DE GRUYTER

Open Physics 2023; 21: 20220235

Research Article

Arash Pashrashid, Cesar A. Gomez S., Seyed M. Mirhosseini-Alizamini,
Seyed Navid Motevalian, M. Daher Albalwi, Hijaz Ahmad, and Shao-Wen Yao*

On traveling wave solutions to Manakov model

with variable coefficients

https://doi.org/10.1515/phys-2022-0235
received November 20, 2021; accepted February 20, 2023

Abstract: We use a general transformation, to find exact
solutions for the Manakov system with variable coeffi-
cients (depending on the time &) using an improved
tanh—coth method. The solutions obtained in this work
are more general compared to those in other works
because they involve variable coefficients. The imple-
mented computational method is applied in a direct
way on the reduced system, avoid in this way the reduc-
tion to only one equation, as occurs in the works respect
to exact solutions, made by other authors. Clearly, from
the solutions obtained here, new solutions are derived
for the standard model (constant coefficients), comple-
menting in this way the results obtained by other authors
mentioned here. Finally, we give some discussion on the
results and give the respective conclusions.
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1 Introduction

The soliton theory is actually one of the most important
branch of the applied mathematics. In the physical
sciences, especially in nonlinear optic and from some
year ago, in the communications theory, the study of
optical solitons is the great relevance. In recent years,
several models have been used to modelling optical soli-
tons, and the nonlinear Schrédinger equation (NLSE) is
one of the most important; however, other models such
as the Chen-Lee-Liu equation, the Gerdjikov-Ivanov equa-
tion, the Ginzburg-Landau equation, the Manakov system,
and several other models have been used to generate
optical solitons to be applied in process of communication.
Our interest in this work is the study, from of point of view
of it exact solutions, of the following Manakov system with
variable coefficients, given in the following form:

{lqg + Ti(E)gu + ©1(e)(IgP* + Ir*)g = 0 (1.1)

e + (&) + 0,(e)(Igl* + [r])r = 0,

where q = q(x, €), r = r(x, €) represent a complex-value
function and are depending on the spacial variable x
and the temporal variable €. The coefficients [}, I3, 01, ©,
are functions depending on €. In the case of constant
coefficients, the model (1.1) is known as a system of
coupled NLSEs, which are considered as important models
in nonlinear optic [1-3]. In this last case, it has been found
that the Manakov system is integrable via the inverse scat-
tering method [1]; furthermore, this is very important in
the design of new technology that require the use of optical
pulses [3]. The model presented here, clearly includes the
constant coefficients; therefore, model (1.1) is a generaliza-
tion of the classical Manakov equation presented in refer-
ences [1-3] and in many others works on the classical
Manakov system [4—6]. On the other hand, differential
equations with variable coefficients (depending on vari-
able ¢€) are generalized models that include the standard
models (constant coefficients). From the mathematical
point of view, the study of that models has a great rele-
vance because it includes a variety of considerations that
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can be important in the phenomena described by the
model. Furthermore, from the solutions of the general-
ized model, we can derive solutions for the standard,
with the advantage that we can consider new types of
solitons that can be used to understand the phenomena
described by the respective model and can be used to
implement new technology. In recent years, models with
variable coefficients have been presented by several authors
as equations with practical applications, for instance, the
following equation:

U + Iae™2 + JoeMUyyy = 0,

studied in [7], and other equations considered for instance
in [8,9] are types of this class of models.

