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Abstract: Motivated by the generic dynamical property of
most quadratic Lorenz-type systems that the unstable mani-
folds of the origin tending to the stable manifold of nontri-
vial symmetrical equilibria forms a pair of heteroclinic
orbits, this technical note reports a new 3D sub-quadratic
Lorenz-like system: x =a(y-x), y =c¥/x +dy - ¥/xz
and zZ = -bz + ¥/Xy. Instead, the unstable manifolds of non-
trivial symmetrical equilibria tending to the stable manifold
of the origin creates a pair of heteroclinic orbits. This drives
one to further investigate it and reveal its other hidden
dynamics: Hopf bifurcation, invariant algebraic surfaces,
ultimate bound sets, globally exponentially attractive sets,
existence of homoclinic and heteroclinic orbits, singularly
degenerate heteroclinic cycles, and so on. The main contri-
butions of this work are summarized as follows: First, the
ultimate boundedness of that system yields the globally expo-
nentially attractive sets of it. Second, the existence of another
heteroclinic orbits is also proved by utilizing two different
Lyapunov functions. Finally, on the invariant algebraic sur-

facez = %\3/)(4, the existence of a pair of homoclinic orbits to
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the origin, and two pairs of heteroclinic orbits to two pairs of
nontrivial symmetrical equilibria is also proved by utilizing a
Hamiltonian function. In addition, the correctness of the the-
oretical results is illustrated via numerical examples.
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1 Introduction

Since Li et al. [1,2] introduced the method for proving the
existence of heteroclinic orbits of the Chen system: Lya-
punov function combining the definitions of both a-limit
set and w-limit set, has been extensively applied to many
Lorenz-type systems: the Yang-Chen system [3], the T and
Li system [4], the general Lorenz family [5], the unified 3D
and 4D Lorenz-type systems [6-9], the complex Lorenz
system [10], the 5D hyperchaotic system [11] and others
[12,13]. This is because, as Fishing principle [14], this method
itself has the advantage: one need not consider the mutual
disposition of stable and unstable manifolds of a saddle
equilibrium in contrast with another technique, such as
Poincaré map [15], boundary value and contraction map
[16], Melnikov method [17], a method of tracing the stable
and unstable manifolds [18], etc. More importantly, the
occurrence of heteroclinic orbit is often a prelude to the
birth of chaos [16], and thus involves with numerous appli-
cations [19-24], such as electrophysics, heart tissue, neurons,
cell signaling, planetary field and so on.

However, in neighboring Lorenz-type systems, the sce-
nario for the unstable manifolds of nontrivial symmetrical
equilibria tending to the stable manifold of the origin that
creates a pair of heteroclinic orbits has seldom been con-
sidered in any publications to the best of our knowledge.
Therefore, the following questions naturally arise:

1) Whether does there exist such a model with a pair of
heteroclinic orbits to stable origin and a pair of non
trivial symmetrical equilibria?

2) If there is such a model, whether is the aforementioned
technique (combining the definitions of both a-limit set
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and w-limit set, and Lyapunov function) applicable to
prove the existence of its heteroclinic orbit?

3) Except for the heteroclinic orbit, whether do there exist
other rich dynamics like the quadratic Lorenz-type
system family [3,5,7,13,25,26] — for example, chaotic
attractors, sustained or transient chaotic sets, Hopf bifur-
cation, invariant algebraic surfaces, ultimate bound sets,
globally exponentially attractive sets, homoclinic orbits,
singularly degenerate heteroclinic cycles, and so on.

In the present work, we devote to solving these problems
one after another. Indeed, this new proposed system is
found to have some other interesting dynamics, which are
the essential differences with most of Lorenz or Lorenz-like
systems.
1) There exist another heteroclinic orbits to a pair of
unstable equilibria and another pair of stable equilibria.
2) On the invariant algebraic surface z = %W , the exis-
tence of two pairs of heteroclinic orbits to two pairs

of nontrivial symmetrical unstable equilibria is also
proved by utilizing a Hamiltonian function.

Therefore, the study of such a system is particularly sig-
nificant for both theoretical research and practical appli-
cations, motivating the work to be presented in this article.

2 New sub-quadratic Lorenz-like
system and main results

In this section, we introduce the following sub-quadratic
Lorenz-like system

X =aly - x),
y =c¥x +dy - ¥xz, .1
z=-bz + Yxy,

where the dot denotes the derivative with respect to the
timet and (a, b, c, d) are arbitrary real parameters. Obviously,
the highest power of system (2.1) is %

Remark 2.1. On the one hand, for d = 0, system (2.1)
reduces to the one [9], which has multitudinous potential
hidden Lorenz-like attractors. On the other hand, Zhang
and Chen [27] and Kuznetsov et al. [28] proposed the gen-
eralization of the second part of the celebrated Hilbert’s
16th problem, i.e., the number and mutual disposition of
attractors and repellers depend on the degree of polyno-
mials of chaotic multidimensional dynamical systems, if
they exist. Therefore, it is worthwhile to study system (2.1).
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The goal of the present article will mainly devote to
investigating the complex dynamics of system (2.1) as the
quadratic analog [5], especially the role played by the
term %/X.

The first result of this article deals with the local beha-
viors of system (2.1) and is summarized in the following
propositions.

Proposition 2.1. The distribution of the equilibrium points of
system (2.1) is summarized in Table 1 when the parameters
a*0, byc,d vary in R3 where Ey=(0,0,0), E, =

[

3 3
+[bd— V22 + abe ]2 +[bd— Jb2d% + abe ]Z
+ ;4

{(0: 0; Z)|Z € [R}’ EI,Z = 2 2

>

12
[bd— v‘bzﬂl2+4bcl
2

3 3

[
_| [ ba+ Vb2d?+ 4bc |? bd + \'b*d?+ 4bc |?
and E3,4 = i[ , s

b 2 2

)2
2

b

Remark 2.2. Remarkably, system (2.1) is continuous but not
smooth at E, and E,, which associate with homoclinic
orbits and singularly degenerate heteroclinic cycles, and
thus the creation of strange attractors. In fact, as illustrated
in Figures 7 and 8 in Section 7, with a small perturbation of
-bz, the collapse of singularly degenerate heteroclinic
cycles or explosions of the stable E, generates two-scroll
Lorenz-like attractors. In that sense, it is demanding work
to consider system (2.1), especially the role played by the
linear term dy.

