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Abstract: The weighted generalized cumulative residual
entropy is a recently defined dispersion measure. This
article introduces a new uncertainty measure as a gener-
alization of the weighted generalized cumulative residual
entropy, called it the weighted fractional generalized cumu-
lative residual entropy of a nonnegative absolutely contin-
uous random variable, which equates to the weighted
fractional Shannon entropy. Several stochastic analyses
and connections of this new measure to some famous
stochastic orders are presented. As an application, we
demonstrate this measure in random minima. The new
measure can be used to study the coherent and mixed
systems, risk measure, and image processing.

Keywords: weighted fractional generalized cumulative
residual entropy, generalized cumulative residual entropy,
weighted mean residual lifetime, stochastic orders

1 Introduction and preliminaries

Shannon entropy is crucial in several areas of statistical
mechanics and information theory. It is a well-known
theory for uncertainty measures in the probabilistic fra-
mework that has attracted much attention in real appli-
cations, as seen in refs [1–4] among others. Boltzmann
and Gibbs offered a widely used format of entropy in
statistical mechanics, and Shannon provided it in infor-
mation theory. If X is a discrete random variable with
probability mass function ( )= …p pP , , n1 , then the frac-
tional entropy is given by (see ref. [5])

( ) ( )∑= − ≤ ≤

=

H X p p αlog , 0 1.α
i

n

i i
α

1
(1)

It is obvious that (1) is a nonnegative criterion. Moreover,
it has the properties of concavity and nonadditivity. In
the particular case for =α 1, it reduces to Shannon entropy
[6]. From (1), it is clear that the fractional entropy is a
function of pi, and the values of the random variables do
not matter. For this reason, and to obtain a better uncer-
tainty analysis, the probabilities and qualitative aspects of
the possibilities in many domains must be considered
under different circumstances (see, e.g., [7]). For this pur-
pose, the notion of weighted fractional entropy is deter-
mined by

( ) ( )∑= − ≤ ≤

=

H X w p p αlog , 0 1.α
w

i

n

i i i
α

1
(2)

It is clear that (2) reduces to (1) for =w 1i , = …i n1, , , and
equals to the weighted entropy when =α 1.

The cumulative residual entropy (CRE) was intro-
duced by ref. [8], and the fractional CRE was presented
by ref. [9]. Recently, the fractional generalized cumula-
tive residual entropy (FGCRE) of X as an extension of CRE
was developed in ref. [10] as follows:

E ( ) ( ) ( )[ ( )]∫=

∞

X q α S x x xΘ d ,α
α

0

(3)

where ( )
( )

= ≥

+

q α α, 0α
1

Γ 1 , such that

( ) ( ) ( )∫= − = >x S x λ u u xΘ log d , 0,
x

0

(4)

and ( ) ( ) ( )= /λ u f u S u , >u 0, denotes the hazard rate
function. Other properties of the quoted measure are
found in refs [9,11,12] and the references therein. As sug-
gested by ref. [10], if = ∈α n N , thenE ( )Xn reduces to the
generalized cumulative residual entropy introduced in
ref. [13]. Several properties and applications of some
uncertainty measures have been considered in the litera-
ture. For example, some other properties of the CRE were
studied in ref. [14] and were applied to coherent and
mixed systems. In addition, in ref. [15], the generalized
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CRE was considered as a risk measure and was compared
to the standard deviation and the right-tail risk measure.
Recently, in ref. [16], the cumulative residual Tsallis
entropy was used as an alternative measure of uncer-
tainty in blind assessment of the image quality. In this
article, we aim to present a new measure of uncertainty
determined by the weighted FGCRE. It is worth noting
that the new measure is particularly important in the
context of the proportional hazard rate model. Based on
the mentioned references, the new measure can be used
to study coherent and mixed systems, risk measurement,
and image processing.

The remainder of this article is thus structured as
follows. Section 2 introduces a new measure of uncer-
tainty through the weighted FGCRE. We then provide
some expressions for the weighted fractional generalized
cumulative residual entropy (WFGCRE), one of which is
associated with the weighted mean residual life (WMRL)
function. In Section 3, we study the stochastic ordering
properties of the WFGCRE and then provide some bounds
for it. In Section 4, we conclude the article with some
remarks and directions for the future work.

