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Abstract: Numerous flow and heat transfer studies have
relied on the construction of similarity transformations
which map the nonlinear partial differential equations
(PDEs) describing the flow and heat transfer, to ordinary
differential equations (ODEs). For these reduced equa-
tions, one finds multiple analytic and approximate solu-
tion procedures as compared to the flow PDEs. Here, we
aim at constructing multiple classes of similarity trans-
formations that are different from those already existing
in the literature. We adopt the Lie symmetry method to
derive these new similarity transformations which reveal

new classes of ODEs corresponding to flow equations
when applied to them. With these multiple classes of
similarity transformations, one finds multiple reductions
in the flow PDEs to ODEs. On solving these ODEs analy-
tically or numerically, we obtain different kinds of flow
and heat transfer patterns that help in determining opti-
mized solutions in accordance with the physical require-
ments of a problem. For the said purpose, we derive Lie
point symmetries for the magnetohydrodynamic Casson
fluid flow and heat transfer in a thin film on an unsteady
stretching sheet with viscous dissipation. Linear combi-
nations of these Lie symmetries that are again the Lie
symmetries of the flow model are employed here to con-
struct new similarity transformations. We derive multiple
Lie similarity transformations through the proposed pro-
cedure which lead us to more than one class of reduced
ODEs obtained by applying the deduced transformations.
We analyze the flow and heat transfer by deriving ana-
lytic solutions for the obtained classes of systems of ODEs
using the homotopy analysis method. Magnetic para-
meters and viscous dissipation influences on the flow
and heat transports are investigated and presented in
graphical and tabulated formats.

Keywords: Casson fluid, viscous dissipation, magnetic
field, Lie symmetry, similarity transformations, homo-
topy analysis method and analytic solution

1 Introduction

In a thin liquid film on an unsteady stretching surface,
fluid flow and transfer of heat remained a field that
received an enormous amount of attention over the past
few decades [1–13]. These studies have been conducted
by researchers working in different areas, e.g., engi-
neering, pharmaceutical, physical sciences, and biology.
The contributions signify the importance of fluid flows
and heat transfers in thin films. To mention a few
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applications of fluid flows and heat transfers in thin films,
one may consider coating wires as well as fibers, tran-
spiration cooling, processing of food, reactor fluidization,
and heat exchangers. Therefore, these problems are stu-
died extensively under different physical conditions to
acquire the optimum flow and heat transfer needed for
a specific quality of a product. These studies are con-
ducted experimentally as well as theoretically. For theo-
retical investigations, an approach that is adopted in
many attempts is the conversion of the flow models that
are genuinely non-linear partial differential equations
(PDEs), to ordinary differential equations (ODEs). Simi-
larity transformations enable such a reduction. Hence,
through the construction of such similarity transforma-
tion, new solvable classes of the flow and heat transfer
problems are revealed [14–17]. Reduction of PDEs defining
these transports to ODEs eases derivations of solutions
using approximate or analytic methods [18,19]. Because
there are several well-established approximate and ana-
lytic solution schemes that are available for ODEs as com-
pared to PDEs. Similarity transformations are invertible
maps, i.e., they transform the flow PDEs to ODEs that are
solved analytically or numerically and then these solu-
tions can be inverted to obtain solutions for the flow
PDEs. There exists a specific relation between velocity
and temperature of the stretching surface and the simi-
larity transformations. It assists in the reduction of the
associated conditions to the desired format. Lie symmetry
method systematically builds such similarity transforma-
tions [20].

In this article, first, we obtain Lie symmetries for the
magnetohydrodynamic (MHD) Casson fluid flow and heat
transfer in a thin film on an unsteady stretching sheet
with viscous dissipation. These are point transformations
that are invertible mappings of the dependent and inde-
pendent variables of the flow equations which leave the
flow equations to form invariant. The associated condi-
tions also remain invariant under the admitted Lie point
symmetries. This invariance criterion helps us in deter-
mining the stretching sheet velocity and temperature that
initially are arbitrary functions of the time and one space
variable. Second, invariants corresponding to linear com-
binations of the derived Lie symmetries are determined
which provide similarity transformations to map PDEs
describing the flow problem, to ODEs.

