under which the collision
occurs. Traditional analytical methods often struggle to
capture the intricate relationships between these vari-
ables, leading to limited prediction accuracy. Leveraging
this potential, the article aims to develop a comprehensive
ML framework capable of accurately predicting cross-sec-
tion values for different target atom/molecule interactions
with electrons.

To achieve this, we propose integrating multiple ML
models, convolutional neural networks (CNNs), and auto-
encoders into a unified framework. CNNs are well-suited
for analyzing and extracting features from complex, high-
dimensional datasets, making them an ideal choice for
processing particle interaction data. In contrast, autoenco-
ders provide powerful unsupervised learning capabilities,
enabling the discovery of latent representations that cap-
ture essential characteristics of the input data [46]. By
combining the strengths of CNNs and autoencoders, we
aim to create a more robust prediction system that can
effectively capture the intricate relationships between input
variables and the corresponding cross-section values. This
integration will enhance the model’s ability to generalize
and make accurate predictions.

In each regression algorithm, hyper-parameter optimi-
zation is performed using the grid-search method. The data
used for training the models were obtained from experi-
mental data of particle interactions in various atomic and
molecular targets, including helium (He), neon (Ne), argon
(Ar), krypton (Kr), xenon (Xe), nitrogen (N,), oxygen (0,),
hydrogen (H), methane (CH,), water (H,0), carbon mon-
oxide (CO), ammonia (NH3), and carbon dioxide (CO,) [2].
There are several important steps to consider to ensure the
generalizability of ML algorithms when preparing training
datasets. The first of these is data collection. It should cover
all possible inputs and outputs the algorithm may encounter
for the problem under consideration. The dataset should be
cleaned by removing irrelevant or duplicate data points,
correcting errors, processing missing values, and addressing
outliers. Data cleaning ensures that the algorithm is trained
on high-quality and reliable data. Removing irrelevant or
redundant features can increase the efficiency and general-
izability of the model. Normalizing the input data to a
common scale or distribution ensures that the algorithm is
not bhiased towards features with larger magnitudes and
helps improve convergence during training. In addition,
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K-fold cross-validation to evaluate the algorithm’s perfor-
mance on multiple subsets of data help evaluate generaliza-
tion ability and reduce over-fitting by averaging performance
measures across different data segments. We will also
demonstrate its effectiveness by conducting extensive experi-
ments and evaluating its performance against existing pre-
diction methods. By combining ML, CNNs, and autoencoder,
we strive to provide physicists with a valuable tool to
enhance their understanding of particle interactions and
support future discoveries in the field.

1.1 ML framework

ML uses a layered architecture of algorithms to progres-
sively extract higher-level features from raw data. It is
made up of multiple layers of computational units that
are organized hierarchically. At the lowest level, the input
data is processed, and then the output is used to modify the
parameters of the next layer, and so on, until the desired
outcome is obtained [49,50].

The data used for the ML algorithm were a set of experi-
mental differential cross-section (DCS) data. The experi-
mental data set collected by Opal and co-workers was
used as the basis of this work [2]. The experimental data
point is characterized by a set of descriptors for the normal-
ized results of relative measurements of electron-production
cross-section differentials in angle over the 30 and 150°
range and in ejected energy over the 4-200 eV range. Pri-
mary electron energies are 500 eV for all data. The inputs for
the ML are the coordinates and energies of the scattered
electrons.

The architecture of an ML model can vary greatly
depending on the purpose and type of problem that it is
trying to solve. Generally, the model consists of an input
layer, multiple hidden layers, and an output layer. Each
layer is made up of neurons that are connected, and the
connections between the neurons are weighted. The weights
are adjusted over time as the model is trained to refine its
predictions. Once the architecture is defined, the model can
be compiled using an appropriate optimizer and loss func-
tion. An optimizer is an algorithm used to adjust the weights
of the model to improve its performance. Commonly used
optimizers include stochastic gradient descent, Adam, and
RMS prop. The loss function is used to measure the accuracy
of the model’s predictions and is usually chosen based on
the type of problem being solved. We used loss functions
including mean square error (MSE), root mean square error
(RMSE), mean absolute error (MAE), and R-squared (R
score. MSE is a measure of the average of the squares of
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the errors or deviations from the actual value. It measures
how close a predicted value is to the actual value. RMSE
measures how far off predictions are from the actual values.
It is calculated by taking the square root of the MSE. MAE
measures the average magnitude of errors in a set of pre-
dictions without considering their direction. It is the average
over the test sample of the absolute differences between
prediction and actual observation where all individual dif-
ferences have equal weight. In ML, the R? score, also known
as the coefficient of determination, is a statistical measure
that assesses the goodness-of-fit of a regression model to the
observed data. It indicates the proportion of the variance in
the dependent variable that the independent variables in
the model can explain. The R* score is calculated using the
formula R? = 1 - (SSR/SST), where SSR (sum of squares resi-
dual) represents the sum of the squared differences between
the predicted values and the actual values, and SST (total
sum of squares) represents the sum of the squared differ-
ences between the actual values and the mean of the depen-
dent variable. The R? score can range from 0 to 1. A score of 1
indicates a perfect fit, where the regression model precisely
predicts the dependent variable. A score of 0 means that the
model does not provide any improvement over simply pre-
dicting the mean of the dependent variable. R* score is a
measure that indicates how close data points are to a fitted
regression line. The higher this score, the better our model
fits our data.

