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Abstract: Motivated by the generic dynamical property of
most quadratic Lorenz-type systems that the unstable mani-
folds of the origin tending to the stable manifold of nontri-
vial symmetrical equilibria forms a pair of heteroclinic
orbits, this technical note reports a new 3D sub-quadratic
Lorenz-like system: ( )= −x a y x˙ , = + −y c x y x z˙ d

3 3

and = − +z bz x y˙

3 . Instead, the unstable manifolds of non-
trivial symmetrical equilibria tending to the stable manifold
of the origin creates a pair of heteroclinic orbits. This drives
one to further investigate it and reveal its other hidden
dynamics: Hopf bifurcation, invariant algebraic surfaces,
ultimate bound sets, globally exponentially attractive sets,
existence of homoclinic and heteroclinic orbits, singularly
degenerate heteroclinic cycles, and so on. The main contri-
butions of this work are summarized as follows: First, the
ultimate boundedness of that system yields the globally expo-
nentially attractive sets of it. Second, the existence of another
heteroclinic orbits is also proved by utilizing two different
Lyapunov functions. Finally, on the invariant algebraic sur-

face =z x
a

3

4

4
3 , the existence of a pair of homoclinic orbits to

the origin, and two pairs of heteroclinic orbits to two pairs of
nontrivial symmetrical equilibria is also proved by utilizing a
Hamiltonian function. In addition, the correctness of the the-
oretical results is illustrated via numerical examples.

Keywords: sub-quadratic Lorenz-like system, globally expo-
nentially attractive set, homoclinic orbit, heteroclinic orbit,
Lyapunov function

1 Introduction

Since Li et al. [1,2] introduced the method for proving the
existence of heteroclinic orbits of the Chen system: Lya-
punov function combining the definitions of both α-limit
set and ω-limit set, has been extensively applied to many
Lorenz-type systems: the Yang-Chen system [3], the T and
Lü system [4], the general Lorenz family [5], the unified 3D
and 4D Lorenz-type systems [6–9], the complex Lorenz
system [10], the 5D hyperchaotic system [11] and others
[12,13]. This is because, as Fishing principle [14], this method
itself has the advantage: one need not consider the mutual
disposition of stable and unstable manifolds of a saddle
equilibrium in contrast with another technique, such as
Poincaré map [15], boundary value and contraction map
[16], Melnikov method [17], a method of tracing the stable
and unstable manifolds [18], etc. More importantly, the
occurrence of heteroclinic orbit is often a prelude to the
birth of chaos [16], and thus involves with numerous appli-
cations [19–24], such as electrophysics, heart tissue, neurons,
cell signaling, planetary field and so on.

However, in neighboring Lorenz-type systems, the sce-
nario for the unstable manifolds of nontrivial symmetrical
equilibria tending to the stable manifold of the origin that
creates a pair of heteroclinic orbits has seldom been con-
sidered in any publications to the best of our knowledge.
Therefore, the following questions naturally arise:
1) Whether does there exist such a model with a pair of

heteroclinic orbits to stable origin and a pair of non
trivial symmetrical equilibria?

2) If there is such a model, whether is the aforementioned
technique (combining the definitions of both α-limit set



* Corresponding author: Zhenpeng Li, School of Electronic and
Information Engineering (School of Big Data Science), Taizhou University,
Taizhou, Zhejiang, 318000, China, e-mail: lizhenpeng@amss.ac.cn
* Corresponding author: Guiyao Ke, School of Information, Zhejiang
Guangsha Vocational and Technical University of Construction,
Dongyang, Zhejiang 322100, China; School of Information Engineering,
GongQing Institute of Science and Technology, Gongqingcheng, 332020,
China, e-mail: guiyao.ke@zjgsdx.edu.cn
* Corresponding author: Haijun Wang, School of Electronic and
Information Engineering (School of Big Data Science), Taizhou University,
Taizhou, Zhejiang, 318000, China, e-mail: 2021033@tzc.edu.cn
Jun Pan: Department of Big Data Science, School of Science, Zhejiang
University of Science and Technology, Hangzhou, 310023, China,
e-mail: panjun78@qq.com
Feiyu Hu: College of Sustainability and Tourism, Ritsumeikan Asia
Pacific University, Jumonjibaru, Beppu, Oita, 874-8577, Japan,
e-mail: hu-feiyu@apu.ac.jp
Qifang Su: School of Electronic and Information Engineering (School of
Big Data Science), Taizhou University, Taizhou, Zhejiang, 318000, China,
e-mail: 147935050@qq.com

Open Physics 2023; 21: 20220251

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/phys-2022-0251
mailto:lizhenpeng@amss.ac.cn
mailto:guiyao.ke@zjgsdx.edu.cn
mailto:2021033@tzc.edu.cn
mailto:panjun78@qq.com
mailto:hu-feiyu@apu.ac.jp
mailto:147935050@qq.com


and ω-limit set, and Lyapunov function) applicable to
prove the existence of its heteroclinic orbit?

3) Except for the heteroclinic orbit, whether do there exist
other rich dynamics like the quadratic Lorenz-type
system family [3,5,7,13,25,26] – for example, chaotic
attractors, sustained or transient chaotic sets, Hopf bifur-
cation, invariant algebraic surfaces, ultimate bound sets,
globally exponentially attractive sets, homoclinic orbits,
singularly degenerate heteroclinic cycles, and so on.

In the present work, we devote to solving these problems
one after another. Indeed, this new proposed system is
found to have some other interesting dynamics, which are
the essential differences with most of Lorenz or Lorenz-like
systems.
1) There exist another heteroclinic orbits to a pair of

unstable equilibria and another pair of stable equilibria.

2) On the invariant algebraic surface =z x
a

3

4

4
3 , the exis-

tence of two pairs of heteroclinic orbits to two pairs
of nontrivial symmetrical unstable equilibria is also
proved by utilizing a Hamiltonian function.

Therefore, the study of such a system is particularly sig-
nificant for both theoretical research and practical appli-
cations, motivating the work to be presented in this article.

2 New sub-quadratic Lorenz-like
system and main results

In this section, we introduce the following sub-quadratic
Lorenz-like system

⎪

⎪
⎧
⎨
⎩

= −
= + −
= − +

x a y x

y c x y x z

z bz x y

˙ ,

˙ d ,

˙ ,

3 3

3

( )

(2.1)

where the dot denotes the derivative with respect to the
time t and a b c d, , ,( ) are arbitrary real parameters. Obviously,
the highest power of system (2.1) is 4

3

.

Remark 2.1. On the one hand, for =d 0, system (2.1)
reduces to the one [9], which has multitudinous potential
hidden Lorenz-like attractors. On the other hand, Zhang
and Chen [27] and Kuznetsov et al. [28] proposed the gen-
eralization of the second part of the celebrated Hilbert’s
16th problem, i.e., the number and mutual disposition of
attractors and repellers depend on the degree of polyno-
mials of chaotic multidimensional dynamical systems, if
they exist. Therefore, it is worthwhile to study system (2.1).

The goal of the present article will mainly devote to
investigating the complex dynamics of system (2.1) as the
quadratic analog [5], especially the role played by the
term x

3 .
The first result of this article deals with the local beha-

viors of system (2.1) and is summarized in the following
propositions.

Proposition 2.1. The distribution of the equilibrium points of
system (2.1) is summarized in Table 1 when the parameters
≠a 0, b c d, , vary in 3� , where =E 0, 0, 0

0

( ), =Ez

∈z z0, 0, �{( )∣ }, ⎜=
⎛

⎝
±⎛⎝

⎞
⎠

− +
E

bd b d bc

1,2

4

2

2 2

3

2

, ±⎛⎝
⎞
⎠

− +bd b d bc4

2

2 2

3

2

,

⎞

⎠

⎟
⎟

⎜ ⎟
⎛
⎝

⎞
⎠

− +

b

bd b d bc
2 2

4

2

2

and =E
3,4

⎜
⎛

⎝
±⎛⎝

⎞
⎠

+ +bd b d bc4

2

2 2

3

2

, ±⎛⎝
⎞
⎠

+ +bd b d bc4

2

2 2

3

2

,

⎞

⎠

⎟
⎟

⎜ ⎟
⎛
⎝

⎞
⎠

+ +

b

bd b d bc
2 2

4

2

2

.