Before discussing our main results, we should recall
some stochastic orders and classes of life distributions
that we will use in the sequel. For more details, we refer
the reader to ref. [17]. For this purpose, throughout this
article, we denote the collection of absolutely continuous
nonnegative random variables containing the support
( )∞0, by � { }= ≥

+ X X; 0 . Moreover, we assume that
∈

+�α , where [ )= ∞

+� 0, .

Definition 1.1. Let �∈

+X1 have cumulative distribution
function (CDF) ( )F x1 , probability density function (pdf)

( )f x1 , survival function ( ) ( )= −S x F x11 1 , hazard rate func-
tion ( )λ x1 , and mean residual life (MRL) function ( ) =m x1

( )
( )

∫

∞

S x xdS t t
1

1
1

. Similarly, let �∈

+X2 have CDF ( )F x2 , PDF

( )f x2 , survival function ( ) ( )= −S x F x12 2 , hazard rate func-
tion ( )λ x2 , and MRL function ( ) ( )

( )
∫=

∞

m x S x xdS t t2
1

2
2

. Then:

(i) X1 has the (increasing) decreasing MRL (IMRL (DMRL))
property if ( )m x1 is increasing (decreasing) in >x 0;

(ii) X1 has the (increasing) decreasing failure rate (IFR
(DFR)) property if ( )λ x1 is increasing (decreasing)
in >x 0;

(iii) X1 is smaller than X2 in the usual stochastic order
(denoted by ≤X Xst1 2) if ( ) ( )≤ ∀ >S x S x x, 01 2 .

(iv) X1 is smaller than X2 in the hazard rate order (denoted
by ≤X Xhr1 2) if ( ) ( ) ( ) ( )≥S x S y S x S y1 2 2 1 for all ≤x y.

(v) X1 is smaller than X2 in the likelihood ratio order
(denoted by ≤X Xlr1 2) if ( ) ( ) ( ) ( )≥f x f y f y f x1 2 1 2 for
all ≤x y, with >x y, 0.

(vi) X1 is smaller than X2 in the MRL order (denoted by
≤X Xmrl1 2) if ( ) ( )≤m x m x1 2 for all ≥x 0.

(vii) X1 is smaller than X2 in the increasing convex order
(denoted by ≤X Xicx1 2) if � �[ ( )] [ ( )]≤Φ X Φ X1 2 for
all increasing convex functions ( )⋅Φ such that the
expectations exist.

2 New uncertainty measure

In this section,we proposeWFGCRE and investigate itsmani-
fold properties. For this purpose, let �∈

+X with CDF F and
PDF f . Moreover, we consider an increasing nonnegative
differentiable function ( )xΨ such that ( ) ( )′ = ≥x ϕ xΨ 0.
Then the WFGCRE of X is represented by

E ( ) ( ) ( ) ( )[ ( )]∫=

∞

X q α ϕ x S x x xΘ d ,α
αΨ

0

(5)

for all ∈

+�α , provided the right-hand side integral is finite.
It is worth noting that our results are the generality of the
weighted generalized cumulative residual entropy (WGCRE)
from [18]. It is obvious that (5) is nonnegative and equal to
zero when X has a degenerate distribution function. In the
particular case =α 1, we have the weighted CRE as follows:

E ( ) ( ) ( ) ( )∫=

∞

X ϕ x S x x xΘ d ,w

0

(6)

Here, we obtain an expression for the WFGCRE that is a gen-
eralization (24) in ref. [18] for theWGCRE. For this purpose, we
define the random variable

+
Xα 1 with the PDF as follows:

( )
( )

[ ( )] ( )=

+

≥
+

f x
α

x f x x1
Γ 1

Θ , 0,α
α

1 (7)

for all ∈

+�α . The definition of ( )xΘ is defined in (4). If
we denote the survival function of

+
Xα 1 by ( )

+
S xα 1 , it holds

that ( ) ( ( ))=
+ +

S x K S xα α1 1 , ≥x 0, where

( ) ( ) ( )∫= − < <
+

K t q α u u tlog d , 0 1α

t

α
1

0

is an increasing function of t for all ∈

+�α .

Proposition 2.1. Let �∈

+X . Then,

E � �( ) [ ( )] [ ( )]= −
+

X X XΨ Ψ ,α α α
Ψ

1 (8)
for all ∈

+�α .