Proposition 2.2. Whena # 0,b,d € R?, and ¢ # 0, the local
dynamical behaviors of E, of system (2.1) are totally sum-
marized in Table 2. Whileb = 0,c -z # 0,a # 0,andd € R,
Table 3 lists the local dynamics of E, of system (2.1).

Proposition 2.3. When a # 0, bd > 0, bc < 0, and b%*d? +
4bc > 0, E;, exist and are unstable.

Table 1: The distribution of the equilibrium points

b bd bc b%d? + 4bc Distribution of equilibria
= Ez
#0 >0 20 Eq, Es4
<0 >0 Eg, El,Z: E3,4
=0 Ey, Eq»
<0 E
<0 >0 Eo, Esq
<0 Eq
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Table 2: The dynamical behaviors of Ey

b a-d c TypeofE, Property of E,
<0 <0 <0 Saddle-focus A 3D W,
>0 Saddle A 1D Wi, and a 2D Wi,
=0 <0 Nonhyperbolic A 2D W, and a 1D W},
>0 Saddle A 1D Wi, and a 2D Wi,
>0 <0 Node-focus A 2D Wy, and a 1D Wi,
>0 Saddle A 1D Wi, and a 2D Wi,
=0 <0 <0 Nonhyperbolic A1D W, and a 2D W},
>0 A1D Wg,, a 1D W, and a 1D W,
=0 <0 A 3D W,
>0 A1D Wg,, a 1D W, and a 1D W,
>0 <0 A 2D W, and a 1D W,
>0 A1D Wg,, a 1D WY, and a 1D W,
>0 <0 <0 Saddle-focus  A1D W, and a 2D W},
>0 Saddle A 2D Wi, and a 1D Wi,
=0 <0 Nonhyperbolic A 1D W, and a 2D W,
>0 Saddle A 2D WS, and a 1D Wi,
>0 <0 Node-focus A 3D Wy,
>0 Saddle A 2D Wi, and a 1D Wi,

Table 3: The dynamical behaviors of E,

c-z d-a Property of E,
>0 A 1D Wi, a 1D W, and a 1D Wi,
<0 <0 A 2D Wy, and a 1D Wy,

=0 A 3D W,

>0 A 1D Wi, a 1D W, and a 1D Wi,

Proposition 2.4. Set W ={(a, b, ¢, d)|a # 0, bd > 0, bc = 0}
U {(a,b,c,d)|a=+0,bd>0,bc<0,b%d*+4bc=0} U
{(a,b,c,d)|a # 0,bd < 0,bc >0}, Wy={(a,b, c,d) e W:

6ab - 3bd - 4ad \b2d? + 4bc

a+b-d>0, 5 5

_—
2a~ b%d? + 4bc
> 0) > 0]!

3

W, = W\IW; and

W} ={(a,b,c,d) € W : L <0},
W? = {(a,b,c,d) € W;: T = 0},
W} ={(a,b,c,d) € Wy : £ >0},

(a+b-d)(6ab - 3bd - 4ad) (3d - 3b + )y bd* + 4bc
5 - 6 =0. E3,4

are unstable when (a, b, ¢, d) € W, whereas Es 4 are asympto-
tically stable when (a, b, ¢, d) € W2. For (a, b, ¢, d) € W2, Hopf
bifurcation occurs at Es 4.

where X =

Remark 2.3. On the one hand, the existence of hidden or
transient chaotic attractors involves the dynamics of E
and Ejj34. On the other hand, the creation of singularly
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degenerate heteroclinic cycles is closely connected with the
bifurcation of E,. Particularly for (a, d, b) = (10,1, 3) and
0 < ¢ < 12,870, the solutions of system (2.1) either directly
tend to stable Es, or exhibit transient chaotic sets before
converging to Ejs 4.

Our second result on the global boundedness of system
(2.1) can be summarized as follows.

Proposition 2.5. For YA>0,a>0,d <0, and b > 0, the
following set

3c + 2a

3 (2.2)

2
Q= (x,y,z)|/1i/F+y2+[z— ] < R?

is the ultimate bound and positively invariant set of system
(2.1), where

b*(3c + 2Aa)?

AT AN s 3d b > —2d,
6d(b + d) ~

b*(3c + 2Aa)?

RZ =\ - > >
8a(3h - 20) ’ 3d 2 2a,3b 2 4a,
2/‘{ 2
M, b < -2d, 3b < 4a.

In fact, Proposition 2.5 suggests the following Proposition
2.6, implying that the ultimate bound and positively invariant
sets coincide with globally exponentially attractive sets.

Proposition 2.6. Set VA > 0,a > 0,d < 0,and b > 0, j(X) =

R R R 2

M e=%>0%+d<0,4a<3b,L; = 25020 o

(i) &=-2d>0, % +d20,b+2d20, L, = - 20
or _M

(iii) &=b>0,3b-4a<0,b+2d<0,Ls= 5

Ifi(X) > Ly and i(Xy) > Ly, 1 = 1, 2, 3, then we arrive at the
following exponential inequalities:

Vi(X) - L < [Wa(Xp) — LiJe (),
By the definition, the sets
v = XIV(0) < L}

2
g - 229 )

are globally exponentially attractive sets of system (2.1),
wherei=1,2,3.

The proof of Propositions 2.5 and 2.6 involves Lagrange
multiplier method, Lyapunov function and comparison
principle.