When new equations are appearing to model the
pulses transmission, a great variety of computational
method have been implemented to solve it. We can found
several models and computational methods for solving
nonlinear partial differential equation in references [10-37].
Recently, nonlinear partial differential equations with frac-
tional exponents have used for modeling several phe-
nomena of the nature, so that, as in the classical models
mentioned in the previous references, new techniques to
solve them, specially from the point of view of exact and
numerical solutions, have implemented [38-48]. How-
ever, one of the methods used in a satisfactory way and
that did not appear in the aforementioned references is the
improved tanh—coth method (ITCM) presented in refs
[49,50], which we will use to solve (1.1). The advantage
of this method, compared with others, is that it can be
implemented in a mathematical software as Mathematica
and Maples, can be applied into systems directly, do not
require a special computer, and can be implemented
easily, and finally, it is a generalization of the tanh—coth
method [51] and the Kudryashov method [52] and is used
widely in the literature. The work is organized as follows:
In Section 2, we present a brief description of the ITCM to
solve a system. In Section 3, we solve (1.1), and we obtain
conditions on the coefficients with the aim to derive non-
trivial solutions and we present the solutions obtained.
Finally, we present a discussion on the results obtained,
and we present some final conclusions.

2 Solving Eq. (1.1)

With the aim to solve the Manakov system given by Eq. (1.1),
we need, at first, to use the following transformation:
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Q(X 8) _ q(n)el(x+Jp(e)de+no)

r(x, €) = r(n)e’(’”.[ pe)de+no) .1)

n=x+ IA(e)de + 1

where, p(e) and A(¢) are functions of € to be determinated
latter, and n,. n, arbitrary constants. With the use of (2.1),
we have the following system of ordinary differential
equations in the unknowns q(n), (1) (where by simpli-
city, we have used the same variables g, r):

-p(e)g(n) - Ti(e)g(n) + T(e)g" ()
+ 01(e)(g*(n) + r*(m)Hu(n)
+ 1(A(e) + 2I(e))g' () = O,
|=p(e)r(n) - Te)r(p) + T(e)r"(n)
+ 0:()(@2(n) + r)r(n) + 1A(e) + 20ENr' ()
=0.

(2.2)

Here, q'(¢) = 3—:, r'(e) = %. As we mentioned previously,
one of the functions that we need to obtain is A(g), so
that, in the first equation of (2.2), we consider:

Ale) = -204(¢e). (2.3)

With this selection, the imaginary part of the first equa-
tion of (2.2) is eliminated. Now, replacing (2.3), in the
second equation of (2.2) and considering the following
condition on system (1.1)

Li(e) = Tx(e),

we can eliminate the imaginary part of the second equa-
tion of (2.2), so that, finally, (2.2) converts to

-p(e)q(n) - Ti(e)q(n) + Ti(e)g" ()
+ 04(e)(q*(n) + r*(m)q(n) = 0,
-p(e)r(n) — Tie)r(n) + Te)r" ()
+ 0(e)(g*() + r’(m)r(n) = 0.

(2.4)

(2.5)

2.1 The ITCM method

A full description of the ITCM can be found in reference
[49]. However, similar to all computational methods, the
first step is transformation of the nonlinear partial differ-
ential equation (or system of nonlinear partial differential
equations) to an ordinary differential equation (or system
of ordinary differential equations), by means of adequate
transformation. In our case, we have used (2.1) to reduce
(1.1) into (2.2). In the following step of the ITCM method,
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we illustrate them by applying directly to our system. We
consider solutions of (2.5) in the following form:

M . ZM .
qn) = Y a©pm) + Y ae)pmM-,
i=0 i=M+1
. N (2.6)
r(n) = Y bie)p) + Y bie)pm™,
i=0 i=N+1
where ¢(n) is solution of the Riccati equation [50]:
¢'() = o(e)p*(n) + e(e)p(n) + x(€). @2.7)

By substituting (2.6) into (2.5) and applying the balancing
technique, we have M + 2 = 3M and N + 2 = 3N, respec-
tively, thus obtaining M = 1, N = 1. With this values, (2.6)
reduces to

(2.8)

q() = ao(e) + ai(e)p(n) + a(e)p(n),
r(n) = bo(e) + bi(e)p(n) + ba(e)p(m)".