Remark 2.2. Remarkably, system (2.1) is continuous but not
smooth at E

0

and Ez, which associate with homoclinic
orbits and singularly degenerate heteroclinic cycles, and
thus the creation of strange attractors. In fact, as illustrated
in Figures 7 and 8 in Section 7, with a small perturbation of
−bz, the collapse of singularly degenerate heteroclinic
cycles or explosions of the stable Ez generates two-scroll
Lorenz-like attractors. In that sense, it is demanding work
to consider system (2.1), especially the role played by the
linear term dy.

Proposition 2.2. When ≠a 0, ∈b d,

2� , and ≠c 0, the local
dynamical behaviors of E

0

of system (2.1) are totally sum-
marized in Table 2.While =b 0, − ≠c z 0, ≠a 0, and ∈d � ,
Table 3 lists the local dynamics of Ez of system (2.1).

Proposition 2.3. When ≠a 0, > <bd bc0, 0, and +b d
2 2

>bc4 0, E
1,2

exist and are unstable.

Table 1: The distribution of the equilibrium points

b bd bc ++b d bc42 2 Distribution of equilibria

=0 Ez

≠0 >0 ≥0 E
0

, E
3,4

<0 >0 E
0

, E
1,2

, E
3,4

=0 E
0

, E
1,2

<0 E
0

≤0 >0 E
0

, E
3,4

≤0 E
0
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Proposition 2.4. Set = ≠ >W a b c d a bd, , , 0, 0,{( )∣ ≥bc 0}

⋃ ≠ > < + ≥a b c d a bd bc b d bc, , , 0, 0, 0, 4 0

2 2{( )∣ } ⋃
≠ ≤ >a b c d a bd bc, , , 0, 0, 0{( )∣ }, =W a b, ,

1

{( ∈c d W, :)

+ − >a b d 0, + >− − +
0

ab bd ad b d bc6 3 4

6

4

2

2 2

, >
⎫
⎬
⎭

+
0

a b d bc2 4

3

2 2

,

=W W W\
2 1

and

= ∈ <
= ∈ =
= ∈ >

W a b c d W

W a b c d W

W a b c d W

, , , : Σ 0 ,

, , , : Σ 0 ,

, , , : Σ 0 ,

1

1

1

1

2

1

1

3

1

{( ) }

{( ) }

{( ) }

where = − =+ − − − − + +
Σ 0

a b d ab bd ad d b a b d bc6 3 4

6

3 3 4

6

2 2( )( ) ( ) . E
3,4

are unstable when ∈a b c d W, , ,

1

1( ) , whereas E
3,4

are asympto-
tically stable when ∈a b c d W, , ,

1

3( ) . For ∈a b c d W, , ,

1

2( ) , Hopf
bifurcation occurs at E

3,4

.

Remark 2.3. On the one hand, the existence of hidden or
transient chaotic attractors involves the dynamics of E

0

and E
1,2,3,4

. On the other hand, the creation of singularly

degenerate heteroclinic cycles is closely connected with the
bifurcation of Ez. Particularly for =a d b, , 10, 1, 3( ) ( ) and
< <c0 12,870 , the solutions of system (2.1) either directly

tend to stable E
3,4

or exhibit transient chaotic sets before
converging to E

3,4

.

Our second result on the global boundedness of system
(2.1) can be summarized as follows.

Proposition 2.5. For ∀ >λ 0, >a 0, <d 0, and >b 0, the
following set

=
⎧
⎨
⎩

+ + ⎛
⎝ −

+ ⎞
⎠ ≤

⎫
⎬
⎭

x y z λ x y z

c λa

RΩ , ,

3 2

3

4 2

2

2
3( )∣ (2.2)

is the ultimate bound and positively invariant set of system
(2.1), where

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

−
+
+

≥ − ≥ −

+
−

− ≥ ≥

+
≤ − ≤

R

b c λa

d b d

a d b d

b c λa

a b a

d a b a

c λa

b d b a

3 2

36

, 2 3 , 2 ,

3 2

8 3 2

, 3 2 , 3 4 ,

3 2

9

, 2 , 3 4 .

2

2 2

2 2

2

( )

( )

( )

( )

( )

In fact, Proposition 2.5 suggests the following Proposition
2.6, implying that the ultimate bound and positively invariant
sets coincide with globally exponentially attractive sets.

Proposition 2.6. Set∀ >λ 0, >a 0, <d 0, and >b 0, =V X
1

( )

+ + − +
λ x y z

c λa
4 2

3 2

3

2
3 ( ) ,

(i) = >ε 0

a

1

4

3

, + ≤d 0

a2

3

, ≤a b4 3 , = +
−L

b c λa

a b a
1

3 2

8 3 2

2 2( )

( )
, or

(ii) = − >ε d2 0

2

, + ≥d 0

a2

3

, + ≥b d2 0, = − +
+L

b c λa

d b d
2

3 2

36

2 2( )

( )
,

or

(iii) = >ε b 0

3

, − ≤b a3 4 0, + ≤b d2 0, = +
L

c λa

3

3 2

9

2( ) .

If >V X Li1

( ) and >V X Li1 0

( ) , =i 1, 2, 3, then we arrive at the
following exponential inequalities:

− ≤ − − −
V X L V X L e .i i

ε t t

1 1 0

i 0( ) [ ( ) ] ( )

By the definition, the sets

= ≤

=
⎧
⎨
⎩

+ + ⎛
⎝ −

+ ⎞
⎠ ≤

⎫
⎬
⎭

X V X L

λ x y z

c λa

L

Ψ

3 2

3

i

i

i

1
1

4 2

2

3

{ ∣ ( ) }

are globally exponentially attractive sets of system (2.1),
where =i 1, 2, 3.

The proof of Propositions 2.5 and 2.6 involves Lagrange
multiplier method, Lyapunov function and comparison
principle.

Table 2: The dynamical behaviors of E
0

b a d‒ c Type of E0 Property of E0

<0 <0 <0 Saddle-focus A 3D W
u

loc

>0 Saddle A 1D W
s

loc

and a 2D W
u

loc

=0 <0 Nonhyperbolic A 2D W
c

loc

and a 1D W
u

loc

>0 Saddle A 1D W
s

loc

and a 2D W
u

loc

>0 <0 Node-focus A 2D W
s

loc

and a 1D W
u

loc

>0 Saddle A 1D W
s

loc

and a 2D W
u

loc

=0 <0 <0 Nonhyperbolic A 1D W
c

loc

and a 2D W
u

loc

>0 A 1D W
s

loc

, a 1D W
c

loc

and a 1D W
u

loc

=0 <0 A 3D W
c

loc

>0 A 1D W
s

loc

, a 1D W
c

loc

and a 1D W
u

loc

>0 <0 A 2D W
s

loc

and a 1D W
c

loc

>0 A 1D W
s

loc

, a 1D W
c

loc

and a 1D W
u

loc

>0 <0 <0 Saddle-focus A 1D W
s

loc

and a 2D W
u

loc

>0 Saddle A 2D W
s

loc

and a 1D W
u

loc

=0 <0 Nonhyperbolic A 1D W
s

loc

and a 2D W
c

loc

>0 Saddle A 2D W
s

loc

and a 1D W
u

loc

>0 <0 Node-focus A 3D W
s

loc

>0 Saddle A 2D W
s

loc

and a 1D W
u

loc

Table 3: The dynamical behaviors of Ez

c z‒ d a‒ Property of Ez

>0 A 1D W
s

loc

, a 1D W
c

loc

and a 1D W
u

loc

<0 <0 A 2D W
s

loc

and a 1D W
c

loc

=0 A 3D W
c

loc

>0 A 1D W
s

loc

, a 1D W
c

loc

and a 1D W
u

loc
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Our last result can be stated as the following proposition.

Proposition 2.7. Assume >a d, <c 0, − − =d 0

c

b

3

2

2 and
− ≥b a3 4 0. Then the following statements hold.

a) Theω-limit of any trajectories of system (2.1) is one of the
equilibrium points. Namely, close trajectories do not
exist in system (2.1).

b) System (2.1) has no homoclinic orbits but only four het-
eroclinic orbits: the two ones are +

γ joining E
1

and E
0

or
E

3

, and the other two are −
γ joining E

2

and E
0

or E
4

.