4 —— Zhenpeng Liet al.

Our last result can be stated as the following proposition.

Proposition 2.7. Assumea>d, c<0,d - %@ =0 and

3b - 4a 2 0. Then the following statements hold.

a) The w-limit of any trajectories of system (2.1) is one of the
equilibrium points. Namely, close trajectories do not
exist in system (2.1).

b) System (2.1) has no homoclinic orbits but only four het-
eroclinic orbits: the two ones are y* joining E; and E, or
Es, and the other two are y~ joining E, and E, or Ej,.

The proof of Proposition 2.7 is based on the Lyapunov
function, concepts of both a-limit set and w-limit set [1-7,10-13],
which has its roots in the work of Li et al, and see [1] for a
survey. In this work, this approach has been extended to study
the sub-quadratic Lorenz-type system (2.1).

This article is organized as follows. In Section 3, we dis-
cuss the local dynamics of system (2.1) and prove Propositions
2.2-2.4, such as the distribution of the equilibrium points,
stability and Hopf bifurcation. In Sections 4 and 5, the exis-
tence of ultimate bound sets, globally exponentially attractive
sets and invariant algebraic surfaces are studied, and the
proofs of Propositions 2.5 and 2.6 are finished. The proof of
Proposition 2.7 is given in Section 6. Section 7 illustrates the
singularly degenerate heteroclinic cycles and nearby chaotic
attractors. In Section 8, we present a short discussion about
the future work, especially the relationship between power of
the polynomials and chaos.

3 Local behaviors and proofs of
Propositions 2.2-2.4

The sketch of proofs of Propositions 2.2-2.4 is presented as
follows.

Proof of Proposition 2.2. The proof of Proposition 2.2 easily
follows from linear analysis and is omitted here. O

Proof of Proposition 2.3. Due to the symmetry of Ej,, it
suffices to consider E; and the characteristic equation at it
is

Ba@+b-dn+ 6ab—31éd—4ad
3.1
N b2d? + 4bc 5 - 2a~/b2d? + 4bc
2 3

Let us prove that E;, are unstable.
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Suppose E; ; are stable when some a # 0, bd > 0, bc < 0,
b%d? + 4bc > 0. According to Routh-Hurwitz criterion and Eq.

- - _ \b%d%+4bc
(1), we have a + b - d > 0, Seb=Shd-dad — DA T

6 2 0,
2a+/b*d* + 4bc 6ab - 3bd - 4ad /b2d2 + 4b
=5 >0 and (a+b-Q"FE -
R
2ay/b2d? + 4bc

> 0, which in fact do not hold at all.
If not, the conditiona < 0,b < 0,d < 0,and ¢ > 0 has to be
satisfied. If a + b - d > 0, then d < a + b. If S2-Pd=ted _

6
Vb%d®+ 4bc

5 > (0, then 6ab - 3bd — 4ad > 0 must hold. One
has 6ab - 3bd - 4ad < 6ab — 3b(a + b) — 4a(a +b) = ~

2

a a

4[5] + > + 3] =
f(x) = 4x* + x + 3. Notice the determinant of f(x) is
A=1-4x4x3=-47<0. Consequently, f(x)>0 for
Xx € R, and hence, 6ab - 3bd — 4ad < 0 always holds. A con-

tradiction occurs. Therefore, E; , are not stable at all.
The proof is finished. O

(4a® + ab + 3b%) = -b?

-be[g] >0 with

Proof of Proposition 2.4. Due to the symmetry of Esg,
it suffices to consider Ej, and the characteristic equation
at it is

- 3bd - 4
Ba@+b-dn+ 6ab SIéd ad
(3.2)
, Yb*d® + 4bc . 2y b*d® + 4bc
2 3

According to Routh-Hurwitz criterion and Eq. (3.2), E5 4 are
unstable when (a, b, ¢, d) € W13 whereas Es 4 are asympto-
tically stable when (a, b, ¢, d) € W}.

For (a,b,c,d) € W2, it follows that Eq. (3.2) has
pair of conjugate purely imaginary roots A, = twi
+ \/m i

3(-3b+3d+a)
—(a+b-d)<0. In addition, the transversal condition
holds. In fact, one has

[<5)

and one negative real root A3

dRe(X)
dc

c=c"
b(-3b + 3d + a)?
6[(a + b — d)(6ab - 3bd - 4ad)][w? + (a + b - d)?]
= 0,

A% - p*d? a+Db-d)(6ab - 3bd - 4ad)

where ¢* = yrs with A = ¢ sd—3b+a . Therefore,
system (2.1) undergoes Hopf bifurcation at Es 4, as shown in
Figure 1. The proof is over. O

Next, by applying the project method [29,30], we com-
pute the Lyapunov coefficients to determine the stability of
the Hopf bifurcation at Ej 4.
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First, by the time and coordinate transformations

xy,z,t) = |x3y, 2,

1
one transforms system (2.1) into the resulting equivalent
system
x=a(y - x3),
¥y =3x%cx + dy - xz), (3.3)
7 = 3x*(-bz + xy).

Obviously, Es4 of system (21) correspond to E,=

4
(xo, J_rx03, %") of system (3.3), where xp satisfies

. | b2d2 .
x*-bdx*-bc=0, ie, Xy = ﬂw. It is easy to

verify the transversality of E. under the conditions of
Proposition 2.4.
In fact, the characteristic equation of E, is
28+ 3x¢(a + b - d)A* + 3xs[3ab - 2ad - 3bd

(3.4)
+ 3x¢A + 9x8(-2abd + 4ax}) = 0,

from which, A, = +wi = +,/3(xg)*[3ab - 2ad - 3bd + 3(x3)?]
i and A3 = -3(xg)*(a+ b - d) <0 are a pair of conjugate
purely imaginary roots and one negative real root when
(a, b, ¢, d) € W2, Further, one obtains
dRe(k)
de o
3/x¢b[-3(a + b - d)(3ab - 2ad - 3bd + 4(x4)%) - 6abd + 16a(xy)?]
JD2d2 + abc*[3ab - 2ad - 3bd + 30x))? + 3(a + b - d)?]