By substituting (2.8) into (2.5) and considering (2.7), we
have an algebraic system in the unknowns y(g), p(e),
0(¢), p(€), ao(e), ai(e), ax(€), bo(€), bi(€), ba(e):

2aiT(€)0%(e) + a1b04(€) + a0 (e) = 0,
aib05(g) + 2Iy(e)b,02(e) + bO,(¢) = 0,
22(©)arli(€) + ab304(e) + a;704(e) = 0,

aib,05(€) + 2¢(e)’Ti(e)b, + b30,(¢) = 0,

agboé)z(e) + 2a1a,b00,(€) + 2aa,h105(€) + 2aa1b,0,(€)
2a0a;,by0,(€) + aZh,0,(€) + 2a,a,0,0,(€) + aib,0,(¢)

2610(12170@2(8) + a22b1®2(€) + a§b2®2(£) + 2(11(12192@2(8)
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Ii(e), ©1(¢), and B,(¢) are the coefficients of Eq. (1.1). The
rest of parameters in the previous system depend on vari-
able € (a; = ay(¢),...). By using a mathematical software
such as Maple or Mathematica, we obtain the following
solution of the system (2.9), from which, we can obtain
nontrivial solutions for (1.1):

ao(€) = bo(e) = x(¢) = o(¢) = 0,
ai(€) = +iby(e),

ay(&) = +iby(e),

p(e) = T(e)(-1 + ().

(2.10)

With these values, the solution of (2.7) is expressed
as follows:

$(n) = ed®n, .11)

Here p(¢) is the arbitrary function. According to (2.8), and
(2.10), we have

{q(n) = s1by(E)() * thy(e)p(n) Y,

2.12
1) = bUE)P(D + bAE)Da) ", @12

where ¢(n) is earlier given in (2.11) and by(g), b,(g) arbi-
trary functions. Finally, taking into account (2.1), (2.3),

3aiTi(e)p(e)a(€) + 2a1bob104(€) + aph0:(€) + 3apal®(e) = 0,
atbo®,(€) + 2amb,0,(¢) + 3Ty()p(e)bio(€) + 3bobiO(€) = 0,
3x(@)aTi(e)a(e) + 2a,bob,01(g) + aph70:(e) + 3apaz,(¢) = 0,
a3ho®s(€) + 2a0a:b,0;(€) + 3x(e)Ti(e)a(e)b, + 3bob;04(¢) = 0,

x@©ay(e)e(e) + ali(e)p(e)a(e) - aoli(e) + aob®i(e) + 2aobib,0:(€)

+ 2a,bob01(€) + 2a1bob,04(€) + a(?@l(e) + 6a1a,a00(€) — agp(e) = 0,

Ax(©ali(e)a(e) + ali(e)pX(€) - ali(e) + abdO(e) + abiO4(¢)

+ 2aobob10,(€) + 2a1b1b,04(€) + 3aim0(g) + 3ata,0:(¢) — ap(e) = 0,
2(e)ali(e)a(e) + ali(e)pX(e) — aliy(e) + abgOi(€) + abs04(e)

+ 2aobob,01(€) + 2a,b1b,04(€) + 3ma70y(€) + 3aia0:(€) — ayp(e) = 0,

(2.9)

+ x(©TN(e)e(e)b; + Li(e)p(e)byo(e) — Ti(e)by + bg@z(e) + 6b1bybo0,(€) — bop(e) = 0,
+ A(©L(e)b10(e) + Li(€)b10*(e) — Ti(€)by + 3b3h1O(€) + 3b7b,0,(€) — byp(e) = 0,

+ 2((e)i(€)b10(e) + Ti(e)bap(€)? — Ti(€)by + 3b1b70(€) + 3bgh,0,(€) — byp(e) = 0.



4 = Arash Pashrashid et al.

and (2.12), under condition (2.4), we have the following
solution of system (1.1):

2
CI(X, €)= ill’(rl)el(XJrJ. Gi(e)(-1+¢ (8))dt+110)

r(x, €) = r(n)e'(”I rl(e)(_l+92(8))dt+"°)

n=x+ I - 2L(e)dt + 1y,

(2.13)

where p(¢) is arbitrary function, n, and n, arbitrary con-
stants, and r(n) is given in (2.12).