Proof. From (5), we have

E

� �

( ) ( ){ ( ) ( )}

( ) ( )
( )

( )
( ) ( )

[ ( )] [ ( )]

∫ ∫

= − −

= −

+

= −

∞

+

∞

+

X q α α α α

x f x x α α
α

x f x x

X X

Ψ Ψ 1

Ψ d Γ
Γ 1

Ψ d

Ψ Ψ ,

α

α α

α α

Ψ

0

1

0

1
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where ( ) ( )[ ( )] ( )∫=

∞

α x x f x xϒ Ψ Θ dα
0

, and the first equality

is acquired using integrating by parts, while the last
equality is received by remembering (7) and utilizing
the identity ( ) ( )+ =α α αΓ 1 Γ (Table 1).

From Proposition 2.1, we note that E ( )Xα
Ψ is the loca-

tion between the functions

( ) ( ( ) ) ( ( ( )))= > =
+ + +

−S x P X x K S xΨ Ψ ,α α αΨ, 1 1 1
1

and

( ) ( ( ) ) ( ( ( )))= > =

−S x P X x K S xΨ Ψ ,α α αΨ,
1

for all ∈

+�α . In certain,E ( ) ( ( ))=X E XΨ0
Ψ is the location

under ( ) ( ( ) )= >S x P X xΨΨ,1 1 . Figure 1 displays these loca-
tions for a standard exponential distribution and different
values of α for ( ) =x xΨ 2 (top panel) and ( ) =x xΨ
(bottom panel). Also notice from (5) that the WFGCRE
can be written as follows:

E �⎜ ⎟( ) ⎛

⎝

( )

( )
⎞

⎠
=

+

+

X ϕ X
λ X

,α
α

α

Ψ 1

1
(9)

for all ∈

+�α . The following theorem gives a sufficient
condition for the WFGCRE to be finite.

Theorem 2.1. Let �∈

+X . If ( )≤ ≤ϕ x0 1, then
(i) if �( ( )) < ∞XΨ p for some > /p α1 , then E ( ) < ∞X ,α

Ψ

∀ < ≤α0 1.
(ii) if �( ( )) < ∞XΨ p for some >p α, then E ( ) < ∞X ,α

Ψ

[ )∀ ∈ ∞α 1, .

Proof. (i) From relation (13) of ref. [12] for all [ ]∈α β, 0, 1 ,
one can obtain

⎜ ⎟( ) ⎛

⎝

⎞

⎠
− ≤

−

≤ ≤

−

x x αe
β

x xlog
1

, 0 1,α
α

β
1

(10)

and hence, by taking =β α for [ ]∈α 0, 1 , we obtain

⎜ ⎟( ) ⎛

⎝

⎞

⎠
− ≤

−

≤ ≤

−

x x αe
α

x xlog
1

, 0 1.α
α

α
1

Table 1: WFGCRE for some specific parametric distributions

Distribution ( )S x ( ) =x xΨ ( ) =x xΨ 2

Uniform ( )b0, 1 − x
b , ≤ ≤x b0 , >b 0

+

b
2α 1 ⎡

⎣
⎤
⎦+ +

b2 −1
2

1
3α α1 1

Weibull ( )k1, e x− k
, >x 0, >k 0

( )

( )
+

+

α

k α

Γ

Γ 1
k
1

( )

( )

+

+

α

k α

2Γ

Γ 1
k
2

Beta ( )b1, ( )x1 − b, ≤ ≤x0 1, >b 1
( ) +

b
b − 1

α
α 1 ⎡

⎣
⎤
⎦( ) ( )+ +

+ +

b2 −α
b b

1
1

1
2α α1 1

Figure 1: ( ) ( )= >S x P X xx α α,
22 (top panel) and ( ) ( )= >S x P X xx α α,

(bottom panel) for an exponential distribution
for =α 1, 1.5, 2, 2.5, 3, 3.5.
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From this and noting that ( )≤ ≤ϕ x0 1, we obtain

E

�

�

( ) ( ) ( ) ( )

( )
⎡

⎣

⎢
⎢

( ) ( )
⎤

⎦

⎥
⎥

( )
⎡

⎣

⎢
⎢

( )
⎤

⎦

⎥
⎥

( )
⎡

⎣

⎢
⎢

⎡
⎣

( ) ⎤
⎦

⎤

⎦

⎥
⎥

( )
⎡

⎣

⎢
⎢

[ ( )]
⎤

⎦

⎥
⎥

∫

∫ ∫

∫

∫

∫

≤

= +

≤ +

≤ +

= +

∞

∞

∞

∞

∞

X c α ϕ x S x x

c α ϕ x x ϕ x x

c α S x x

c α X
x

x

c α X
x

x

d

d d

1 d

1 d

1 1 d ,

α
α

α α

α

p

p

α

p α
αp

Ψ

0

0

1

1

1

1

1

(11)

where ( ) ( ) ( )=h x ϕ x S xα
α and ( ) ( )