The proof of Proposition 2.7 is based on the Lyapunov
function, concepts of both α-limit set andω-limit set [1–7,10–13],
which has its roots in the work of Li et al., and see [1] for a
survey. In this work, this approach has been extended to study
the sub-quadratic Lorenz-type system (2.1).

This article is organized as follows. In Section 3, we dis-
cuss the local dynamics of system (2.1) and prove Propositions
2.2–2.4, such as the distribution of the equilibrium points,
stability and Hopf bifurcation. In Sections 4 and 5, the exis-
tence of ultimate bound sets, globally exponentially attractive
sets and invariant algebraic surfaces are studied, and the
proofs of Propositions 2.5 and 2.6 are finished. The proof of
Proposition 2.7 is given in Section 6. Section 7 illustrates the
singularly degenerate heteroclinic cycles and nearby chaotic
attractors. In Section 8, we present a short discussion about
the future work, especially the relationship between power of
the polynomials and chaos.

3 Local behaviors and proofs of
Propositions 2.2–2.4

The sketch of proofs of Propositions 2.2–2.4 is presented as
follows.

Proof of Proposition 2.2. The proof of Proposition 2.2 easily
follows from linear analysis and is omitted here. □

Proof of Proposition 2.3. Due to the symmetry of E
1,2

, it
suffices to consider E

1

and the characteristic equation at it
is

+ + − + ⎡
⎣

− −

−
+ ⎤

⎦⎥
−

+
=

λ a b d λ

ab bd ad

b d bc

λ

a b d bc

6 3 4

6

4

2

2 4

3

0.

3 2

2 2 2 2

( )

(3.1)

Let us prove that E
1,2

are unstable.

Suppose E
1,2

are stable when some ≠ > <a bd bc0, 0, 0,

+ >b d bc4 0

2 2 . According to Routh-Hurwitz criterion and Eq.

(3.1), we have + − >a b d 0, − −ab bd ad6 3 4

6

− >+
0

b d bc4

2

2 2

,

− >+
0

a b d bc2 4

3

2 2

and + − ⎛
⎝

− −
a b d

ab bd ad6 3 4

6

( ) − ⎞
⎠ +

+b d bc4

2

2 2

>+
0

a b d bc2 4

3

2 2

, which in fact do not hold at all.
If not, the condition <a 0, <b 0, <d 0, and >c 0 has to be

satisfied. If + − >a b d 0, then < +d a b. If −− −ab bd ad6 3 4

6

>+
0

b d bc4

2

2 2

, then − − >ab bd ad6 3 4 0 must hold. One
has − −ab bd a6 3 4 < − + − +d ab b a b a a b6 3 4( ) ( ) = −

+ +a ab b4 3

2 2( ) = ⎟⎜−
⎛
⎝
⎛
⎝
⎞
⎠ + +

⎞
⎠

b 4 3

a

b

a

b

2

2

= − ⎛
⎝
⎞
⎠ >b f 0

a

b

2 with

= + +f x x x4 3

2( ) . Notice the determinant of f x( ) is
= − × × = − <Δ 1 4 4 3 47 0

2 . Consequently, >f x 0( ) for
∈x � , and hence, − − <ab bd ad6 3 4 0 always holds. A con-

tradiction occurs. Therefore, E
1,2

are not stable at all.
The proof is finished. □

Proof of Proposition 2.4. Due to the symmetry of E
3,4

,
it suffices to consider E

3

, and the characteristic equation
at it is

+ + − +
⎡

⎣⎢
− −

+
+ ⎤

⎦⎥
+

+
=

λ a b d λ

ab bd ad

b d bc

λ

a b d bc

6 3 4

6

4

2

2 4

3

0.

3 2

2 2 2 2

( )

(3.2)

According to Routh-Hurwitz criterion and Eq. (3.2), E
3,4

are
unstable when ∈a b c d W, , ,

1

3( ) , whereas E
3,4

are asympto-
tically stable when ∈a b c d W, , ,

1

1( ) .
For ∈a b c d W, , ,

1

2( ) , it follows that Eq. (3.2) has a
pair of conjugate purely imaginary roots λ

1,2

= ±ωi =

± − −
− + +

i
a ab bd ad

b d a

2 6 3 4

3 3 3

( )

( )
and one negative real root =λ

3

− + − <a b d 0( ) . In addition, the transversal condition
holds. In fact, one has

=
− + +

+ − − − + + −
≠

= ∗

λ

c

b b d a

a b d ab bd ad ω a b d

dRe

d

3 3

6 6 3 4

0,

c c

1

2

2 2

( )

( )

[( )( )][ ( ) ]

where =∗ −
c

b d

b

Δ

4

2 2 2

with = + − − −
− +Δ

a b d ab bd ad

d b a

6 3 4

3 3

( )( ) . Therefore,
system (2.1) undergoes Hopf bifurcation at E

3,4

, as shown in
Figure 1. The proof is over. □

Next, by applying the project method [29,30], we com-
pute the Lyapunov coefficients to determine the stability of
the Hopf bifurcation at E

3,4

.
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First, by the time and coordinate transformations

⎟⎜→
⎛
⎝

⎞
⎠

x y z t x y z

x

t, , , , , ,

1

3

,

3

2
3

( )

one transforms system (2.1) into the resulting equivalent
system

⎪

⎪

⎧
⎨
⎩

= −
= + −
= − +

x a y x

y x cx y xz

z x bz xy

˙ ,

˙ 3 d ,

˙ 3 .

3

2

2

( )

( )

( )

(3.3)

Obviously, E
3,4

of system (2.1) correspond to =±E

± ±x x, ,

x

b
0

0

3
0

4

( ) of system (3.3), where x
0

satisfies

− − =x bdx bc 0

4 2 , i.e., = + +
x

bd b d bc

0

4

2

2 2

. It is easy to

verify the transversality of ±E under the conditions of
Proposition 2.4.

In fact, the characteristic equation of +E is

+ + − + − −

+ + − + =

λ x a b d λ x ab ad bd

x λ x abd ax

3 3 3 2 3

3 9 2 4 0,

3

0

2
2

0

4

0

2

0

6

0

2

( ) [

] ( )
(3.4)

from which, = ± = ± − − +∗ ∗
λ ωi x ab ad bd x3 3 2 3 3

1,2
0

4

0

2( ) [ ( ) ]

i and = − ∗
λ x3

3
0

2( ) + − <a b d 0( ) are a pair of conjugate
purely imaginary roots and one negative real root when

∈a b c d W, , ,

1

2( ) . Further, one obtains

=
− + − − − + − +

+ − − + + + −
≠

=
∗ ∗ ∗

∗ ∗

∗

λ

c

x b a b d ab ad bd x abd a x

b d bc ab ad bd x a b d

dRe

d

3 3 3 2 3 4 6 16

4 3 2 3 3 3

0,

c c

1

0 0

2

0

2

2 2

0

2 2

( )

[ ( )( ( ) ) ( ) ]

[ ( ) ( ) ]

where =∗ −
c

b d

b

Δ

4

2 2 2

with = + − − −
− +Δ

a b d ab bd ad

d b a

6 3 4

3 3

( )( ) and =∗
x

0

+ + ∗
bd b d bc4

2

2 2

. Therefore, the transversal condition holds.

Second, the following transformation

⎜ ⎟→
⎛
⎝

+ + +
⎞
⎠

x y z x x y x z

x

b

, , , ,

0
0

3

0

4

( )

converts system (3.3) into the resulting equivalent one

⎛

⎝
⎜
⎞

⎠
⎟ =

⎛

⎝

⎜
⎜

−
− −

−

⎞

⎠

⎟
⎟
⎛

⎝
⎜
⎞

⎠
⎟

+
⎛

⎝

⎜
⎜

−
− − +

+ −

⎞

⎠

⎟
⎟

+
⎛

⎝

⎜
⎜

−
− − +

+ −

⎞

⎠

⎟
⎟
+
⎛

⎝
⎜⎜−

⎞

⎠
⎟⎟

x

y

z

ax a

dx dx x

x x bx

x

y

z

ax x

x xz x dx x dxy

x xy x x x bxz

ax

x x z x dx dx y

x x y x x bx z

x z

x y

˙

˙

˙

3 0

3 3 3

3 3 3

3

9 6 6

9 6 6

9 3 3

9 3 3

0

3

3

.