1. corresponds to graph of r(n) given in (2.12), for the
following constant values: by(g) = 2, by(e) = 3, p(€) = 4,
and I(e) = 2, for [x, t] € [0.6, 1] x [0.1, 0.3] and 1, = O.

1, corresponds to graph of r(n) given in (2.12), for the
following variable values: by(€) = 2t, by(¢) = 3t2,0(c) = 4t3,
and Iy(e) = 2t2, for[x, t] € [0.6, 5] x [0.1, 1] and n, = O.

2.2 A second case

In Section 2.1, we have obtained solutions for system
(1.1), for the case given by (2.4). In this section, we obtain
new solutions, taking into account the following addi-
tionally condition:
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01(e) = B,(e). (2.14)

With (2.14), the system (2.5) reduces to

-p(e)q(n) — Ty(e)g(n) + T(e)g" (1)
+ ©1(e)(g* () + r’()g(n) = 0,
-p(e)r(n) - Tie)r(n) + Le)r"(n)
+ ©1(e)(g*() + r’(m)r(n) = 0.

(2.15)

(b) 7o

Under these new conditions, the following are new solu-
tions of the system (2.9):

204(e)az(e)bi(e) — Ti(e)by(e) + 201(e)bi(€)b3(€)

by(e) '
1B4(e) a5 () + b3(€)

v2Li(e)
| 1JO1(€) bi(e)yai(e) + bi(e)
o(e) =+
V2Lh(€) by(e)
ax(&)by(€)
by(e)

&) = ao(e) = bo(e) = 0,
ay(€), bi(e), and by(¢) arbitrary functions (depending on
variable €).

pe) ==+

I+

x(e) =
(2.16)

m(e) =

’
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o) = HO1OBEDI(E) - TiE)ba(e) + 401(E)bi(E)bi(E)
by(e) ’
x(e) = + /61 ai(e) + bi(e)
) J2h(e) ’
‘ o) = ¥ 1/i(e) bi(e)\az(e) + bi(e) (2.17)
\/T(S)bz(e)
_ &(e)bhi(e)
ae) = o)
o(e) = ap(€) = bo(e) = 0,

a(€), bi(e), and b,(¢) arbitrary functions (depending on
variable €).

p(e) = T(e)(-1 + @%(¢)),
a)(€) = *ib(¢),

(2.18)
ax(€) = +iby(€), x(€) = a(€) = ao(e) = bo(e)

-0,
(1 e
a@\ n 2 )

o(e) 2 2

1 | Jax(©a(e) - o*(e) tan[ Jax(eo(e) - pX(e)

o(e)
”} - T]

Traveling wave solutions to Manakov model =——— 5

bi(e) and b,(¢) arbitrary functions (depending on variable
).
p(e) = -T(e) + [(e)p*(e) + 401(e)by(e)by(e),
a(€) = th(e),
ay(€) = —thy(e), x(€) = a(e) = ao(€) = bo(e)
= O’

(2.19)

bi(¢) and b,(¢) arbitrary functions (depending on vari-
able €).

We can obtain several expressions, which include
periodic and hyperbolic functions, for solutions of (2.15),
using the following classifications of solutions of Eq. (2.7)
[50] and the previous set of solutions of (2.9), given from
(2.16) until (2.19):

(1) If x(e) + 0, a(e) # 0, and p(g) + O:

0%(e) = 4o(e)x(e)

4y(e)oe) - p(e)? > 0

1 [ Jax@©o) - e Cot[ Jax @) - @)