A validation dataset is an important tool for evaluating
the performance of a machine-learning model. It measures
how well a model can predict unseen data which is not part
of the training dataset. The validation dataset is a subset of
the training dataset held back from the model during the
training process. The model is then tested on the validation
dataset to evaluate its performance. The performance of
the model is measured using various metrics such as RMSE,
MSE, MAE, and R* score.

Tuning hyperparameters is an important and neces-
sary step in optimizing the performance of the model
Hyperparameter tuning is the process of optimizing the
values of the hyperparameters of a model to improve its
performance. This can involve testing different combina-
tions of hyperparameter values to determine which com-
bination yields the best results. It is important to note that
hyperparameter tuning should be done systematically, as
random changes to hyperparameters can lead to subop-
timal performance and wasted time. By tuning the hyper-
parameters of a model, we can ensure that the model is
performing at its best and will generate the best results for
our data.

The model is tested with the data in the test set. The
test aims to evaluate how well the model generalizes to



4 —— Nimet Isik and Omer Can Eskicioglu

unseen data. During the test, the model should be evalu-
ated on both the training and testing datasets. The results
should then be compared to determine if the model has
improved and is ready for deployment. At the end of the
test, the algorithm with a low error value is selected by
considering the error metrics.

Finally, the model was deployed on real-world data,
and the results were compared with the expected results.
In Table 1, we present the introduction steps of the ML
framework:

In our proposed study, autoencoder is used to increase
the performance of the ML framework. Autoencoders have
different usage areas. Our study provides the extraction of
important features from the data set. Autoencoders consist
of three layers: input layer, hidden layer, and output layer.
The purpose of the architecture used is to reveal important
attributes directly or indirectly related to the result. It was
used in the data preparation stage before giving the dataset
to the ML algorithms. Autoencoders are neural networks
with equal input and output layers. It takes the neural
network input data and makes bottlenecks in the hidden
layer to extract important features. In autoencoders, the
section between the input layer and the hidden layer is
called the Encoder, and the section between the hidden
layer and the output layer is called the Decoder. It tries
to obtain a more understandable and precise result by
reconstructing the input data. Figure 1 shows the structure
of the autoencoder that is used in our study. In the pre-
training model summary of the created deep learning
model, the structure of the model, output shapes of layers,
the total number of parameters, and the values of learn-
able parameter numbers are obtained. In Figure 1, infor-
mation is obtained about the layers of this structure and
the output shape of these layers. Since the input and output
values in the layers shown in Figure 1 are a dimension of
the data to be imported, the pre-training model output is
written as “None.”

In our study, training was also conducted using different
deep learning models such as Mobilenetvl, Mobilenetv2,
Mobilenetv3-Small, MobilenetV3-Large, VGG11, VGG13, VGGIS6,
and VGG19 deep learning architectures. Figure 2 shows the

Table 1: Proposed ML framework steps
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input_2 input: | [(None, 3)]
InputLayer | output: | [(None, 3)]
dense_4 | input: | (None, 3)

Dense | output: | (None, 6)
batch_normalization_2 | input: | (None, 6)
BatchNormalization output: | (None, 6)

re_lu_2 | input: | (None, 6)

ReLU | output: | (None, 6)

dense_5 | input: | (None, 6)

Dense | output: | (None, 3)

Figure 1: Proposed autoencoder architecture in our study.

flow chart of the study. In our study, by rearranging the
dimensions of the models, our dataset was brought to a
one-dimensional state where it would be appropriate.
The Adam optimization algorithm was used in the models.
In each model, the most efficient hyperparameters were
used with the grid-search method.