0

2

0

4

0

2

0

3

0

5

0

3

0

2

0

2

0

2

0

3
2

0

0

2

0

4
2

0

3

0

2

0

2
3 2

0

2

0

3
3 2

3

3

(3.5)

From Eq. (3.5), we arrive at the following multilinear
symmetric functions:

=
⎛

⎝

⎜
⎜

−
− + − + +

+ + − +

⎞

⎠

⎟
⎟

B x y

ax x y

x x y x y x dx y x d x y x y

x x y x y x x y x b x y x y

,

6

9 12 6

9 12 6

,

0 1

1

0

2

1

3

3

1
0

3

1

1

0 1

2

2

1

0

2

1

2

2

1
0

4

1

1

0 1

3

3

1

( ) ( ) ( )

( ) ( )

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

−

− + + −

+ + +

+ + +

− + +

⎞

⎠

⎟
⎟
⎟
⎟
⎟

C x y z

ax y z

x x y z x y z x y z x dx y z

d x y z x y z x y z

x x y z x y z x y z x x y z

b x y z x y z x y z

, ,

6

18 18

6

18 18

6

,

1

1

1

0 3

1

1 1

3

1 1

1

3
0

2

1

1

1

2

1

1 1

2

1 1

1

2

0 2

1

1 1

2

1 1

1

2
0

3

1

1

1

3

1

1 1

3

1 1

1

3

( )

( )

( )

( )

( )

=
⎛

⎝
⎜
⎜
− + + +

+ + +

⎞

⎠
⎟
⎟D x y z u

x y z u x y z u x y z u x y z u

x y z u x y z u x y z u x y z u

, , ,

0

18

18

.
3

1

1 1 1

3

1 1 1

1

3 1 1

1

1 3

2

1

1 1 1

2

1 1 1

1

2 1 1

1

1 2

( ) ( )

( )

Owing to the complex algebraic structure of system
(3.5) itself, it is a taxing work to compute the explicit
form of its first coefficient l

1

at present. However, we are
able to manage this computation to determine the stability
of the Hopf bifurcation points when facing a concrete pro-
blem, e.g., = −a c d b, , , 1.1061, 3, 2, 4( ) ( ). In this case, ±E of
system (3.5) are ′ = ± ±±E 6 , 6 6 , 9( ), whose eigenvalues of
associated Jacobian matrix are = ±λ i17.5405

1,2

and
= −λ 55.9098

3

. The transversality condition is calculated:

≈ − >
= =−∗

1.3854 0

λ

c
c c

dRe

d

3

2

( ) . Moreover, the corresponding

first coefficient l
1

is listed in the following proposition.

Proposition 3.1. For = −a c d b, , , 1.1061, 3, 2, 4( ) ( ), system
(3.5) undergoes Hopf bifurcation at ′±E , of which the first
Lyapunov coefficient is ≈ >l 14.9575 0

1

, and thus, the Hopf
bifurcation points at ′±E are both weakly unstable foci. Since

≈ − <
= =−∗

1.3854 0

λ

c
c c

dRe

d

3

2

( ) , the Hopf bifurcation at ′±E is

supercritical. Namely, for > = −∗c c 3, but close to = −∗c 3,
there are unstable limit cycles around the asymptotically
stable equilibrium points ′±E .

Proof. In accordance with the procedures of the project
method [29, 30], we perform computations and obtain

=
⎛

⎝
⎜ +

+

⎞

⎠
⎟p i

i

1.106

19.9098 17.5405

17.8156 6.4011

, =
⎛

⎝
⎜

−
− +

−

⎞

⎠
⎟q

i

i

i

0.3908 0.3179

0.0023 0.0360

0.0064 0.0205

, =h
11

⎛

⎝
⎜
−
−
−

⎞

⎠
⎟

6.7806

104.0702

80.4487

, =
⎛

⎝
⎜

+
+
+

⎞

⎠
⎟h

i

i

i

2.4078 0.5406

44.1761 86.0970

64.0832 41.0264

20

, = −G 29.915

21

i356.34 and = =l G 14.9575

1

1

2

21

. Because of

≈ − <
= =−∗

1.3854 0

λ

c
c c

dRe

d

3

2

( ) , the Hopf bifurcation at ′±E is

supercritical. Namely, set = − > ∗c c2.9 , there exists a pairs
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of unstable limit orbits around the asymptotically stable
equilibrium points ″ = ± ±±E 2.4693, 15.0571, 9.2952( ), as
shown in Figure 2. This completes the proof. □

Remark 3.1. For the case of =l 0

1

, one has to compute the
second Lyapunov exponent l

2

or the third or even higher
order ones to determine the stability of the bifurcated per-
iodic orbit by aid of the method [30].

4 The ultimate boundedness and
the proof of Proposition 2.5

In this section, one considers the ultimate bound sets of
system (2.1). First, we prove the global stability of E

0

and
the following proposition holds.

Proposition 4.1. Consider system (2.1) and assume >a 0,

<c 0, + − =d 0

c

b

3

2

2 and − ≥b a3 4 0. E
0

is a single and
globally asymptotically stable equilibrium point of system
(2.1). Consequently, system (2.1) has no homoclinic orbits to E

0

.

Proof. Set =ϕ q x t x y t y z t z; , ; , ;

t 0

0

0

0

( ) ( ( ) ( ) ( )) be any one
solution of system (2.1) through the initial value

=q x y z, ,

0

0

0

0

( ). For >a 0, <c 0, + − =d 0

c

b

3

2

2 and
− ≥b a3 4 0, one constructs the first Lyapunov function

= ⎡
⎣
⎛
⎝ − ⎞

⎠ − + − +

+
−

− + ⎤
⎦

U ϕ q b b

a

y x bz x

b a

a

bc x x

1

2

4

3

3 4

4

2

t1

0

2 4 2

2 4 2

3

3 3

( ( )) ( ) ( )

( )

with the derivatives

= ⎛
⎝ − ⎞

⎠ − −

− − + ≤

U ϕ q

t

b b

a

d a y x

b bz x

d

d

4

3

0

t1

0

2.1

2

4 2
3

( ( ))
( )( )

( )

( ) (4.1)

for − >b a3 4 0, and the second one

⎜ ⎟=
⎡

⎣
⎢ − +

⎛
⎝

−
+

⎞
⎠

⎤

⎦
⎥U ϕ q y x

a

ac

x x

1

2

9

16

2

2

3

t2

0

2

2

2 4

2

3 3( ( )) ( )

with

= − − ≤
U ϕ q

t

d a y x

d

d

0

t2

0

2.1

2

( ( ))
( )( )

( )

(4.2)

for − =b a3 4 0, respectively.
Furthermore, it follows Eqs. (4.1) and (4.2) that

= 0

U ϕ q

t

d

d

2.1

t1,2

0

∣
( ( ))

( ) yields that q
0

is one of the equilibria, i.e.,

≡ ≡ ≡x t x y t y z t z˙ ; ˙ ; ˙ ; 0.

0

0

0

( ) ( ) ( ) (4.3)

As a fact,∀ ∈t � , = − =x t x a y x˙ ; 0

0

( ) ( ) suggests =x t x
0

( )

and =y t q˙ , 0

0

( ) .

20
108

20

8.5

x

010

9z

y

0 -10

9.5

-10

10

-20-20

E3

E4

Figure 1: Phase portrait of system (2.1) with =a c d b, , , 1.1061, 3, 2, 4( ) ( )

and = ± ±x y z, , 14.3969, 14.6969, 8.6

0

1,2

0

1,2

0

1( ) ( ). This figure illustrates that
system (2.1) undergoes Hopf bifurcation at = ± ±E 14.6969, 14.6969, 9

3,4

( ).