4y(e)a(e) — p*(e) > 0

e(e)

d)()’l) = 0'(8) - 2 2 (2.20)
\/ﬁ \/ﬁ
1 f_ye (&) - 4(©)o(e) tanh 0%e) — 4x(e)o(e) n|- oe) ,  Ax(e)a(e) - p(e) <0
o(e) 2 2 2
\/ﬁ \/ﬁ
L[ _ete) - fx(e)ole) coth| ¥© (€) ~ H(E)oE) n| -2 4x(e)a(e) - *(e) < 0
o(e) 2 2 2
(2 If x(¢) =0, a(e) # O:
o(e)
—0(e) + p(e)ee©n’ o(e) # 0
1
- O'(E)TI ’ Q(S) =0
1 fV-0%e) tan[ 2 '1] - Q(e)], e%(e) <0
a(e) 2 2 2
o) = 1 (2.21)
1 [ V-2  [J-e® | o )
ool 2 COtl 2 nl - T]’ o) <0
_1 (e LIOM O] >
) 5 tanh[ 5 11] 5 ), p’(e) >0
1 (e® ple@ | ek >
) 5 coth[ 5 rz] 5 ), p’(e) >0
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(3) Ifp(e) =0,0() # 0

1

“oten’ X(e)=0
ﬁ(\/x (e)a(e) tan[x(€)a(e) 1)), X@)o(e) > 0
P = 3 %(—\/X(s)a(e) cot[\x(€)a(e)n)), x@©a(e) >0 (2.22)
%(—\/—X(e)o(e) tanh[ | X@®o@ 1),  xE€)o(E) < 0
% (—Jx@o0(e) coth (o) nD,  x(eoe) <.
(4)Ifo(e) =0,p(e) # 0 where p(e) = 261(€)a§(£)b1(£)—Fl(s)bz(g)+2@1(g)bl(s)b22(g), and 1 -

X+ I - 2[i(e)de + n;, and azlé(;z bi(€), by(€) are arbitrary
(2.23)  functions depending on the variable &, and ¢(n7) is given by
(2.24). In the previous expressions,
We illustrate solutions of (2.7), using the values given
by (2.16) and (2.22) (taking the first sign in each case): q(n) = Mq{)(n) + ax(e)p(n)!

~X(e) + 0(e)edn

o) = o©

2 2 b . 6
First, we note that (y(£))(0(e)) = ~>2GEes 25, so ) - B + e -
that, after simplifications, we have:
~ \2Ii(e) by(¢) if y(e) = 0
(J=6®) bi(e)ya(e) + bie)n’ ’
by(¢) _ bi(e)01(e)(ax(e)? + by(e)?) .
\/ m tan[ \/ L (E)bE) n] if y(e)a(e) > 0
o) =1- \/ % cot[ \/ - b(s)@{;)ﬂf(a;)(;?(l; by(e)’) 1l if y(e)a(e) > 0 (2.24)

- _@ b1(€)0:(e)(ax(e)? + by(e)?) )
m tanh[\/ 2Ty(e)by(e) nl  if x(e)o(e) <0

by(e) b1(e)B1(e)(ax(e)? + bx(e)?) )
_ b®) coth[ \/ (E)by(e) nl if y(e)o(e) < 0

Therefore, according to (2.1), (2.8), and (2.16), we have are solutions of (2.8). By using the expression tanh in
the following solution for (1.1) (under two conditions (2.24), the following are graphics corresponding to (2.26),

fie) = T2(e) and ©4(e) = 0:(0)): for adequate values of the respective variables:
b o
qax, €) = (%ﬁb(ﬂ) + az(g)s‘b(ﬂ)l)e'(x I ple)de+ny)
2

2.25
0, €) = (biE)p(n) + ba(E)p() D™ [ 1O, 22
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(c) &1

¢, and r; correspond to values: I'(e) = 2, O(g) = -2, ay(¢) =1, bi(e) = -1, by(e) = 1, and (x, €) € [0, 5] x [0, 2].