We use MAPLE here for the derivation of Lie symme-
tries as it includes Lie algebraic procedure to construct sym-
metries in PDEtools package. We obtain five Lie symmetries
for the flow equations which constitute a five-dimensional
Lie symmetry algebra. A linear combination of the Lie point
symmetries is also a Lie point symmetry. Consideration of

the Lie symmetries or their linear combinations for the con-
struction of the similarity transformations depends on the
form of the stretching sheet velocity and temperature they
provide. Therefore, based on this, we present more than one
reduction of the flow equations to ODEs, through similarity
transformations as there exists more than one combination
of the Lie symmetries which leaves the stretching sheet
velocity and temperature as functions of time and space
variables. On the obtained systems of ODEs, we apply the
homotopy analysis method (HAM) to deduce the analytic
solutions. The obtained solutions are interpreted with the
help of figures and tables to demonstrate the effects of
Prandtl numberPr, magnetic parameterMn, Eckert number
Ec, Casson parameter β, and the unsteadiness parameter S,
on the velocity and temperature.

This article is organized as follows. The second sec-
tion presents a review of the MHD flow and heat transfer
in a Casson fluid thin film on an unsteady stretching sur-
face with viscous dissipation and its Lie point symmetry
generators. The subsequent section is on the construction of
similarity transformations and reductions corresponding to
them. The fourth section contains the derivation of the ana-
lytic solutions. The last section concludes this work.

2 MHD flow equations

The flow and heat transfer in the thin film of Casson fluid
on an unsteady stretching sheet under the magnetic and
viscous effects is written in terms of the following equations:
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The same has been studied by Vijaya et al. [21] along
with internal heating where a schematic diagram of the
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flow is provided. Lie point symmetries for the flow model
(1) are given in Table 1. These are derivable from MAPLE
using the package “PDEtools” and the built-in command
“Infinitesimals.” For a detailed algebraic procedure to
derive Lie symmetries for such systems of PDEs, readers
are referred to the study by Safdar et al. [22]. Equations
of the system (1) remain invariant under Lie symmetry
generators and the transformations corresponding to
these symmetries also leave equations of system (1)
form invariant. These Lie transformations are given in
Table 1. Furthermore, all the associated conditions (2)
also remain invariant under the Lie point symmetry gen-
erators and Lie transformations given in Table 1. For
verification of this, we use each symmetry generator
on every condition in (2) through the following invar-
iance criterion

)|[ ]( ==X ζ 0,j
i

k ζ 0k
(3)

where i denotes the extension of the symmetry gen-
erator, and here, we require the first extension of Xj.
Further, = …j 1,2, , 5, and ζk denotes the conditions (2)
for = …k 1,2, , 6, e.g., ( ) ( )≔ =ζ u t x U t x, , 0 ,1 and vice
versa. The above invariance criterion leads to specific
formats of ( )U t x, , ( )T t x,s , and ( )h t , corresponding to
each symmetry of the flow model.

3 Lie similarity transformations of
the flow equations

In this section, we investigate and construct all possible
Lie similarity transformations corresponding to Lie sym-
metries −X X1 5. We call them Lie similarity transforma-
tions which have been constructed [22–25] and authors
[26–29] highlight some industrial applications of recent
studies for flow models of this kind. Here, only X ,3 and X4

are suitable to construct the similarity transformations [24]
when one symmetry is used separately from the listed five
symmetries in Table 1. Here, we use linear combinations of

−X X1 5 of these generators to construct Lie similarity trans-
formations. A few of these linear combinations are selected
for derivation of Lie similarity transformations based upon
the format they yield for stretching sheet velocity and tem-
perature. In the studies conducted earlier on this type of
fluid and heat transports [22–25], both the said quantities
are set to be dependent on both t and x. We are also taking
only those linear combinations of −X X1 5 into considera-
tion which leave both the said quantities as functions of
time and space variables. These linear combinations of
the symmetry generators when employed on the stretching
sheet velocity ( )U t x, and temperature ( )T t x,s lead to func-
tions depending on both x and t. Hence, they yield the
desired form along with ( )h t .