0,

N-pdE _(a+b-d)(6ab - 3bd - 4ad)
» With A= 3d-3b+a

[ 272 1 ahe »
w. Therefore, the transversal condition holds.

Second, the following transformation

where ¢* = and xg =

x,y,z) -~

4
3 Xo
X+X0,y+XO,Z+7

converts system (3.3) into the resulting equivalent one

x| |Baxt a 0
Y|=|-3dxs 3dxi -3x3

z 3xg 3x¢ -3bx¢

X

Yy
z

—3axex?
-9x2xz - 6x3dx? + 6xodxy

IxExy + 6xgx2 — 6xobxz

(3.5)

+

—ax® 0
-9xox%z - 3xZdx3 + 3dx%y| + [-3x3z|,
3x3y

+

Ixox%y + 3x3x3 - 3bx%z

Complex dynamics of a sub-quadratic Lorenz-like system == 5

From Eq. (3.5), we arrive at the following multilinear
symmetric functions:
—6axpqy,
B(x,y) = |~ 9% 0ays + xay) = 12x5dxy; + 6xod 0y, + 30y,
IOy, + xy) + 12xgxy; — 6x0b(ay, + Xay;)

—-6away,
-18x006y, 21 + XY, 21 + Xy, 23) — 18x¢dy, 71

+6d0oy 21 + XY,z + XY, Z) ,

18x00e0 21 + XY, 21 + XY, 22) + 18xxy, 21

Cx,y,z) =

- 6bOuy,z1 + X321 + XY, Z3)

0
D(x,y,z,u) = =180y, z1lhy + Xy5 Z1lhy + XpY, Zsly + XqY, ZiUi3) |,
180y, zilhy + XpY, Zilhy + XpY, Zoly + XiY, ZilUy)

Owing to the complex algebraic structure of system
(3.5) itself, it is a taxing work to compute the explicit
form of its first coefficient /; at present. However, we are
able to manage this computation to determine the stability
of the Hopf bifurcation points when facing a concrete pro-
blem, e.g., (a, ¢, d, b) = (1.1061, -3, 2, 4). In this case, E. of
system (3.5) are E; = (+/6, +6+/6, 9), whose eigenvalues of
associated Jacobian matrix are A, = +17.5405i and
A3 = =55.9098. The transversality condition is calculated:
dRe(Ay)

S de c=c=-3
first coefficient } is listed in the following proposition.

= -1.3854 > 0. Moreover, the corresponding

Proposition 3.1. For (a,c,d, b) = (11061, -3, 2, 4), system
(3.5) undergoes Hopf bifurcation at E;, of which the first
Lyapunov coefficient is l; = 14.9575 > 0, and thus, the Hopf
bifurcation points at E; are both weakly unstable foci. Since

drel) = ~13854 <0, the Hopf bifurcation at E{ is
supercritical. Namely, for ¢ > c¢. = -3, but close to ¢, = -3,
there are unstable limit cycles around the asymptotically

stable equilibrium points E..

Proof. In accordance with the procedures of the project
method [29, 30], we perform computations and obtain

1.106 0.3908 - 0.3179i
p =119.9098 + 17.5405i|, q =(-0.0023 + 0.0360i|, hy =
17.8156 + 6.4011i 0.0064 — 0.0205i
-6.7806 2.4078 + 0.54061
-104.0702|, hy = [44.1761 + 86.0970i |, Gy = 29.915 -
-80.4487 64.0832 + 41.0264i
356340 and b =,Gy=149575.  Because  of
% , = -1.3854 < 0, the Hopf bifurcation at E; is
C=Cs=—

supercritical. Namely, set ¢ = -2.9 > c., there exists a pairs
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of unstable limit orbits around the asymptotically stable
equilibrium points E; = (+2.4693, £15.0571, 9.2952), as
shown in Figure 2. This completes the proof. O

Remark 3.1. For the case of ; = 0, one has to compute the
second Lyapunov exponent , or the third or even higher
order ones to determine the stability of the bifurcated per-
iodic orbit by aid of the method [30].

4 The ultimate boundedness and
the proof of Proposition 2.5
In this section, one considers the ultimate bound sets of

system (2.1). First, we prove the global stability of E, and
the following proposition holds.

Proposition 4.1. Consider system (2.1) and assume a > 0,

c<0,d+ g,/—% =0 and 3b - 4a 2 0. E, is a single and
globally asymptotically stable equilibrium point of system
(2.1). Consequently, system (2.1) has no homoclinic orbits to Ej.

Proof. Set ¢,(q,) = (x(t; Xo), y(t; ¥,), 2(t; Zp)) be any one
solution of system (2.1) through the initial value

10 ~ 3

9.5 A

8.5 E

20

-10

20 -20 X

y

Figure 1: Phase portrait of system (2.1) with (a, c, d, b) = (11061, 3, 2, 4)
and (xg%, yp?, 24) = (£14.3969, £14.6969, 8.6). This figure illustrates that
system (2.1) undergoes Hopf bifurcation at E34 = (+14.6969, +14.6969, 9).
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140
120

100

-40 =

Figure 2: Phase portrait of system (3.3) with (a, c, d, b) = (1.1061, 2.9, 2, 4)
and (xg", )", zg) = (+2.2693, +15.1571, 9.1952). This figure also

illustrates that both unstable bifurcated periodic orbits around

E; = (+£2.4693, £15.0571, 9.2952) tend to the same periodic orbit.

qy = (X0, Yy, 20). For a>0, ¢<0, d+ %.l—% =0 and
3b - 4a = 0, one constructs the first Lyapunov function