(e) g2 () 72

¢, and r, correspond to values of the parameters: I'(g) = 2, O(g) = -22, ay(e) =1, by(e) = -1, by(¢) =1, and
(x, €) € [0, 5] x [0, 2]. Here, we have taken variable coefficients for I and 6.
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SEon
..f:...;z?’;’?a’“?t‘r~ .
o
i

-

\ LA
ok ..
o L ......4.

Finally, g; and ;5 are the graphs of (2.26) corresponding
to values T'(g) = 2g, O(g) = —2¢2, ay(€) = 1, by(e) = ¢,
by(e) = €2, and (x,¢) € [0,5] x [0,2]. We have taken
variable coefficients for all free parameters.

For all previous graphics, we have used 1, = 0.

3 Results and discussion

In this work, we have used the ITCM to obtain solutions
for a system with variable coefficients, applying directly
the method to the respective system (after reduction to
ordinary equations), thus avoiding the reduction to only
one equation, as presented in the previous study. The first
observation deals with the effectiveness of the method. A
second observation, all solutions obtained here, is in
terms of variable coefficients, which is new in the litera-
ture for the model studied in this work. The model con-
sidered here is known as the Manakov system with vari-
able coefficients (1.1). We have obtained solutions for it in
two particular cases: In the first case, we have considered
(2.4) to obtain the solution given by (2.13). As we have
mentioned early, the solutions are new in the literature
due to existence of variable coefficients; however, if we
take the coefficients as constants, as a particular case,
the solutions given by (2.13) are again new. The graphs
showed by r. and r, illustrate the two cases, taking con-
stant coefficients (in the case of 1) where we have
obtained a solitary wave with smooth perfil, and by
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taking variable coefficients (in the case of r,), we can
obtain a new structure of the solution, where we can
note the evolution of the previous wave to a wave
with a truncate perfil. We think that this fact can be
taken into account in a real application of the model.
In a second case, we have assumed additionally the
condition (2.14), and we have obtained solutions for
(1.1). In this last case, the solutions obtained are new
in the literature due to variable coefficients. However, if
we take constant coefficients, the solutions are new,
compared with those obtained in references [3-5]. The
solutions obtained and expressed by (q;, ) have the
structure of a dark soliton, but in the case were we
have used some constant coefficients combined with
variable coefficient, the wave have a relevant change,
and the new wave have a part smooth as r., r,, with
special evolutions. In the third case, where we have
taken all variable coefficients, g3, v3, the waves have
the structure similar to dark solitons; however in this
case, it is cear that gs is different to r;. The method used
here gives us solutions for (1.1), with a more general
structure compared, for instance, with those obtained
in ref. [3], which can be seen in the solutions obtained
for (2.15), which include a sum of tanh and coth func-
tions, using the solutions mentioned in Eq. (2.7). The
results obtained in this study are complementary to
those found by other researchers. These results contri-
bute to the development of the solitons theory, espe-
cially since the use of variable coefficients has become
more important recently.
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4 Conclusion

We have obtained exact solutions for the Manakov system
with variable coefficients (1.1), which, due to its variable
coefficients, are new in the literature. The ITCM has been
applied directly on the ordinary differential system (2.2),
(2.15), for obtaining exact solutions of (1.1) in a satisfactory
way. The case in which the system has constant coeffi-
cients can be derived as a particular case. New solutions
for the classical Manakov model (constant coefficients)
are derived from the solutions obtained here. From the
graphs 1. and r,, we can see that with the use of variable
coefficients, we can have different structures of the
solutions, compared with the solutions in the case of
constants coefficients. We have found new solutions for
the standard model by obtaining optical solutions for
the model considered here under two conditions: firstly,
when TIi(e) = I}(¢), and secondly, when 0;(g) = 0,(¢).
Comparing that solutions with those obtained by others
authors [3-5], we can conclude that our results are com-
plementary to those obtained in the mentioned previously
mentioned references. By using (2.20), (2.21), (2.22), and
(2.23), new type of solutions can be derived to complement
our work, and to keep tis short, we have omitted here.
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