In a study by Taj et al. [24], the following similarity
transformations are derived using X3 and X4
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The associated conditions (2) under (4) map to

Table 1: Lie symmetry generators and Lie symmetry transformations
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The above system is similar to the one obtained by
Taj et al. [24] except only the Casson parameter. In the
present work, we deduce a few more cases by constructing
linear combinations of symmetries from Table 1.

We derive similarity transformations for = +Z X XC C1 1 3 2 4.
Applying this linear combination of two Lie point symme-
tries X3 and X4 provides the following formats of ( )U t x, ,
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( ) =h t C t .5

The constraint imposed on these functions that they
remain functions of all their variables when Lie symme-
tries or combinations of these symmetries act on them
has been satisfied as evident from Eq. (7). This type of
constraint on these functions enables a comparison with
the studies already conducted on this type of flow. The
forms given in Eq. (7) are obtained when the linear com-
bination Z1 is applied through the following invariance
criteria:
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The system (11) further has one Lie point symmetry
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In Table 2, we provide all those linear combina-
tions which yields the desired forms of the stretching
sheet velocity and temperature along with the film
thickness. Including this case, we present five cases
namely similarity transformations corresponding to

…Z Z, ,1 5. However, velocity and temperature profiles
are sketched with HAM for reductions obtained
through Z Z Z, ,1 2 4, and Z5. Reduced system of ODEs pro-
vided by similarity transformation through Z3, is not
investigated further as it does not possess the condi-
tions of the type (Eq. (6)) to which conditions of all the
other cases reduce.

4 Analytic solutions and discussion

Analytic solutions are derived here using HAM [18] on the
reduced system of ODEs (5). We adopt a series expansion
approach to construct the deformation equations up to
order 10. Hence, we insert the following
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where =n 0, 1, 2, 3,1 =n 0, 1, 2,2 andm is the order of HAM,
in the system (5). The associated conditions (6) become
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Table 2: Systems of ODEs for all linear combinations
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Equating coefficients of q, starting with q ,0 in above
equations, to zero we obtain deformation equations of
different orders. Here, we derive HAM analytic solutions
through the deformation equations obtained by equating
coefficients of q q, ... , ,0 10 to zero, in the expanded forms
of Eq. (20).

We denote such deformation equations by −ω ,i1, 1 and

−ω ,i2, 1 obtained by applying the said procedure on the
first and second equation of system (5), respectively,
i.e., equating coefficients of q ,0 in both equations we
derive ω1,0 and ω2,0. After derivation of these deformation
equations, we use them in the following expressions:

( ) ( ) ( )∭− =− −f η λ f η h H η ω η η ηd d d ,i i i f f i1 1, 1

( ) ( ) ( )∬− =− −θ η λ θ η h H η ω η ηd d ,i i i θ θ i1 1, 1 (21)

for =i 1, 2, ... ,10. In these equations, =λ 0,i for =i 1, and
=λ 1,i for >i 1. Moreover, hf and hθ are HAM parameters,

and ( )H ηf and ( )H ηθ are HAM auxiliary functions. After
integrating Eq. (21), we finally obtain

( ) ( ) ( )

( ) ( )

( )

− = + +

+ −

= + +

− −

−

−

f η λ f η h H η C C η

C η θ η λ θ η

h H η C C η

Ω

, ,

Ω ,

i i i f f i

i i i

θ θ i

1 1, 1 11 12

13
2

1

2, 1 14 15

(22)

where …C C C, , ,11 12 15 are constants of integration. These
equations are completely solved by integration and
applying the following conditions:

( )∑ =

=

q f 0 0,
i

m
i

i
0

( ) ( )∑ ∑′ = =

= =

q f q θ0 0 1,
i

m
i

i
i

m
i

i
0 0

( )∑ =

=

q f S1
2

,
i

m
i

i
0

( ) ( )∑ ∑= ′ =

=

′′

=

q f q θ1 1 0.
i

m
i

i
i

m
i

i
0 0

(23)

We obtain tenth-order HAM solutions with this proce-
dure, for a range of parameters S, Mn, β, Pr, and Ec. The
HAM parameters hf and hθ that are introduced in Eq. (21) to
control convergence of the solution are adjusted through
the h-curves while auxiliary functions ( ) ( )= =H η H η 1f θ .
With these solutions, we construct the velocity and tem-
perature profiles againstmultiple values of thePrandtl number,
magnetic parameter, Eckert number, Casson parameter, and
unsteadiness parameter.