2 Results

2.1 Regression algorithm results

ML frameworks were trained using 8,415 data in our
dataset. Each data point in a dataset typically corresponds
to a specific combination of secondary energy, angle, and

1) Gather data: Collect relevant data that can be used to train the ML and deep learning model

2) Pre-process data: Clean, normalize, and prepare the data for the model

3) Select an algorithm: Select the best algorithm for the problem

4) Train the model: Feed the pre-processed data into the model to allow it to learn

5) Evaluate model performance: Test the model’s accuracy on unseen data to measure its performance

6) Optimize model: Tune the model parameters to improve performance
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Figure 2: Flow chart of our proposed ML framework for predicting cross-section data.

associated DCS values. Data for a particular gas target were
recorded in a systematic way for large-scale energy and
angular distributions of electrons ejected in the collisions
between electrons and some atoms and simple molecules
(He, Ne, Ar, Kr, Xe, N,, 0,, H,, CHy, H,0, CO, NH3, and CO,).
We evaluated our model on a separate test set consisting of
2,000 data from different targets to avoid the risk of

overfitting. In this way, we construct an accurate and pre-
cise DCS predictor. The purpose of the test dataset is to
assess the model’s performance on unseen data. This eva-
luation helps determine whether the model has success-
fully learned the underlying patterns and can accurately
predict unseen data. When evaluating our model on the
test set, the ML framework was evaluated using performance
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Table 2: Regression algorithm performance results

Regression algorithm MSE RMSE MAE R® score
Linear regression 108.97 1043 760 041
Polynomial linear regression 13.71 370 231 0.92
Ridge linear regression 108.92 1043 759 0.4
Lasso linear regression 109.02 1044 7.60 0.41
Elastic net regression 109.00 1044 7.60 0.41
K nearest neighbors regression  29.90 546 3.81 0.83
Gradient boosting regression 069 0.83 049 0.99
Decision tree regression 9324 965 630 049
Random forest regression 111 1.05 0.67 0.99
Xgboost regression 42.08 648 452 077
Adaboost regression 4977  7.05 555 0.73
Partial least squares regression  108.97 1043 7.60 0.41
Bayesian ridge regression 109.03 1044 7.60 0.41

Gradient boosting regression (GBR) is the best regression model for
predicting DCS data.

metrics. To assist interpretation of the results, the MSE,
RMSE, MAE, and R? score values for each algorithm are
obtained and presented in Table 2.

The result of these algorithms varies depending on the
dataset used and the hyperparameters chosen. The quality,
diversity, and representativeness of the training data play
a crucial role in determining how well the algorithm will
perform on unseen data. When training an ML model, the
aim is to expose it to a diverse range of examples that
capture the patterns and variations present in the target
domain. By learning from a broad and representative
dataset, the model can extract meaningful features and
make accurate predictions on unseen data that shares
similar characteristics with the training set. However, it
is important to acknowledge that no dataset can perfectly
represent all possible variations and scenarios that may be

80
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40 60

20

0 20
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40 60 80
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encountered in the real world. There is always a degree of
uncertainty and potential for the model to encounter new
patterns or situations that it has not encountered during
training. To mitigate this, ML models are evaluated on
their performance on the training data and their ability
to generalize to unseen data. This is typically done by eval-
uating the model on a separate validation or test set that
was not used during the training process. Models trained
on specific datasets may perform well on similar data, but
their performance may degrade when applied to signifi-
cantly different or out-of-distribution data. Generally, the
best results are obtained when the hyperparameters are
tuned to the dataset and when a combination of algorithms
is used. The results can also include the RMSE and the MAE
of the model. We evaluated our model on a separate test
set, achieving an R? score of 99%.

The results show that gradient boosting regression
(GBR) is the best regression model for predicting experi-
mental data. It’s MSE is 0.69, RMSE is 0.83, MAE is 0.49, and
R? score is 0.99. GBR is a powerful ML algorithm that com-
bines multiple weak learners to create a strong learner. It
is an ensemble method that uses decision trees as its base
learners and sequentially combines them to create a more
accurate prediction. GBR is more accurate than other
regression models such as linear regression, support vector
machines, and random forests. Additionally, GBR is more
robust and less prone to overfitting than other models.
Therefore, GBR is the best choice for predicting experi-
mental data.

Figure 3a shows a comparison of the predicted values
with the experimental test data. It shows that the predicted
values closely match the experimental data, indicating that
the prediction model is accurate and reliable. The results
show that ML algorithms can accurately predict cross-

) .