( )
=

−

−

c α q α αe
α

α

1

1
. The third

inequality in (11) is conveyed using Markov’s inequality,

while the final integral is finite if
( )

∈ ∞p ,α
1 , and this

ends the proof. In the case where [ )∈ ∞α 1, , we set

= /β α1 . □

An alternative indication for the WFGCRE of X is
supplied in the forthcoming theorem. It is represented
regarding the cumulative hazard function of X provided
by (4).

Theorem 2.2. Let �∈

+X with finite WFGCRE function

E ( ) < +∞Xα
Ψ for all ∈

+�α . We have,

E �( ) [ ( )]( )
=X XΩ ,α α

Ψ
Ψ,
2 (12)

such that

( ) ( ) ( ) ( )( )
∫= ≥x q α ϕ t t t xΩ Θ d , 0.α

x

α
Ψ,
2

0

(13)

Proof. From (5) and Fubini’s theorem, we obtain

E ( ) ( ) ( )
⎡

⎣

⎢
⎢

( )
⎤

⎦

⎥
⎥

( )

( ) ( )
⎡

⎣

⎢
⎢

( ) ( )
⎤

⎦

⎥
⎥

∫ ∫

∫ ∫

=

=

∞ ∞

∞

X q α ϕ t f x x t t

q α f x ϕ t t t x

d Θ d

Θ d d ,

α

t

α

x

α

Ψ

0

0 0

which immediately follows (12) by using (13). □

This immediately allows us to obtain the following
theorem.

Theorem 2.3. Let �∈

+X with mean �( )= < ∞μ X . If
( )xΨ is an increasing convex function, then

E ( ) ( )( )
≥X μΩ ,α α

Ψ
Ψ,
2

for all ∈

+�α .

Proof. Based on the assumption, ( )( ) xΩ αΨ,
2 in (13) is an

increasing convex function of x. This implies the result.
□

Another useful application of Theorem 2.2 is given in
the next theorem.

Theorem 2.4. Let �∈

+X Y, . If ( )xΨ is an increasing
convex function and ≤X Yicx , then

( ) ( )( ) ( )
≤ ∈

+�X Y αΩ Ω ,α icx αΨ,
2

Ψ,
2

where the function ( )( )
⋅Ω αΨ,

2 is defined in (13). Specifically,
≤X Yicx yields

E E( ) ( )≤X Y .α α
Ψ Ψ

Proof. Since the function ( )( )
⋅Ω αΨ,

2 is an increasing convex
function for all ∈

+�α , it follows (see Theorem 4.A.8 of

ref. [17]) that ( ) ( )( ) ( )
≤ ∈

+�X Y αΩ Ω ,α icx αΨ,
2

Ψ,
2 . Now, using

relation 4.A.2 of ref. [17], we derive E E( ) ( )≤X Yα α
Ψ Ψ . □

As another example of the use of Theorem 2.2, when
( )xΨ is an increasing convex function, it can be seen that

the function ( )( )
⋅Ω αΨ,

2 is an increasing convex function such

that ( )( )
=Ω 0 0αΨ,

2 . So if ≤X Yhr , we have

E E

� �

( )

( )

( )

( )
≤

X
X

Y
Y

,α α
Ψ Ψ

(14)

for all ∈

+�α . This connection is directly acquired from
Theorem 2.2 and appealing to [17] (see page 24). We
note that Eq. (14) guides us to specify the normalized
WFGCRE by

E

�
( )

( )

( )
=�� X X

X
.α

αΨ
Ψ

(15)

Under the condition ≤X Yhr , the outcome of Eq.

(14) can be declared as ( ) ( )≤�� ��X Yα α
Ψ Ψ for ∈

+�α .
We now recall the WMRL function defined by ( ) =m tψ

�[ ( ) ( )∣ ]− >ψ X ψ t X t , obtained by the next formula:

( )
( )

( ) ( )∫=

∞

m t
F t

ϕ x F x x1 dψ

t

(16)
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for all ≥t 0 such that ( ) >F t 0; see [18]. It is evident that
�( ) [ ( )]=m ψ X0ψ . In the next theorem, we supply another

term for the WFGCRE regarding the expectation of the
WMRL function, described in (16), evaluated at Xα.