4.1 Homotopy solutions for system of ODEs
derived using Z Z & Z, ,1 2 5

First, we draw h-curves for the HAM parameter h ,f to
obtain a range of this parameter for which one obtains a
convergent analytic solution for velocity. Moreover, these
h-curves provide the dimensionless film thickness γ.

Figure 1: Variation in γ with ( = =S β0.8, 5.0) and a variation in Mn. Figure 2: Variation in γ with ( = =S 0.8, Mn 7.0) and a variation in β.
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We draw these curves in Figures 1–3 by varying the mag-
netic, Casson, and unsteadiness parameters, respectively.
These figures show a variation in the dimensionless film
thickness due to variations in these parameters. While the
horizontal portion in these figures provides us with the
values of the HAM parameter hf , in which we obtain con-
vergent solution for the first equation in the system (5). In

Figures 1–3, hf -curves are plotted and it is evident from
these figures that the fluid film gets thinner with an
increase in Mn, β, and S, respectively.

Similarly, in Figures 4 and 5, same trends for the
dimensionless film thickness are obtained with a varia-
tion, i.e., an increase in Mn, and S, by keeping = −h 0.5f ,
i.e., the value identified in the hf -curves. These figures
show thinning of the film with an increment in these
parameters that is comparatively rapid for higher values
of the magnetic and unsteadiness parameters. These fig-
ures also demonstrate the effects of the Casson parameter
on the film thickness which when increased reduces film
thickness. In Table 3, the behavior of the free surface
velocity with an increment in the magnetic parameter is
given that shows a slow response of the free surface velo-
city versus the magnetic field. In Figure 6, a variation in
the velocity is studied with respect to the Casson

Figure 3: Variation in γ with ( = =βMn 7.0, 5.0) and a variation in S.

Figure 4: Variation in γ with ( = =S h0. 8, −0.5f ) and a variation inMn.

Figure 5: Variation in γ with ( = =hMn 7.0, −0.5f ) and a variation in S.

Table 3: Variation in velocity with =S 1.2, =β 0.1, =h 0.5f and a
variation in Mn

Mn ( )f ′ η

5.0 0.416187904683275
6.0 0.417207947598479
7.0 0.417830885334903
8.0 0.418250847848063
9.0 0.418553149481099
10.0 0.418781164287947
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parameter which shows that the fluid slows down with
the Casson parameter, i.e., an increment in this para-
meter turns the fluid more resistant to the flow and the
same is demonstrated in the said figure. In Figure 7, a
variation in ( )′f η is shown due to the unsteadiness

parameter S. Increasing this parameter causes a turbu-
lence in the fluid, and in the considered range of the
unsteadiness parameter, we observe an increment in
the fluid velocity. Figure 7 indicates that the velocity
increases with the increase in unsteadiness. We draw

Figure 6: Variation in ( )f η′ with ( = = =S hMn 15.0, 0.8, −0.5f ) and
a variation in β.

Figure 7: Variation in ( )f η′ with ( = = =β hMn 7.0, 1.0, −0.5f ) and
a variation in S.

Figure 8: h −θ Curves with ( = = = =β hMn 7.0, Ec 0.5, 2.0, −0.5,f
=S 0.8) and a variation in Pr.

Figure 9: Variation in ( )θ η with ( = = =SMn 15.0, Ec 1.0, 0.8,
=Pr 0.045, =   =h h−0.5, −0.035f θ ) and a variation in β.
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hθ-curves for different combinations of the parameters
(magnetic, Casson, and unsteadiness) and the Eckert number.
A few of these curves are shown in Figure 8 for specific values
of these quantities that are mentioned in the figure caption.
The horizontal region in these curves stretches in a small

neighborhood of = −h 0.04θ . Therefore, temperature profiles
are constructed by considering = − −h 0.037 to 0.035θ . In
Figure 9, the first study of the free surface temperature is
conducted by taking this value of the HAM second parameter
and with a variation in the Casson parameter which shows

Figure 10: Variation in ( )θ η with =S 0.8, =Pr 0.035, =Mn 10.0,
=β 1.0, =h −0.5f , =h −0.037θ and a variation in Ec.