' -

U TS =

0 20 40 60 80 100 120

Integral Predicted DCS

0 20 40 60 80 100 120

Integral Measured DCS

Figure 3: (a) Ground truth vs prediction scatter plot outlier. (b) The comparison of the integral of the predicted data with measured data for the

He atom.
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Table 3: Autoencoder + regression algorithm performance results

Predictability of ML framework in cross-section data == 7

Table 4: Deep learning models’ performance results

Autoencoder (A) + regression MSE RMSE MAE R?score
algorithm

A + Linear regression 7858 886 6.39 0.61
A + Polynomial linear regression 7172 847 514 0.64
A + Ridge linear regression 78.57 886 6.39 0.61
A + Lasso linear regression 129.88 1140 8.65 0.35
A + Elastic net regression 12133 11.01 835 0.39
A + K nearest neighbors 211 145 0.98 0.99
regression

A + Gradient boosting regression  64.37 8.02 3.85 0.68
A + Decision tree regression 12733 1.28 844 036
A + Random forest regression 5723 757 421 071
A + Xgboost regression 78.86 888 638 0.60
A + Adaboost regression 74.06 861 6.58 0.63
A + Partial least squares 9718 986 722 0.51
regression

A + Bayesian ridge regression 7856 886 6.38 0.61

The autoencoder + KNN algorithm is the best model for predicting DCS data.

sections for a variety of atomic and molecular targets with
high accuracy and precision. In Figure 3a, we present the
performance evaluation results of an ML algorithm using
K-fold cross-validation on a test dataset consisting of 2,000
samples. The performance metric, in this case, is reported
as a result of the evaluation, with an error value of 0.09. K-

Table 5: GBR prediction and ground truth values for He DCS data

Deep learning models MSE RMSE MAE R? score
1D MobilenetV1 1375.57 37.08 20.12 0.73
1D MobilenetVv2 217.90 14.76 9.49 0.72
1D MobilenetV3 - Small 299.91 17.31 8.61 0.62
1D MobilenetV3 - Large 376.83 19.41 9.83 0.52
1D VGG 273.04 16.52 6.47 0.65
1D VGG13 226.28 15.04 6.41 071
1D VGG16 177.47 13.32 7.01 0.77
1D VGG19 306.49 17.50 12.49 0.61

VGG16 and MobilenetV2 models show acceptable results.

fold cross-validation is a technique used to assess the per-
formance and generalization capability of an ML algo-
rithm. It involves dividing the dataset into K equally-sized
subsets or “folds.” The algorithm is trained on K-1 folds and
evaluated on the remaining fold, repeating this process K
times to ensure that each fold acts as the evaluation set
once. This technique provides a robust estimate of the
model’s performance by averaging the evaluation results
across all K iterations. The performance metric value of
0.09 shows the algorithm’s predictive capability on the
given test dataset. The specific interpretation and implica-
tions of this value may depend on the nature of the problem
being addressed and the context of the study. Figure 3a

Ground truth Prediction Ground truth Prediction Ground truth Prediction Ground truth Prediction
221 22.45 16.0 16.65 M7 41.48 1.81 2.06
4.22 3.91 2.57 2.90 29.9 29.58 34.7 31.97
334 32.15 2.3 2.63 0.77 0.82 10.8 10.33
3.08 2.90 211 20.79 1.25 1.20 26.9 27.70
233 22.60 1.57 1.74 21.6 21.91 8.3 8.04
0.74 0.76 3.44 3.35 1.07 1.07 60.0 58.75
9.9 9.17 22.4 21.76 10.3 10.51 413 40.87
7.0 6.52 37N 4.04 12.3 12.40 16.6 17.46
1.47 1.4 344 34.26 3.36 3.16 26.7 26.56
0.385 0.37 52 5.16 9.0 9.47 2.35 2.38
3.89 3.90 1.23 1.24 3.04 3.27 3.67 3.88
9.6 10.42 2.23 2.59 6.2 6.46 25.7 25.80
4,98 453 1.5 12.45 0.52 0.58 14.8 13.27
6.8 6.75 8.3 8.06 2.24 2.53 24.9 24.19
5.4 5.49 13.1 13.52 3.55 3.84 233 24.81
13.4 12.89 14.6 15.14 6.6 6.87 3.86 3.90
2.84 2.67 14.5 14.57 3.13 3.13 1.03 112
20.3 20.75 13.9 13.40 25.9 26.38 4.08 4.23
26.8 29.25 4.83 6.89 2.27 2.32 2.51 2.37
30.9 30.40 17 1.87 3.13 3.55 8.0 8.41
137 1.47 9.2 9.43 5.4 5.19 0.295 0.14
32.3 33.93 39.3 36.57 6.9 6.66 52 5.09
2.05 2.15 16.3 13.69 1.83 2.07 1.15 1.24
15.5 15.56 4.29 4.31 0.407 0.29 6.3 6.28
1.07 1.10 3.75 3.74 21.4 21.26 2.36 2.30
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shows the effectiveness of the ML algorithm on the test
dataset, as determined through K-fold cross-validation. It
provides valuable insights into the algorithm’s predictive
performance. Figure 3b compares the integral of the pre-
dicted data and measured DCS values for the He target. By
comparing the integral of the predicted and measured
values, we can assess the accuracy and validity of our frame-
work. Figure 3b indicates good agreement between the inte-
gral of the predicted and measured DCS values.