Figure 2: Phase portrait of system (3.3) with =a c d b, , , 1.1061, 2.9, 2, 4( ) ( )

and = ± ±x y z′ , ′ , ′ 2.2693, 15.1571, 9.1952

0

,″

0

,″

0

( ) ( ). This figure also
illustrates that both unstable bifurcated periodic orbits around

= ± ±±E ″ 2.4693, 15.0571, 9.2952( ) tend to the same periodic orbit.
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Since = − =Q ϕ q z x 0

t a0

3

4

4
3( ( )) is one of invariant alge-

braic surfaces of system (2.1) with cofactor a4

3

for − =b a3 4 0,

∈ − = ∩
⎧
⎨
⎩

+ =
⎫
⎬
⎭

−
ϕ q a y x x x0 2 0

t

ac

0

2

3

2 4
3 3( ) { ( ) } leads

to (4.3).
Therefore, E

0

is globally asymptotically stable. And
hence, there does not exist a homoclinic orbit in system
(2.1). □

To prove Proposition 2.5, we consider the following
two propositions in advance.

Proposition 4.2. Define a set

= ⎧
⎨
⎩

+ +
−

= ≠ ⎫
⎬
⎭

x y z

x

n

y

k

z l

l

n k lΓ ˜, ˜ , ˜

˜ ˜ ˜

1, , , 0 ,

1

2

2

2

2

2

2

( )∣
( )

and = − + +H z y x z l y x˜, ˜ , ˜ ˜ 2 ˜ ˜

2 2 2( ) ( ) , ∈x y z˜, ˜ , ˜ Γ

1

( ) . Then we
obtain the conclusion

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

−
≥ ≥

−
≥ ≥

≤ ≤

∈
H

k

k l

k n k l

n

n l

n k n l

l k l n l

max

, , 2 ,

, , 2 ,

4 , 2 , 2 .

x y z˜, ˜ , ˜ Γ

4

2 2

2 2 2 2

4

2 2

2 2 2 2

2 2 2 2 2

1

( )

Proof of Proposition 4.2. The statement directly follows
from the Lagrange multiplier method. □

Proposition 4.3. If >a 0, <d 0, >λ 0 and >b 0 with

=

⎧

⎨
⎪

⎩
⎪

+
−

+

⎛
⎝ − ⎞

⎠
=

⎫

⎬
⎪

⎭
⎪

+ +

+

+x y z

λ x y
z

Γ , , 1

b c λa

a

b c λa

d

c λa

c λa

4

3 2

24

2

3 2

36

3 2

6

2

3 2

36

3

2 2 2

( )
( ) ( ) ( )

and = + + ⎛
⎝ − ⎞

⎠
+

V X λ x y z
c λa

1

4 2

3 2

3

2

3( ) , then we obtain the

following result:

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

−
+
+

≥ − ≥ −

+
−

− ≥ ≥

+
≤ − ≤

∈
V

b c λa

d b d

a d b d

b c λa

a b a

d a b a

c λa

b d b a

max

3 2

36

, 2 3 , 2 ,

3 2

8 3 2

, 3 2 , 3 4 ,

3 2

9

, 2 , 3 4 .

x y z, , Γ

1

2 2

2 2

2

1

( )

( )

( )

( )

( )

( )

Proof of Proposition 4.3. The proof is easily proved by
using Proposition 4.2.

Let us take

= = =λ x x y y z z˜, ˜ , ˜,

2
3

=
+

= −
+

=
+

n

b c λa

a

k

b c λa

d

l

c λa3 2

24

,

3 2

36

,

3 2

36

.

2

2

2

2

2

2( ) ( ) ( )

Then we have

= + + ⎛
⎝ −

+ ⎞
⎠

= + + −

V x y z λ x y z

c λa

x y z l

, ,

3 2

3

˜ ˜ ˜ 2 ,

1

4 2

2

2 2 2

3( )

( )

(4.4)

)(
=
⎧
⎨
⎪

⎩⎪
+
−

+
−

=
⎫
⎬
⎪

⎭⎪

= ⎧⎨
⎩

+ +
−

= ≠ ⎫
⎬
⎭

+ +

+

+x y z

λ x y
z

x y z

x

n

y

k

z l

l

n k l

Γ , , 1

˜, ˜ , ˜

˜ ˜ ˜

1, , , 0 .

b c λa

a

b c λa

d

c λa

c λa

4

3 2

24

2

3 2

36

3 2

6

2

3 2

36

2

2

2

2

2

2

3

2 2 2

( )∣

( )∣
( )

( ) ( ) ( )

By solving the following conditional extremum problem of
V x y z, ,

1

( ) in (4.4), we can easily derive

⎪

⎪
⎧
⎨
⎩

= + + −

+ +
−

=

V x y z x y z l

x

n

y

k

z l

l

max ˜, ˜ , ˜ max ˜ ˜ ˜ 2 ,

s.t.

˜ ˜ ˜

1.

1

2 2 2

2

2

2

2

2

2

( ) { ( ) }

( ) (4.5)

According to Proposition 4.1, we can easily obtain the
aforementioned conditional extremum problem (4.5) as
follows:

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

−
+
+

≥ − ≥ −

+
−

− ≥ ≥

+
≤ − ≤

∈
V

b c λa

d b d

a d b d

b c λa

a b a

d a b a

c λa

b d b a

max

3 2

36

, 2 3 , 2 ,

3 2

8 3 2

, 3 2 , 3 4 ,

3 2

9

, 2 , 3 4 .

x y z, , Γ

1

2 2

2 2

2

( )

( )

( )

( )

( )

( )

□

Proof of Proposition 2.5. The ultimate boundedness of
solutions of system (2.1) follows from Proposition 4.2
and 4.3.

Define the following positively definite and radially
unbound Lyapunov function:

= + + ⎛
⎝ −

+ ⎞
⎠V x y z λ x y z

c λa

, ,

3 2

3

.

1

4 2

2

3( ) (4.6)

The derivative of V x y z, ,

1

( ) along the trajectory of system
(2.1) is

= + + ⎛
⎝ −

+ ⎞
⎠

= − + − ⎛
⎝ −

+ ⎞
⎠

+
+

V

t

λa

x

x

t

y

y

t

z

c λa z

t

λa x dy b z

c λa

b c λa

d

d

4

3

d

d

2

d

d

2

3 2

6

d

d

4

3

2 2

3 2

6

3 2

18

.

1

2.1

4 2

2

2

3

3

( )

( )

(4.7)

Let = 0

V

t

d

d

1 . Then, one can obtain the surface Γ:
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)(

⎪

⎪
=
⎧
⎨
⎩

+
−

+
−

=
⎫
⎬
⎪

⎭⎪

+ +

+

+

x y z

λ x y

z

Γ , ,

1

b c λa

a

b c λa

d

c λa

c λa

4

3 2

24

2

3 2

36

3 2

6

2

3 2

36

3

2 2

2

( )
( ) ( )

( )

(4.8)

is an ellipsoid in 3� for >a 0, <d 0, >λ 0 and >b 0.
Outside Γ, <V X˙

0

1

( ) , while inside Γ, >V X˙

0

1

( ) . Thus, the
ultimate boundedness for system (2.1) can only be reached
on Γ. Because the V X

1

( ) is a continuous function, and Γ is a
bound closed set, then the function (4.6) can reach its max-
imum value =V Xmax

1

2�( ) ( ∈X Γ) on the surface Γ

defined in (4.8).
Obviously, ≤ ∈x y z V X V X X, , max , Γ

1 1

{( )∣ ( ) ( ) } con-
tains the solutions of system (2.1). By solving the following
conditional extremum problem, one can obtain the max-
imum value of the function (4.6):

)(

⎧

⎨

⎪
⎪

⎩

⎪
⎪

= + + ⎛
⎝ −

+ ⎞
⎠

+
−

+
−

=+ +

+

+

V x y z λ x y z

c λa

λ x y
z

max ˜, ˜ , ˜ max

3 2

3

,

s.t. 1.

b c λa

a

b c λa

d

c λa

c λa

1

4 2

2

4

3 2

24

2

3 2

36

3 2

6

2

3 2

36

3

3

2 2 2

( )

( ) ( ) ( )

(4.9)

According to Proposition 2.2, we can easily obtain the
aforementioned conditional extremum problem (4.9) as
follows:

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

−
+
+

≥ − ≥ −

+
−

− ≥ ≥

+
≤ − ≤

R

b c λa

d b d

a d b d

b c λa

a b a

d a b a

c λa

b d b a

3 2

36

, 2 3 , 2 ,

3 2

8 3 2

, 3 2 , 3 4 ,

3 2

9

, 2 , 3 4 .