Figure 11: Variation in ( )θ η with =S 0.8, =Pr 0.035, =Mn 12.0,
=β 1.0, =h −0.5f , =h −0.037θ and a variation in Ec.

Figure 12: Variation in ( )θ η with =S 0.8, =Pr 0.035, =Mn 15.0,
=β 1.0, =h −0.5f , =h −0.037θ and a variation in Ec.

Figure 13: Variation in ( )θ η with =S 0.8, =Ec 0.5, =Mn 7.0,
=β 1.0, =h −0.5f , =h −0.037θ and a variation in Pr.
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that increments in the Casson parameter reduce the tempera-
ture ( )θ η . The Casson parameter indirectly affects the heat
transfer phenomena in a thin film as it affects the fluid beha-
vior. A variation in this parameter varies the fluid viscosity
and hence influences the heat transfers, and here, it is

observed to reduce the fluid’s temperature. Figures 10–12 pre-
sent the temperature profiles and show that with an incre-
ment in the Eckert number, i.e., when the kinetic energy
dominates, then the fluid temperature increases. In these
figures, the magnetic parameter is also varied. A comparison
of all these figures asserts that strengthening the magnetic

Figure 14: Variation in ( )θ η with =S 1.2, =Ec 0.5, =Mn 7.0,
=β 1.0, =h −0.5f , =h −0.037,θ and a variation in Pr.

Figure 15: Variation in ( )θ η with =S 1.5, =Ec 0.5, =Mn 7.0,
=β 1.0, =h −0.5f , =h −0.037,θ and a variation in Pr.

Figure 16: h −θ Curves with ( = =   = =S hMn 15.0, Ec 1.0, 0.8, −0.5,f
=Pr 0.045) and a variation in β.

Figure 17: Variation in ( )θ η with ( = =   =SMn 15.0, Ec 1.0, 0.8,
= =   =h hPr 0.045, −0.5, −0.035f θ ), and a variation in β.
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field suppresses the heat transfer, and it also is an indirect
influence through alterations of the fluid properties when the
magnetic field varies. Likewise, we draw temperature profiles
in Figures 13–15 for a variation in the Prandtl number and the
unsteadiness parameter. In each of these figures, it is evident
that the increase in the Prandtl number causes an increase in

( )θ η . Though a rise in the Prandtl number implies a decrease
in the thermal diffusivity which causes a slow rate of heat
transfer as compared to the transfer of momentum, here
these effects are coupled with other parameters and numbers
hence one observes the opposite to the effects in a physical
sense. Keeping all these in front of us helps in predicting a

Figure 18: h −θ Curves with ( = =   = =β S hMn 15.0, 2.0, 0.8, −0.5,f
=Pr 0.075) and a variation in Ec.

Figure 19: Variation in ( )θ η with ( =   =   =β SMn 15.0, 2.0, 0.8,
= =   =h hPr 0.075, −0.5, −0.06f θ ) and a variation in Ec.

Figure 20: h −θ Curves with ( = =   = =β S hMn 15.0, 2.0, 0.8, −0.5,f
=Ec 1.0) and a variation in Pr.

Figure 21: Variation in ( )θ η with ( =   =   =β SMn 15.0, 2.0, 0.8,
= = =h hEc 1.0, −0.5, −0.045θf ) and a variation in Pr.
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decrease in ( )θ η , when the unsteadiness is increased that is a
trend opposite to what is observed for the variation in Pr. In
the case of unsteadiness, the same is happening as is
reported for the Prandtl number. The turbulence and mixing
offered due to the increase in the unsteadiness affects the
transfer of heat within fluid. Here, it gives a decrease in ( )θ η .

4.2 Homotopy solutions for system of ODEs
derived using Z4

The system in this case contains an arbitrary constant C2,
in the second equation which affects the convergence of
the homotopic solution. Hence, it can be used to control

Figure 22: h −θ Curves with ( = = = =β S hPr 0.045, 2.0, 0.8, −0.5,f
=Ec 1.0) and a variation in Mn.

Figure 23: Variation in ( )θ η with ( = = =β SPr 0.045, 2.0, 0.8,
= = =h hEc 1.0, −0.5, −0.045θf ) and a variation in Mn.