Ui(9(qp) = [ [b - | = x)? + (=bz + Yx*)?
3b 4
“(Wr {xty?
with the derivatives
dUi(¢,(q,)) [ 4a
—_— —(d - a)(y — x)?
dt 1) 3 o 4.1
-b(-bz + Yx*)? <0
for 3b — 4a > 0, and the second one
1 9 -2
U@ @) = 5|0 =X + g2y 5
with
du;
2(9(4)) d-a)y-x*<0 (42
dt (21)

for 3b - 4a = 0, respectively.
Furthermore, it follows Eqgs. (4.1) and (4.2) that

d
M 0 yields that g, is one of the equilibria, ie.,

4.3

l@1 =
x(t; x0) =Y (6 y,) = 2(t; 20) = 0

Asafact,Vt €R, x(t; xo) = a(y -
and y(t, q,) = 0.

x) = 0 suggests x(t) = xgo
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z - —¥x* = 0 is one of invariant alge-

Since Q(¢,(qy) =
braic surfaces of system (2.1) with cofactor 4?“ for3b - 4a =0,

94 € fa(y - x) = 0} N {2,/ Vx? + Yx = 0’ leads

to (4.3).

Therefore, E; is globally asymptotically stable. And
hence, there does not exist a homoclinic orbit in system
2.1. O

To prove Proposition 2.5, we consider the following
two propositions in advance.
Proposition 4.2. Define a set

' z-n
1—‘1 = (X:y)Z)|F kz + 12

=1,n,k, 1 # 0f,

and HZ,y,%) = (Z - 21)* + y* + X%, (X, V,Z) € I. Then we
obtain the conclusion

k4 2 2 12 2
m, ke =z n? k%2 215,

max H={ n*
xJ.D)En R n?z k%, n?z 212,
412, k? < 212, n® < 212

Proof of Proposition 4.2. The statement directly follows
from the Lagrange multiplier method. O

Proposition 4.3. Ifa > 0,d <0, A > 0 and b > 0 with

2
_ 3c+2la
23 /X4 yz z 6
+ +
b(3c + 2Aa)? _ b(3c+24a)* (3¢ +24a)?
24a 36d 36

I'=ix,y,2) =1

2
and Vi(X) = AUx% +y? + [z - 3“3%1] , then we obtain the

following result:

b*(3c + 2Aa)?
- > - > -2
36d(b + d) 3d,b 2 -2d,
b*(3c + 2Aa)?
max Vj={————, -3d =2a,3b = 4a,
wyoen | 8a(3b - 2a) a a
3c + 21a)?
%, b < -2d,3b < 4a.

Proof of Proposition 4.3. The proof is easily proved by
using Proposition 4.2.
Let us take

VAU =%y =y

II
Ne
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, _ b(3c + 2Aa) b(3c + 21a)? (3¢ + 22a)?
n? = k*=- 2= )
24a ’ 36d ’ 36
Then we have
22a )
Vi(x, y, 2) = Ax* + y2 +[z— ?wTa g

=R+ (2 -2,

2
Mo yz (Z _ 3c+62)La)
I= (X’y’ Z)| b(3c + 2Aa)? + _ b(3c + 22a)* + (3¢ + 2Aa)? =1
24a 36d 36
x? 7 - 1)
=X, 2)|— 7 k2+( i ) —1nkl¢0’

By solving the following conditional extremum problem of
Vi(x, y, z) in (4.4), we can easily derive

max Vi(%, y 2) = max{f? + §2 + (Z - 203,
2 G- 12

t—+—+

n? k2 12

(4.5)

=1

According to Proposition 4.1, we can easily obtain the
aforementioned conditional extremum problem (4.5) as
follows:

b*(3c + 2Aa)?
-_— >-3d,b > -2d
36d(b +d) ° 7T ’
b%(3c + 2Aa)?
max Vj={— - > >
(oy.0er 8a(3b - 2a) ’ 3d 2 2a,3b = 4a,
+ 2)a)?
M, b<-2d,3b<4a. [

Proof of Proposition 2.5. The ultimate boundedness of
solutions of system (2.1) follows from Proposition 4.2
and 4.3.

Define the following positively definite and radially
unbound Lyapunov function:

2
M] 46)

Vi(x,y,2) = Ax* + y2 + [z—
The derivative of Vi(x, y, z) along the trajectory of system
(21 is

_36+2Aa
6

dz
dt

| _4la, _dx ydy+2[
dt oy 3 de Pdt

2
= —%Aa{/ﬁ + zdyz - Zb[l - @] (47)

. b(3¢ + 22a)?
18 ’

Let % = 0. Then, one can obtain the surface I':
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A3/xt y?

I'=i(x,y,2) b(3c + 2Aa)? _ b(3c+24a)?
24a 36d
_ 3c+2a 2 “8
+ ’ ° =1
Ger2a?

36

is an ellipsoid in R® for a>0, d<0, A>0 and b > 0.
Outside T, V4(X) < 0, while inside T, V3(X) > 0. Thus, the
ultimate boundedness for system (2.1) can only be reached
on I'. Because the V4(X) is a continuous function, and I is a
bound closed set, then the function (4.6) can reach its max-
imum value maxVi(X) =R? (X €T) on the surface T
defined in (4.8).

Obviously, {(x,y,2)|h(X) < maxV;(X),X €T} con-
tains the solutions of system (2.1). By solving the following
conditional extremum problem, one can obtain the max-
imum value of the function (4.6):

2

oo~ a 3c + 2Aa
maxVi(X, ¥, Z) = maxA¥/x* +y? + [z -5 |
3c+2a 2 (4.9)
Axt Yy (Z' 6 ) 4
s.t. b3c+2ha)  b(3c+2Ma)? * Gc+20a)?
2a 36d 36

According to Proposition 2.2, we can easily obtain the
aforementioned conditional extremum problem (4.9) as
follows:

b*(3c + 2a)?
-2 2a>-3d,bz-2
36d(b + d) az-3d,b d,
b*(3c + 2Aa)?
R?=1—"—"——""2 " -3d2>2q,3b 2 4a,
8a(3b - 2a) @ ¢
2
w, b <-2d,3b < 4a.
This completes the proof. O

5 Global attractive set and the
proof of Proposition 2.6

By aid of comparison principle and Lyapunov function,

one in this section considers the globally exponentially

attractive set of system (2.1) and the proof of Proposition
2.6 follows.