Theorem 2.5. For �∈

+X , one has

E ( ) ( ( ))=X E m X .α ψ α
Ψ (17)

Proof. For all ∈

+�α , we have

( )

( )
( )

( )

( )
∫ =

+

≥

− x
α

λ x x t
α

tΘ
Γ

d Θ
Γ 1

, 0,
t

α α

0

1

where the last equality is obtained by noting that ( )+ =αΓ 1
( )α αΓ . From this, Eq. (5) and using Fubini’s theorem, we

have

E ( ) ( )
( )

( )
( )

( )

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )
( )

( )
( )

∫

∫∫

∫ ∫

∫

=

+

=

=

=

∞

∞

−

∞

−

∞

∞

−

X ϕ t t
α

S t t

x
α

λ x ϕ t S t x t

x
α

λ x ϕ t S t t x

m x x
α

f x x

Θ
Γ 1

d

Θ
Γ

d d ,

Θ
Γ

d d

Θ
Γ

d .

α
α

t
α

α

x

ψ
α

Ψ

0

0 0

1

0

1

0

1

(18)

The last equality in (18) is concluded from (16). So, Eq.
(17) now is obtained from (7). □

The subsequent example applies relation (17) for the
minimum of a random sample, which may be considered
as the lifetime of a series system.

Example 2.1. Let { }= …X X Xmin , ,m m1: 1 , where …X X, , m1
are absolutely continuous nonnegative random variables
having CDF ( )F x . If we assume the survival function of
X m1: by �( ) ( ) [ ( )]= > =F x X x F xm m

m
1: 1: for ≥x 0, by set-

ting ( ) ( )=ψ t F t , and thus ( ) ( )=ϕ t f t , due to Example 5 in
ref. [18], we have

( )
( )

( ) =

+

≥m t F t
m

t
1

, 0.ψ X m1:

Recalling Theorem 2.5, theWFGCRE of the probability inte-
gral transformation ( )F X m1: can be obtained as follows:

E ( ) ( ) [ ( )] ( )
( )

( )

∫=

+

=

+

∞

−X q α x f x F x
m

x

m

Θ
1

d

1
1 2

,

α
F

m
α

α

1:

0

1

for all ∈

+�α .

We recall that if X is NBUE (NWUE) (we say that X is
said to have a new better (worse) than used in expecta-
tion (NBUE) (NWUE) distribution if ( ) ( ) ( )≤ ≥ =m t m μ0
for all >t 0).

Theorem 2.6.
(i) If X is NBUE and ( )xΨ is concave, then E ( ) ≤Xα

Ψ

� �( ( )) ( )ϕ X Xα .

(ii) If X is NWUE and ( )xΨ is convex, then E ( ) ≥Xα
Ψ

� �( ( )) ( )ϕ X Xα .

Proof. We only prove case (i). The case (ii) can be simi-
larly proved. Let X be NBUE and ( )xΨ is concave. Since

( )ϕ x is decreasing, by (16), we obtain

�

( ) ( )
( )

( )

( )
( )

( )

( ) ( )

( ) ( )

∫

∫

=

≤

=

≤ >

∞

∞

m t ϕ x F x
F t

x

ϕ t F x
F t

x

ϕ t m t
ϕ t X t

d

d

, 0,

ψ

t

t

where the last inequality is obtained by the fact that X is
NBUE. Now, Theorem 2.5 ends the proof. □

As a special case, if we choose ( ) =x xΨ , then ( )xΨ
is both convex and concave. In this case, if X is increasing

failure rate in average, so E �( ) ( )≤X Xα
Ψ . On the other

hand, if X is decreasing failure rate in average, then

E �( ) ( )≤X Xα
Ψ . Our result is a special case of those obtained

in ref. [19].

3 Bounds and stochastic ordering

Hereafter, we seek to obtain some consequences on
bounds for the WFGCRE and supply outcomes based on
stochastic comparisons.

3.1 Some bounds

It is prominent that the CRE of the sum of two nonnega-
tive independent random variables is bigger than the
maximum of their respective CREs (see [8]). Similarly,
we deliver that the identical outcome also contains the
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weighted FGCRE. The proof pursues from Theorem 2 in
ref. [8]; therefore, it is skipped.