2

2 2

2 2

2

( )

( )

( )

( )

( )

This completes the proof. □

5 Global attractive set and the
proof of Proposition 2.6

By aid of comparison principle and Lyapunov function,
one in this section considers the globally exponentially
attractive set of system (2.1) and the proof of Proposition
2.6 follows.

Proof of Proposition 2.6. It follows Eq. (4.7) that one has

= −
⎡
⎣⎢

+ + ⎛
⎝ −

+ ⎞
⎠
⎤
⎦⎥

+ ⎡
⎣ − ⎤

⎦

+ + +
⎡
⎣⎢
⎛
⎝ −

+ ⎞
⎠ −

+
+ ⎤

⎦

V

t

ε λ x y z

c λa

λ ε

a

x

ε d y ε z

c λa

bz

b c λa

z

d

d

3 2

3

4

3

2

3 2

3

2

2 3 2

3

.

1

2.1

4 2

2

4

2

2

2

3

3

( )

( )

( )

(1) If = = >ε ε 0

a

1

4

3

, + ≤d 0

a2

3

, ≤a b4 3 and

= +
−L

b c λa

a b a
1

3 2

8 3 2

2 2( )

( )
, then

≤ − +
⎡
⎣⎢
⎛
⎝ −

+ ⎞
⎠ −

+
+ ⎤

⎦

= − + ⎛
⎝ − ⎞

⎠ −
−

+

+
+

≤ − +

= − −
+
−

= − ⎡
⎣⎢

−
+
−

⎤
⎦⎥

= − ⎡
⎣⎢

−
+
−

⎤
⎦⎥

= − −

∈

V

t

ε V X ε z

c λa

bz

b c λa

z

ε V X

a

b z

b a

c λa z

a c λa

ε V X F z

ε V X

b c λa

a b

ε V X

b c λa

ε b a

ε V X

b c λa

a b a

ε V X L

d

d

3 2

3

2

2 3 2

3

4

3

2

2 3 4

9

3 2

4 3 2

27

max

3 2

6 2 3

3 2

6 3 2

3 2

8 3 2

.

z

1

2.1

1 1 1

2

2

1 1

2

2

1 1 1

1 1

2 2

1 1

2 2

1

1 1

2 2

1 1 1

�

( )

( )

( )
( )

( )

( )

( ) ( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

[ ( ) ]

( )

(2) If = − >ε d2 0

2

, + ≥d 0

a2

3

, + ≥b d2 0 and

= − +
+L

b c λa

d b d
2

3 2

36

2 2( )

( )
, then

≤ − +
⎡
⎣⎢
⎛
⎝ −

+ ⎞
⎠ −

+
+ ⎤

⎦⎥

= − − +

+
+

+ −
+

≤ − +

= − +
+
+

= − ⎡
⎣⎢

−
+
+

⎤
⎦⎥

= − ⎡
⎣⎢

−
+

− +
⎤
⎦⎥

= − −

∈

V

t

ε V X ε z

c λa

bz

b c λa

z

ε V X b d z

b d

c λa z

d c λa

ε V X F z

ε V X

b c λa

b d

ε V X

b c λa

ε b d

ε V X

b c λa

d b d

ε V X L

d

d

3 2

3

2

2 3 2

3

2

2 2

3

3 2

2 3 2

9

max

3 2

18

3 2

18

3 2

36

.

z

1

2.1

2 1 2

2

2

2 1

2

2

2 1 2

2 1

2 2

2 1

2 2

2

2 1

2 2

2 1 2

�

( )

( )

( ) [ ]

( )
( )

( )

( ) ( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

[ ( ) ]

( )
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(3) If = >ε b 0

3

, − ≤b a3 4 0, + ≤b d2 0 and

= +
L

c λa

3

3 2

9

2( ) , then

≤ − +
⎡
⎣⎢
⎛
⎝ −

+ ⎞
⎠ −

+
+ ⎤

⎦⎥

< − +
⎡
⎣⎢
⎛
⎝ −

+ ⎞
⎠ −

+
+ ⎤

⎦⎥

= − + − ⎛
⎝ −

+ ⎞
⎠ +

+

= − +
+

= − ⎡
⎣⎢

−
+ ⎤

⎦⎥

= − −

V

t

ε V X ε z

c λa

bz

b c λa

z

ε V X ε z

c λa

bz

b c λa

z

ε V X ε b z

c λa b c λa

ε V X

b c λa

ε V X

c λa

ε V X L

d

d

3 2

3

2

2 3 2

3

3 2

3

2 3 2

3

3 2

3

3 2

9

3 2

9

3 2

9

.

1

2.1

3 1 3

2

2

3 1 3

2

2

3 1 3

2

2

3 1

2

3 1

2

3 1 3

( )

( )

( )

( )

( ) ( )
( )

( )
( )

( )
( )

[ ( ) ]

( )

In all, we have

− ≤ − =− −
V X L V X L e i, 1, 2, 3.i i

ε t t

1 1 0

i 0( ) [ ( ) ] ( ) (5.1)

By the definition, taking upper limit on both sides of the
above inequality (5.1) as → +∞t results in

≤ =
→+∞

V X L ilim , 1, 2, 3.

t

i1

( )

Namely, the sets

= ≤

=
⎧
⎨
⎩

+ + ⎛
⎝ −

+ ⎞
⎠ ≤

⎫
⎬
⎭

→∞
X t V X L

x y z λ x y z

c λa

L

Ψ lim

, ,

3 2

3

i

t

i

i

1
1

4 2

2

3

{ ( )∣ ( ) }

( )∣

are the globally exponentially attractive sets of system (2.1),
where =i 1, 2, 3. This completes the proof. □

Remark 5.1.
1) When + =c λa3 2 0, E

0

is globally asymptotically stable.
2) When =c 0 and − =b d, +y z

2 2 is an invariant alge-
braic surface with cofactor d2 .

3) While − = = −b d
a2

3

, − + +x y z
c

a

3

2

4 2 2
3 is another invar-

iant algebraic surface with cofactor d2 .

Remark 5.2. When ≥ >a b4 3 0, the inequality =Q

− ≥z x 0

a

3

4

4
3 holds.

6 Homoclinic and heteroclinic orbit

For the sake of discussion, let =ϕ q x t x y t y z t z; , ; , ;

t
1

0

1

0

1

0

1

0( ) ( ( ) ( ) ( ))

(resp. =ϕ q
t

2

0( ) x t x y t y z t z; , ; , ;

2

0

2

0

2

0( ( ) ( ) ( ))) be any one solu-

tion of system (2.1) through the initial value =q
1

0

x y z, ,

1

0

1

0

1

0( )

(resp. =q x y z, ,

2

0

2

0

2

0

2

0( )). Let −
γ (resp. +

γ ) be the branch of
the unstable manifoldW E

u

2

( ) (resp.W E
u

1

( )) corresponding
to − <+x 0 (resp. >+x 0) for large negative t, i.e.,

=− − −
γ ϕ q ϕ q

t t2

0

2

0{ ( )∣ ( ) = − − ∈+ + + −x t x y t y z t z W; , ; , ;

u

2

0

2

0

2

0( ( ) ( ) ( )) },

= = ∈+ + +
+ + + +γ ϕ q ϕ q x t x y t y z t z W; , ; , ;

t t

u

1

0

1

0

1

0

1

0

1

0{ ( )∣ ( ) ( ( ) ( ) ( )) }, ∈t � .
Put the first Lyapunov function

= ⎡
⎣
⎛
⎝ − ⎞

⎠ − + − +

+
−

− − + ⎤
⎦

V ϕ q b b

a

y x bz x

b a

a

bc x x

1

2

4

3

3 4

4

2

t i
2

0
2 4 2

2 4 2

3

3 3

( ( )) ( ) ( )

( )

for − >b a3 4 0, and the second one

⎜ ⎟=
⎡

⎣
⎢ − +

⎛
⎝
−

−
+

⎞
⎠

⎤

⎦
⎥V ϕ q y x

a

ac

x x

1

2

9

16

2

2

3

t i
3

0
2

2

2 4

2

3 3( ( )) ( )

for − =b a3 4 0 and then =z x
a

3

4

4
3 .