Proof of Proposition 2.6. It follows Eq. (4.7) that one has
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dv

dt |y ©

2
AT 4y + [Z i} M]
(21

3

4a
+ e - —R/x*
3

2
+ (g + 2d)y* + ] - 2bz?

glz _3c+2a
3

2b(3c + 2Aa)

M If e=g=2>0 2+ds<0, 4a<3b

3
B3+ 2a)
Ly = @20 then

and

i
de

3c+2)ta]2
7 - _

<-ghX) + l81

(21)
2b(3c + 2Aa)
T

_ 2(3b - 4a)

=-gWX) + [4%1 - 2b]22 (3¢ + 2Aa)z

. 4a(3c + 21a)?
27
< -gV(X) + max Fy(z)
ZER

b*(3c + 22a)?
6(2a - 3b)
b%(3c + 22a)?
6,(3b - 2a)
b*(3c + 2Aa)?
} _SI‘Vl(X )= 8((1(3b - Za;
=-g[WX) - L4].

=-gWX) -

= ‘&‘Vl(X) -

@ If =-2d>0, % +d>0, b+2d>0 and
b%(3c + 2Aa)?

36d(b+d) ’

a
dt

Ly = - then

3¢ + 2Aa )
¢ a - 2bz?

< -ghX) +
1)

Ez[Z -

2b(3c + 2Aa)
+—7
3
=-&V(X) - 2[b + d]Z*
N 2(b + 2d)

2d(3c + 2Aa)?

(3¢ + 2Aa)z - 9

< -ghX) + meaugin(Z)
z

b2(3c + 24a)?

=-ghX) + 180 + d)

_ _ D*(3c + 24a)
- EZ‘VI(X ) sep + )

_ _ b*(3c + 24a)*
i SZ‘VI(X )™ Z36d + )

= -g[V(X) - Ly].
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3 If &=b>0, 3b-4a<0, b+2d<0 and
L3 = w, then
dv; 3¢ + 2a )
| <-ghX) + eg[z ST YAN  opg
dt (Z‘l)
. 2b(3c + ZAa)Z
3
3c + 2Aa )
<-gWhX) + 83[2 - 3 al _ bz2

2b(3c + 2Aa)

22a ) 21a)?
e V(X) + (6 - b)[z 3 +3 a] . b(3€+9 a)
b(3c + 21a)?
9
(3¢ + 2Aa)*
9

=-gWhX) +

=-g|X) -

= -g[W(X) - Ls].
In all, we have
Vi(X) - Li < ["i(Xp) — LiJest0,i=1,2,3. (51

By the definition, taking upper limit on both sides of the
above inequality (5.1) as t — +o results in

Iim Vi(X) < Ly, i = 1,2, 3.

t—+0o0

Namely, the sets

Wi = {X(OIm (X) < L}
t—oo

3¢ + 2a )
=(x,y,z)|WF+y2+[z— = “] <L

are the globally exponentially attractive sets of system (2.1),
where i = 1, 2, 3. This completes the proof. O

Remark 5.1.

1) When 3c + 2Aa = 0, E, is globally asymptotically stable.

2) When ¢ =0 and -b =d, y? + z% is an invariant alge-
braic surface with cofactor 2d.

3) While -b = d = -2, -3

-, ——/x* + y? + 2% is another invar-
iant algebraic surface with cofactor 2d.

3’ 2a

Remark 5.2. When 4a >3b >0, the inequality Q =
z - —4/x* 2 0 holds.

Complex dynamics of a sub-quadratic Lorenz-like system = 9

6 Homoclinic and heteroclinic orbit

For the sake of discussion, let ¢,(¢0) = (x(&; xD), y(&; ¥, 2(¢; z7))
(resp. §,(q)) =(x(t; x9), y(t; ¥)), z(t; z;))) be any one solu-
tion of system (2.1) through the initial value ¢ =(x’, ', z{")
(resp. g, = (x3, ), z9)). Let y~ (resp. y*) be the branch of
the unstable manifold W*(E,) (resp. W¥(E;)) corresponding
to —x. <0 (resp. x+>0) for large negative ¢, iLe,
Y ={8,@D)Id (@) = (xlt ), (6 3, 2.8 29) € WY,
V=101 (a)) = (s X)), 0. (6 37D, 28 20)) € Wi, t ER.
Put the first Lyapunov function

o =3 - %

3h - 4
" Ta(—\/-zmi/? + xhy

(O = x)* + (=bz + Vx)?

for 3b - 4a > 0, and the second one
2

1 9 -2
V(@4 = —[(y - 0%+ [—z S+

2 16a®

for 3b — 4a = 0 and then z = %3 x4,

It follows that

ACXCRD) [ 4a]
PR Splh - 22 - a)(y - x)?
" 3 (6.1)
- b(-bz + Yy
and
d 0
w =(d- o)y - x?, (62)
21

respectively, i = 1, 2.

Combining Lyapunov functions Vz,g((b[(qio)) defined
above and concepts of a-limit set, w-limit set, we rigorously
prove the existence of the heteroclinic orbit of system (2.1),
ie., the outline of proof for Proposition 2.7, which is similar to
the smooth Lorenz-like systems in [1-13] and is sketched here.

First, we formulate the following conclusion.

Proposition 6.1. Consider a > d, c < 0,d - % 5y =

3D - 4a = 0. The following two assertions are true.

@ IfVZ,3(¢tl(qi0)) = Vz,3(¢t2(qi0)) with 4<b, then in is an
equilibrium point of system (2.1).