2.2 Autoencoder + regression algorithm
performance results

The autoencoder is used to extract important data features

and reduce the error rates of the regression algorithms. In
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the training process, the autoencoder learns the basic
properties of the data and reflects these properties to the
hidden layer. Thus, the autoencoder can highlight impor-
tant features in the data and remove unnecessary details.
In Table 3, autoencoder layers were added before the
regression algorithms, and the architecture was updated.
In this case, the autoencoder + KNN algorithm showed
nearly the same result as the GBR. The results in Table 3
were obtained by using the autoencoder and regression
algorithms sequentially. Although this structure increases
the performance of some models to a certain extent, per-
formance decreases have been observed in a few models.
In general, increases were observed in the general average
of the error metrics of all algorithms. It has been observed
that the performance of the K-nearest neighbors (KNN)
regression algorithm has increased significantly, increasing
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Figure 4: Differences between the experimental and predicted data for helium, neon, hydrogen, and ammonia DCS.
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Figure 5: Comparison of experimental data with predicted DCS data for helium.

the MSE value from 29.90 to 2.11, the RMSE value from 5.46
to 1.45, the MAE value from 3.81 to 0.98, and the R? score
from 0.83 to 0.99.

2.3 Deep learning algorithms

In the present study, the dataset was trained with different
layers of deep learning models. Mobilenet and VGG archi-
tectures, which are frequently used in image classification
and object recognition, are arranged according to one-
dimensional input values. Table 4 shows the error metrics
of these models. VGG16 and MobilenetV2 have been observed
to produce acceptable results.

The deep learning models with different layers used in
our study did not achieve as good results compared to the
regression algorithms.

The comparison results between GBR prediction and
ground truth values outlier for prediction cross-section
data for He is given in Table 5. The results of the GBR

showed good agreement with the DCS data. The MSE of
the model was 0.69, which indicates a strong correlation
between the two datasets. The results of this study demon-
strate that GBR is a powerful tool for accurately predicting
DCS data.

The results of ML algorithm models will depend on the
type of model and training data. The differences between
the experimental data and ML predictions on the training data
for some atoms and molecules are presented in Figure 4. The
GBR algorithm proposed in the study predicted the experi-
mental data with a very small margin of error. The results
show that the algorithm captures the underlying complexity
and diversity of the data, even when it deviates from the main
trend.

In Figure 5, we compare the experimental data and the
predicted DCS data for helium using the GBR. A close align-
ment between the black line (experimental data) and the
red line (predicted data using GBR) indicates a successful
prediction, suggesting that the ML model has effectively
learned the relationships and patterns present in the data.



10 = Nimet Isik and Omer Can Eskicioglu

3 Conclusion

ML algorithms can facilitate the analysis and prediction
tasks in physics compared to traditional methods. They
can process large datasets quickly and perform complex
calculations, allowing researchers to focus on higher-level
analysis and interpretation. Thus, the ML algorithms are
an important step forward in developing accurate and reli-
able computational methods for prediction. In this context,
we proposed a novel ML framework to predict the cross-
section data. In our study, the most accurate results were
tried to be obtained by using 13 different ML and 8 dif-
ferent deep learning algorithms and autoencoder. Within
the scope of the results, the GBR algorithm reached the
lowest error values compared to other algorithms. The
GBR algorithm reached R* value of 0.99 by performing
hyperparameter optimization without any processing. Low
error values were also obtained with the autoencoder +
KNN regression algorithm.

It is important to note that while ML algorithms can be
powerful tools for prediction in physics, they should be
used alongside established physics principles, theories,
and models. Combining the strengths of ML with physics
domain expertise can lead to valuable insights and advance-
ments in the field of physics.
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