It follows that

= ⎛
⎝ − ⎞

⎠ − −

− − +

V ϕ q

t

b b

a

d a y x

b bz x

d

d

4

3

t i
2

0

2.1

2

4 2
3

( ( ))
( )( )

( )

( )
(6.1)

and

= − −
V ϕ q

t

d a y x

d

d

,

t i
3

0

2.1

2

( ( ))
( )( )

( )

(6.2)

respectively, =i 1, 2.
Combining Lyapunov functions V ϕ q

t i
2,3

0( ( )) defined
above and concepts of α-limit set, ω-limit set, we rigorously
prove the existence of the heteroclinic orbit of system (2.1),
i.e., the outline of proof for Proposition 2.7, which is similar to
the smooth Lorenz-like systems in [1–13] and is sketched here.

First, we formulate the following conclusion.

Proposition 6.1. Consider >a d, <c 0, − − =d 0

c

b

3

2

2 and
− ≥b a3 4 0. The following two assertions are true.

(i) If ( ) ( )=V ϕ q V ϕ q
t i t i

2,3

0

2,3

0

1 2

( ) ( ) with <t t
1 2

, then q
i

0 is an
equilibrium point of system (2.1).

(ii) If → −∞t , =ϕ q Elim

t i

0

1,2

( ) and ≠q E
i

0

1,2

, then

>V E V ϕ q
t i

2,3 1,2 2,3

0( ) ( ( )), =i 1, 2.

Complex dynamics of a sub-quadratic Lorenz-like system  9



Proof. (i) For >a d, <c 0, − − =d 0

c

b

3

2

2 and − ≥b a3 4 0,

it follows Eqs. (6.1) and (6.2) that ≤ 0

V ϕ q

t

d

d

2.1

t i2,3

0( ( ))

( )

. Based on

the hypothesis of (i), = 0

V ϕ q

t

d

d

2.1

t i2,3

0( ( ))

( )

holds for all ∈t t t,

1 2

( ),

and thus suggests that q
i

0 is one of the equilibria, i.e.,

≡ ≡ ≡x t x y t y z t z˙ ; ˙ ; ˙ ; 0.

i i i

0 0 0( ) ( ) ( ) (6.3)

In fact, ∀ ∈t � , = − =x t x a y x˙ ; 0

i

0( ) ( ) yields =x t x
i

0( )

and =y t y˙ ; 0

i

0( ) .

Since = − =Q ϕ q z x 0

t i a

0

3

4

4
3( ( )) is an invariant alge-

braic surface with cofactor a4

3

for − =b a3 4 0, ∈ϕ q
t i

0( )

− = ∩a y x 0{ ( ) }
⎧
⎨
⎩
− + =

⎫
⎬
⎭

−
x x2 0

ac2

3

2 4
3 3 leads to (6.3).

(ii) First, we prove the fact: >V E V ϕ q
t i

2,3 1,2 2,3

0( ) ( ( )),
∀ ∈t � by reduction to absurdity. In fact, ∃ ∈t

0

� , such
that ( )< ≤V E V ϕ q0

t i
2,3 1,2 2,3

0

0

( ) ( ) . Then the aforementioned

result (i) reads that q
i

0 is one of the equilibria of the system.

But ≠q E
i

0

1,2

, this contradicts the facts that =→−∞ϕ qlimt t i

0( ) E
1,2

.

Hence, it follows that >V E V ϕ q
t i

2,3 1,2 2,3

0( ) ( ( )) for all ∈t � . □

Based on Proposition 6.1, the proof of Proposition 2.7
easily follows.

Proof of Proposition 2.7. (a) Because of ≤ 0

V ϕ q

t

d

d

t i2,3

0( ( ))
for

>a d, <c 0, − − =d 0

c

b

3

2

2 and − ≥b a3 4 0, we have

≤ ≤V ϕ q V q0 ,

t i i
2,3

0

2,3

0( ( )) ( ) (6.4)

for ∀ ∈t � , i.e., =→+∞
∗

V ϕ q V qlimt t i i
2,3

0

2,3

0( ( )) ( ) exist. This
implies that V ϕ q

t i
2,3

0( ( )) are bound for ≥t 0. Namely,
x t x,

i

0( ), y t y,

i

0( ) and z t z,

i

0( ) are all bounded, i.e., ϕ q
t i

0( )

is bound for ∀ ≥t 0. Let the ω-limit set of the orbit ϕ q
t i

0( )

be qΩ

i

0( ), i.e., ∀ ∈∼
q qΩ

i

0( ), ∈∼
ϕ q qΩ

t i

0( ) ( ). Namely, ∀ ∼
ϕ q

t
( ),

≥t 0, ∃ → ∞tn , → ∞n , such that = ∼
→+∞ϕ q ϕ qlimn t i t

0

n

( ) ( ),
which also suggests

( )= = =∼
→+∞

∗
V ϕ q V ϕ q V qlim const.

t

n

t i i
2,3 2,3

0

2,3

0

n

( ( )) ( ) ( )

Therefore,∀ <t t
1 2

such that ( ) ( )=∼ ∼
V ϕ q V ϕ q

t t2,3 2,3

1 2

( ) ( ) . On the
basis of Proposition 6.1, ∼q is one of equilibria of system (2.1).

(b) Assume γ t q,

i

0( ) is a homoclinic orbit to E
0

or

E
1,2,3,4

through an initial condition ∉q E E,

i

0

0 1,2,3,4

{ }, i.e.,

=→±∞γ t q ulim ,t
i

0( ) , ∈u E E,

0 1,2,3,4

{ }. Since ≤ 0

V ϕ q

t

d

d

t i2,3

0( ( ))
,

we have

≤ = −∞ ≤

≤ ∞ =

V u V γ q V γ t q

V γ q V u

0 , ,

, ,

i i

i

2,3 2,3

0

2,3

0

2,3

0

2,3

( ) ( ( )) ( ( ))

( ( )) ( )
(6.5)

i.e., =V γ t q V u,

i
2,3

0

2,3

( ( )) ( ), ∀ ∈t � . It follows from Proposi-

tion 6.1 that ∈q E E,

i

0

0 1,2,3,4

{ }, which is a contradiction.
Hence, there is no homoclinic trajectories in system (2.1).

According to statement (a), each branch of the
unstable manifold W

u has ω-limit, which is one of equili-
bria p̃.

Because of >V E V E
2,3 1,2 2,3 0,3,4

( ) ( ) for >a d, <c 0,

− − =d 0

c

b

3

2

2 and − ≥b a3 4 0, p̃ has to be either E
0

or
E

3

or E
4

. Due to the symmetry of system (2.1) with respect to
the z-axis, ±

γ tends to E
0

, or E
3

or E
4

, obtaining in this way
three pairs of heteroclinic orbits to E

1,2

and E
0

or E
3

or E
4

.
Figures 3 and 4 verify correctness of the theoretical result.
The proof is completed. □

Next, we discuss global bifurcation of the invariant

algebraic surface: = −Q z x
a

3

4

4
3 with cofactor − a4

3

.

For − =b a3 4 0 and → ∞t , one has − =z x 0

a

3

4

4
3 ,

which converts system (2.1) into the following one:

⎪

⎪

⎧
⎨
⎩

= −

= + − ≠ ∈

x a y x

y c x y

a

x a c

˙ ,

˙ d

3

4

, 0, .

5
3

3 �

( )

(6.6)

When =d a, it is easy to see that system (6.6) is a
Hamiltonian system with the Hamiltonian function:

= − + − +H x y axy

a

y

c

x

a

x,

2

3

4

9

32

.