Figure 24: h −θ curves with ( = = = =β hPr 0.045, 2.0, Mn 10.0, f
=−0.5, Ec 1.0) and a variation in S.

Figure 25: Variation in ( )θ η with ( = = =βPr 0.045, 2.0, Mn 10.0,
= = =h hEc 1.0, −0.5, −0.035θf ) and a variation in S.
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the convergence of the temperature profiles. For these
solutions, we draw hθ-curves and the corresponding tem-
perature profiles. In Figures 16 and 17, a rise in the
hθ-curves and temperature can be seen due to a rise in
the Casson parameter β. Similar trends are shown in
Figures 18 and 19 where we study the effects of the Eckert
number Ec, on the temperature profiles. For different
values of Pr, we draw the hθ-curves in Figure 20 and
temperature profiles in Figure 21. From these figures,
we conclude that an increase in the Prandtl number
results in a decrease in the temperature. In Figures 22
and 23, variations in the temperature profiles are studied
with a variation in the magnetic parameter Mn. We
observe that the temperature is directly proportional to
the magnetic parameter. We draw the hθ-curves for dif-
ferent values of the unsteadiness parameter S. Increasing
the unsteadiness causes an increase in the hθ-curves as
shown in Figure 24. We present temperature profiles for
some values of the unsteadiness parameter and tempera-
ture is shown to rise with the unsteadiness parameter in
Figure 25.

A comparison of both the cases in (4.1) and (4.2) shows
that in response to an increase in the Casson parameter
both the reduced systems corresponding to Z Z Z, , ,1 2 5 and
Z4 behave differently. The former exhibits a decrease in
temperature while the latter shows an increment in tem-
perature. For a variation in the Eckert number Ec, both
the systems provide an increase in the temperature with a
rise in this number. In the case of the variation in the
Prandtl number Pr, the system in case (4.1) provides an
increase with higher values of this number while the system
in case (4.2) shows a decrease in the temperature. With
an increase in the unsteadiness parameter both systems
behave differently. In the first case, the temperature drops
while in the second case, it rises.

5 Conclusion

We study flow and heat transfer in a Casson fluid thin film
on an unsteady stretching sheet. A magnetic field is
imposed on the considered flow model along with the
viscous dissipation. One approach out of many that are
practiced for these kinds of flow problems is the reduction
of the flow model equations to their simplest possible
forms. That is a transformation of the PDEs to ODEs.
This is achieved with similarity transformations. The pro-
blem we are dealing with has been considered earlier, and
the same procedure has been applied to it to construct

corresponding velocity and temperature profiles. In this
article, we derive new classes of similarity transformations
using the Lie symmetry method. It provides us with more
than one such transformation that enables different kinds
of reductions of the flow PDEs to ODEs. The similarity
transformation used here is named Lie similarity transfor-
mation. By employing it, we provide an invertible conver-
sion of the flow PDEs to ODEs on which we apply the
homotopy analysis method to construct and analyze the
flow and heat transfer. The purpose of obtaining multiple
classes for the similarity transformations is the optimiza-
tion of the flow and heat transfer within a liquid film.
Multiple similarity transformations yield different types
of reductions of the flow PDEs, and hence, different kinds
of flow and heat transfer patterns are revealed through
analytic solutions of the obtained systems of ODEs. We
presented variations in velocity and temperature profiles
due to the magnetic, Casson and unsteadiness parameters,
Prandtl, and Eckert numbers with the derived analytic
solutions. All these dimensionless parameters and num-
bers are imposed in our study due to the form of similarity
transformations we provided. Furthermore, the particular
ranges for these parameters and numbers that are consid-
ered in this study are determined through the h-curves
of HAM.

To extend this study, one may construct an optimal
system for the Lie symmetries of such flow equations to
deduce all reducible inequivalent classes of systems of
ODEs corresponding to flow PDEs. In this way, all distinct
analytic solutions can be deduced which exist due to the
Lie similarity procedure and HAM. As mentioned earlier
with the distinct multiple solutions of a flow problem, an
optimization or in other words a control on the flow and
heat transfer can be attained according to the require-
ments of the flow problem under consideration.
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