@) If t— -, limp(q))=E, and q#Ey, then

V3(E1n) > Vos(@(g), 1= 1,2
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Proof. (i) Fora > d,c < 0,d - f,/—— =0and3b-4a=0,

A3(9,(q)

m < 0. Based on

2.1

=0 holds for allt € (t, t,),
(21)

and thus suggests that qi0 is one of the equilibria, ie.,
Xt x) =y ) =it 2) =0
In fact, Vt €R, x(t; x0) = a(y -
and y(t; y°) = 0
. 0 _ 3, 1 _ . . .
Since Q(¢,(¢;)) =z - E\/X— = 0 is an invariant alge-

it follows Egs. (6.1) and (6.2) that

AV,3(@(q")

the hypothesis of (1), 5

(6.3)
x) =0 yields x(t) = x?

braic surface with cofactor 4?‘1 for 3b - 4a =0, ¢,(q°) €
223 x + xt = 0

(i) First, we prove the fact: Vy3(E1p) > Vas(d(q)),
Vt € R by reduction to absurdity. In fact, 3 {; € R, such
that 0 < Vy3(Ey) < VZ,3(¢t0(ql.°)). Then the aforementioned
result (i) reads that qi0 is one of the equilibria of the system.
Butg,” # Ey,, this contradicts the facts that lim, -«@,(q,) =E1.
Hence, it follows that V5,3(E1) > Vo3(9,(q))) forallt € R. [

faly - x) = 0}n leads to (6.3).

Based on Proposition 6.1, the proof of Proposition 2.7
easily follows.

at
a>d,c<0,d- f.l—— =0 and 3b - 4a = 0, we have

0= VZ,3(¢[(q1'O)) < VZ,S(qio); (64)

for Vt €R, ie, lime.V23((q") = V55(q") exist. This
implies that VZ,B(‘f’t(in)) are bound for t > 0. Namely,
x(t, x0), y(t,y)) and z(t, z") are all bounded, ie., ¢,(q])
is bound for Vt = 0. Let the w-limit set of the orbit ¢t(ql.°)
be Q(¢?), ie. Y7 € (g%, $(@) € (q). Namely, Vo,(@),
t>0,3t,— o n— o such that limn%w(btn(qio) = ¢,(q),
which also suggests

V3@ = lim V5(@,,(4") = Via(q”) = const.

Therefore, V#; < & such that V53(¢,(§)) = V2,3(¢,,(@)). On the
basis of Proposition 6.1, § is one of equilibria of system (2.1).
(b) Assume y(t, qio) is a homoclinic orbit to E, or

Proof of Proposition 2.7. (a) Because of <0 for

Ei;34 through an initial condition ql.0 & {Eo, E1234}, Le.,

d 0
WM sep(t, ¢°) = U, u € {Eq, Erp34}. Since W <o,
we have
0 < Vy3(u) = Vas(p(==, ¢7) < Vas(¥(t, ¢)) 65)

< Th3(y(, q)) = Va3(w),

DE GRUYTER

ie., Vo3(y(t, ql.o)) = Va3(u), Vt € R. It follows from Proposi-
tion 6.1 that g € {Eo, E1234}, which is a contradiction.
Hence, there is no homoclinic trajectories in system (2.1).
According to statement (a), each branch of the
unstable manifold W* has w-limit, which is one of equili-
bria p.
Because of Vy3(E13) > Vo3(Ep3s) for a>d, ¢<0,

d—f -— =0 and 3b - 4a =2 0, p has to be either E, or

EsorE,. Due to the symmetry of system (2.1) with respect to
the z-axis, y* tends to Ey, or E3 or E,, obtaining in this way
three pairs of heteroclinic orbits to E;; and E, or E; or E,.
Figures 3 and 4 verify correctness of the theoretical result.
The proof is completed. O

Next, we discuss global bifurcation of the invariant
algebraic surface: Q = z - %W with cofactor —4?“.
For 3b - 4a=0 and t » », one has z - %i/x‘1 =0,
which converts system (2.1) into the following one:
x=a(y - x),

3 (6.6)
Y =YX +dy - A,

a+0, cER.

When d = q, it is easy to see that system (6.6) is a
Hamiltonian system with the Hamiltonian function:
3c,

9
H(x,y) = axy+2y - —3/x* + —3/x8.

6.7
4 32a ©.7)

At this time, system (6.6) has the equilibrium points:

3
3c |?
a-.a+

2

3
az+3_f :
Py =1(0,0), Py = | ,

for

5, 3¢
a- a+—20,P3,4
a
2
a+ Jat+ % a+ Ja+%
a + a

I y T

2

olw

for a + ,/a® + “Z—C > 0. Moreover, the existence of homo-
clinic and heteroclinic orbits of system (6.6) is summarized
in the following propositions, as depicted in Figures 5
and 6.

Proposition 6.2. If 8a® + 2/16a* + 54ac > 0, system (2.1)
has a pair of homoclinic orbits to Ey:
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20 - 20
/ * *
E:3 \ /
15 E, 15 4 Es E,
10 10 |
E, E,
N / N
J : 5
; N
0 4 0
5 Eo -5
50 . 50
B 40 -50
20
0 0 0 0
20
X 50 -40 y X 50 50 y
(a) (b)

Figure 3: Phase portraits of system (2.1) with (c, d, b) = (10, 3,5), (@): a = 5,(b): a = % and E;, = (£11.1803, £11.1803, 5). These figures illustrate
that system (2.1) has two heteroclinic orbits to E;; and Ej.