2 4 8
3 3( ) (6.7)

At this time, system (6.6) has the equilibrium points:

= =

⎛

⎝

⎜
⎜±
⎛

⎝
⎜
⎜

− + ⎞

⎠
⎟
⎟ ±

⎛

⎝
⎜
⎜

− + ⎞

⎠
⎟
⎟

⎞

⎠

⎟
⎟P P

a a a a

0, 0 ,

2

,

2

c

a

c

a

0 1,2

2

3

2

3

3

2

3

2

( )

for

− + ≥

=

⎛

⎝

⎜
⎜±
⎛

⎝
⎜
⎜

+ + ⎞

⎠
⎟
⎟ ±

⎛

⎝
⎜
⎜

+ + ⎞

⎠
⎟
⎟

⎞

⎠

⎟
⎟

a a

c

a

P

a a a a

3

0,

2

,

2

c

a

c

a

2

3,4

2

3

2

3

3

2

3

2

for + + ≥a a 0

c

a

2

3 . Moreover, the existence of homo-
clinic and heteroclinic orbits of system (6.6) is summarized
in the following propositions, as depicted in Figures 5
and 6.

Proposition 6.2. If + + >a a ac8 2 16 54 0

2 4 , system (2.1)
has a pair of homoclinic orbits to E

0

:
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⎟⎜

= ± + −

<
⎛

⎝
+ + ⎞

⎠

y x x

c

a

x

a

x x

a a ac

3

2

9

16

,

8 2 16 54

9

.

2 4

2

8

2 4

3 3

3

2

∣ ∣ Proposition 6.3. (1) If − + >a a 0

c

a

2

3 , system (2.1) has a
pair of heteroclinic orbits to E

1,2

:

Figure 3: Phase portraits of system (2.1) with =c d b, , 10, 3, 5( ) ( ), = =a aa : 5, b :

15

4

( ) ( ) and = ± ±E 11.1803, 11.1803, 5

1,2

( ). These figures illustrate
that system (2.1) has two heteroclinic orbits to E

1,2

and E
0

.

Figure 4: Phase portraits of system (2.1) with =c d b, , 2, 1, 9( ) ( ), = =aa : 5, b : a

27

4

( ) ( ) and = ± ±E 5.1962, 5.1962, 1

1,2

( ). These figures illustrate that
system (2.1) has another two heteroclinic orbits to E

1,2

and = ± ±E 14.6969, 14.6969, 4

3,4

( ).

Complex dynamics of a sub-quadratic Lorenz-like system  11



Figure 5: Phase portraits of systems (a): (2.1) and (b): (6.6) with =a c d b, , , 3, 1, 3, 4( ) ( ). Both figures illustrate that systems (a): (2.1) and (b): (6.6) have
two homoclinic orbits to E

0

and P
0

.

Figure 6: Phase portraits of systems (a): (2.1) and (b): (6.6) with =a c d b, , , 3, 7, 3.0, 4( ) ( ). Both figures illustrate that systems (a): (2.1) and (b): (6.6)
have two heteroclinic orbits to E

1

and E
2

, E
3

and E
4

, P
1

and P
2

, P
3

and P
4

.
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= ± + − +
⎛

⎝
⎜
⎜

− + ⎞

⎠
⎟
⎟ −

⎛

⎝
⎜
⎜

− + ⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

− + ⎞

⎠
⎟
⎟

<
⎛

⎝
⎜
⎜

− + ⎞

⎠
⎟
⎟

y x x

c

a

x

a

x

a a
c

a

a a

a

a a

x

a a

3

2

9

16 2

3

2 2

9

16 2

,

2

.

c

a

c

a

c

a

c

a

2 4

2

8

2

3

3

2

3

2

2

2

3

4

2

3

3 3

3

2

∣ ∣

Figure 7: For (a) =b 0, (b) =b 0.06, =a c d, , 4, 600, 2( ) ( ) and = ± ± ×x y, 1.3, 1.3 10

0

3,4

0

3,4
4( ) ( ) , (P1) =z 200

0

2 , (P2) =z 0

0

3 , (P3) =z 300

0

4 , phase
portraits of system (2.1). (a) and (b) illustrate that there exist chaotic attractors near the singularly degenerate heteroclinic cycles with small >b 0.

Figure 8: For (a) =b 0, (b) =b 0.06, =a c d, , 4, 700, 2( ) ( ) and = ± ± ×x y, 0.13, 1.3 10

0

5,6

0

5,6
7( ) ( ) , (S

1

) =z 701

0

5 , (S
2

) =z 705

0

6 , (S
3

) =z 709

0

7 , phase
portraits of system (2.1). (a) and (b) illustrate that explosions of the stable Ez also create the Lorenz-like attractor with a small perturbation of >b 0.
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(2) While + + >a a 0

c

a

2

3 , system (2.1) has another
pair of heteroclinic orbits to E

3,4

:

= ± + − +
⎛

⎝
⎜
⎜

+ + ⎞

⎠
⎟
⎟

−
⎛

⎝
⎜
⎜

+ + ⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

+ + ⎞

⎠
⎟
⎟

<
⎛

⎝
⎜
⎜

+ + ⎞

⎠
⎟
⎟

y x x

c

a

x

a

x

a a

c

a

a a

a

a a

x

a a

3

2

9

16 2

3

2 2

9

16 2

,

2

.

c

a

c

a

c

a

c

a

2 4

2

8

2

3

3

2

3

2

2

2

3

4

2

3

3 3

3

2

∣ ∣

7 Singularly degenerate
heteroclinic cycle

A singularly degenerate heteroclinic cycle is an important
concept when studying quadratic Lorenz-like system
family, the collapse of which is one route to chaos or
hyperchaos [7,8,10,11,25,26,31,32]. However, the occurrence
of this scenario does not happen in the cubic Lorenz-type
system [12]. Therefore, a question naturally arises:
Whether does there exist such dynamical behavior in a
sub-quadratic Lorenz-like system?

In this section, we illustrate strange attractors through
collapse of singularly degenerate heteroclinic cycles and
explosions of stable isolated equilibria Ez of system (2.1)
and present the following numerical simulations.

Numerical result 7.1. Assume =b 0. When < <d a0 ,
− >c z 0 and → ∞t , the unstable manifold W P

u( )

( =P z0, 0,

1

( )) tends to the stable manifold W Q
u( )

( =Q z0, 0,

2

( )) with − <c z 0

2

, forming singularly degen-
erate heteroclinic cycles, as depicted in Figure 7(a).
Furthermore, some Lorenz-like chaotic attractors can be
generated near the singularly degenerate heteroclinic
cycles with a small perturbation of >b 0, as depicted in
Figure 7(b).

Numerical result 7.2. Assume =b 0. When < <d a0 ,
− <c z 0 and → ∞t , the explosions of the stable Ez also

create Lorenz-like attractors with a small perturbation of
>b 0, as illustrated in Figure 8.

8 Conclusion

In contrast to most existing quadratic Lorenz-type system
family with a pair of heteroclinic orbits to a saddle in the

origin and a pair of nontrivial symmetrical stable equili-
bria, little seems to be known about the oneswith heteroclinic
orbits to the stable origin and a pair of nontrivial symmetrical
unstable equilibria. To achieve this target, this article pro-
posed a new 3D sub-quadratic Lorenz-like system and proved
the existence of heteroclinic orbits of the type just described.
Meanwhile, the existence of another two pairs of heteroclinic
orbits to the corresponding two pairs of nontrivial symme-
trical equilibria was also proved by utilizing the same
Lyapunov function. By applying a Hamiltonian function, the
existence of homoclinic and heteroclinic orbits was also dis-

cussed on the invariant algebraic surface =z x
a

3

4

4
3 . Under

some constraints of its parameters, we proved that globally
exponentially attractive sets coincide with ultimate bound
and positively invariant sets by aid of Lyapunov functions.
Moreover, numerical simulations verified the correctness of
the theoretical analysis.

It should be noticed that the term x
3 not only reserves

most important dynamics of quadratic Lorenz-type system,
but also gives rise to new ones just mentioned, broadening
the field of chaos-based engineering applications. However,
other unsolved and yet key problems need further thorough
and complete investigations, such as estimation of the prac-
tical global stability boundary, the existence of hidden chaotic
attractors, the relationship between the degrees of that
system and the distribution and number of limit cycles and
attractors. Therefore, we work all out to develop the future
work that circles around the further inquiry into that system,
completing its mathematical treatment.
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