3c 9
y=xz \/Xz + gi/ﬁ - @i/ﬁ, |x| Proposition 6.3. (1) Ifa - /a® + :%c > 0, system (2.1) has a
3 pair of heteroclinic orbits to Ej:
- | 8¢ + 2\16a* + 54ac |
9 .
5
5 E4
E, 54\ By
4 4
//
3 3
N N 4
2 2 //
E, 0 /
1 1
- D e,
1
0
-20 20 -20
10
0 0
-10
- 20
X 20 y
(a) (b)

Figure 4: Phase portraits of system (2.1) with (¢, d, b) = (2,1,9),(a): a=5,(b): a = % and E; 5 = (51962, £5.1962, 1). These figures illustrate that
system (2.1) has another two heteroclinic orbits to E;, and Es4 = (£14.6969, +14.6969, 4).
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80
60 1
80 40 r .
60 20 - -
40 - ol |
N
20
20}t i
0
40 b i
204
100 100 60} .
0 0 80
-80 80
400 100
X y X
(a) (b)

Figure 5: Phase portraits of systems (a): (2.1) and (b): (6.6) with (a, ¢, d, b) = (3,1, 3, 4). Both figures illustrate that systems (a): (2.1) and (b): (6.6) have
two homoclinic orbits to Ey and Py.

(a) (b)

Figure 6: Phase portraits of systems (a): (2.1) and (b): (6.6) with (a, c, d, b) = (3, 7, 3.0, 4). Both figures illustrate that systems (a): (2.1) and (b): (6.6)
have two heteroclinic orbits to E; and E, E3 and E4, P; and P,, P; and P,.
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2500 A
2000
1500 [

N 1000

0 2000

-500 7 0

1000
= £ 500  qppp 2000

(a) (b)

Figure 7: For (a) b = 0, (b) b = 0.06, (a, ¢, d) = (4, 600, 2) and (xg"*, y2*) = (£13, +1.3) x 10%, (P) z§ = 200, (P?) 2§ = 0, (P?) z; = 300, phase
portraits of system (2.1). (a) and (b) illustrate that there exist chaotic attractors near the singularly degenerate heteroclinic cycles with small b > 0.

850 «
S
3
710 | /
708 J
706 N 750 4
N
704
700
702 | S,
700 650 4
1 100
£ 0
%107 100
.8 -50
x10 50 0
1 X -100 400
y 12 X y

Figure 8: For (a) b = 0, (b) b = 0.06, (a, ¢, d) = (4,700,2) and (xo"°, y7**) = (£0.13, £1.3) x 107, (S1) z5 = 701, (S;) z§ = 705, (S3) zJ = 709, phase
portraits of system (2.1). (a) and (b) illustrate that explosions of the stable E, also create the Lorenz-like attractor with a small perturbation of b > 0.
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(2) While a + ,/a® + %C > 0, system (2.1) has another
pair of heteroclinic orbits to Es 4:

3¢ 9 a+a+ o
=xt X2+ —Uxt - U+ |———MM—|
Y Za\/7 16a2‘/_ 2
2 4
[ 2, 3¢ 24 3¢
_3_Ca+ a+a 9 [a+ a+a
2a 2 16azl 2
a+ a2+%
x| <
b Z

7 Singularly degenerate
heteroclinic cycle

A singularly degenerate heteroclinic cycle is an important
concept when studying quadratic Lorenz-like system
family, the collapse of which is one route to chaos or
hyperchaos [7,8,10,11,25,26,31,32]. However, the occurrence
of this scenario does not happen in the cubic Lorenz-type
system [12]. Therefore, a question naturally arises:
Whether does there exist such dynamical behavior in a
sub-quadratic Lorenz-like system?

In this section, we illustrate strange attractors through
collapse of singularly degenerate heteroclinic cycles and
explosions of stable isolated equilibria E;, of system (2.1)
and present the following numerical simulations.

Numerical result 7.1. Assume b = 0. When 0 <d < a,
c-z>0 and t— o, the unstable manifold W“P)
(P=1(0,0,7)) tends to the stable manifold W*(Q)
(Q = (0,0, 2)) with ¢ - z < 0, forming singularly degen-
erate heteroclinic cycles, as depicted in Figure 7(a).
Furthermore, some Lorenz-like chaotic attractors can bhe
generated near the singularly degenerate heteroclinic
cycles with a small perturbation of b > 0, as depicted in
Figure 7(b).

Numerical result 7.2. Assume b = 0. When 0 < d < qa,
¢-2z<0 and t — o, the explosions of the stable E, also
create Lorenz-like attractors with a small perturbation of
b > 0, as illustrated in Figure 8.

8 Conclusion

In contrast to most existing quadratic Lorenz-type system
family with a pair of heteroclinic orbits to a saddle in the

DE GRUYTER

origin and a pair of nontrivial symmetrical stable equili-
bria, little seems to be known about the ones with heteroclinic
orbits to the stable origin and a pair of nontrivial symmetrical
unstable equilibria. To achieve this target, this article pro-
posed a new 3D sub-quadratic Lorenz-like system and proved
the existence of heteroclinic orbits of the type just described.
Meanwhile, the existence of another two pairs of heteroclinic
orbits to the corresponding two pairs of nontrivial symme-
trical equilibria was also proved by utilizing the same
Lyapunov function. By applying a Hamiltonian function, the
existence of homoclinic and heteroclinic orbits was also dis-

cussed on the invariant algebraic surface z = %Q/F . Under
some constraints of its parameters, we proved that globally
exponentially attractive sets coincide with ultimate bound
and positively invariant sets by aid of Lyapunov functions.
Moreover, numerical simulations verified the correctness of
the theoretical analysis.

It should be noticed that the term 3/x not only reserves
most important dynamics of quadratic Lorenz-type system,
but also gives rise to new ones just mentioned, broadening
the field of chaos-based engineering applications. However,
other unsolved and yet key problems need further thorough
and complete investigations, such as estimation of the prac-
tical global stability boundary, the existence of hidden chaotic
attractors, the relationship between the degrees of that
system and the distribution and number of limit cycles and
attractors. Therefore, we work all out to develop the future
work that circles around the further inquiry into that system,
completing its mathematical treatment.
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