Theorem 3.1. If X1 and X1 are two absolutely continuous
nonnegative independent random variables, then we have

E E E( ) { ( ) ( )}+ ≥X X X Xmax , ,α α α
Ψ

1 2
Ψ

1
Ψ

2

for all ∈

+�α .

The next theorem shows a bound for the weighted
FGCRE regarding the weighted CRE (6).

Theorem 3.2. Let �∈

+X with survival function ( )S x ,
mean < ∞μ , and finite weighted CRE E ( )Xw . Then

E

E

E
( )

⎧

⎨

⎪

⎩
⎪

[ ( )]

( )
[ ]

[ ( )]

( )
[ )

≤

+

∈

≥

+

∈ ∞

−

−

X

X
μ α

if α

X
μ α

if α

Γ 1
, 0, 1

Γ 1
, 1, .

α

w α

α

w α

α

Ψ Ψ
1

Ψ
1

(19)

Proof. Let X͠Ψ be a random variable with the PDF

( )
( ) ( )͠

= >f x ϕ x S x
μ

x, 0,Ψ
Ψ

where �( ( ))=μ XΨΨ . It is easy to see that the WFGCRE
can be rewritten as follows:

E �( ) [ ( ( ))]͠
=X μ ψ XΘ ,α α

Ψ
Ψ Ψ

where ( )
( )

= >

+

ψ t t, 0α
t

αΓ 1

α
, is a concave (convex) func-

tion for [ ]( [ ))∈ ∈ ∞α α0, 1 1, . So, from Jensen’s inequality,
we have

E �

�

( ) [ ( ( ))]

( [ ( )])

( )

⎛

⎝

⎜⎜
( ) ( ) ( )

⎞

⎠

⎟⎟

͠

͠

∫

=

≤

=

+

∞

X μ ψ X
μ ψ X

μ
α μ

ϕ x S x x x

Θ
Θ

Γ 1
1 Θ d ,

α α

α
α

Ψ
Ψ Ψ

Ψ Ψ

Ψ

Ψ 0

and this gives the proof due to (6). The case ≥α 1 can be
obtained in a similar way. □

Two lower bounds for the WFGCRE of any distribu-
tions are obtained in the subsequent theorem.

Theorem 3.3. If �∈

+X with finite WFGCRE E ( )Xα
Ψ , then,

for all ∈

+�α , we have

(i) E ( ) ( ( ))
≥X C eα α

H XΨ Ψ such that ( ) ( )
( ( ( )) )

=

∫ −C α q α e x x xlog log dα
0
1

,
where

�[ ( )] ( ) [ ( )]= +H ψ X H X ϕ Xlog .

(ii) E ( ) ( ) ( ) ( )∫≥

∞

X q α F x S x xdα
αΨ

0

.

Proof. (i) The differential entropy of ( )XΨ when Ψ is a
nonnegative increasing function, can be represented as
(see, e.g., Eq. (7) of Ebrahimi et al.):

�

�

[ ( )] ( ) ⎡

⎣
( )⎤

⎦

( ) [ ( )]

= +

= +

H ψ X H X
X

ψ X

H X ϕ X

log d
d

log .
(20)

Accordingly, Part (i) is readily obtained by using log-sum
inequality (see, e.g., [8]). Moreover, by using the identity

≤ −x xlog 1 for < ≤x0 1, Part (ii) can be released. □

We finish this subsection by delivering two upper
bounds for the WFGCRE of X . The first one is concerning
the standard deviation of the transformed random vari-
able ( )XΨ . The second one is founded by the subsequent
transformed risk-adjusted (TRA) premium offered by

( ) ( ) ( )∫=

∞

X ϕ x S x xΠ d ,ϕ q
q

,

0

(21)

for all < ≤q0 1. It is worth telling that when ( ) =ϕ x x, we
have the risk-adjusted premium presented by ref. [20].
For an insurer, the risk-adjusted premium automatically
and always alters the risk loading relative to the expected
loss for different risks.

Theorem 3.4. Let �∈

+X with CDF ( )F t , transformed
standard deviation (TSD) be ( ( ))σ XΨ , and, WFGCRE func-
tion, E ( )Xα

Ψ . Then

(i) E ( ) ( ( ))
( )

( )
≤

−X σ XΨα
α
α

Ψ Γ 2 1
Γ , for all ≥α 0.5.

(ii) E ( )
( )

( )( )
≤

− +

−

Xα
αe

β

α Π X
α

Ψ
1 Γ 1

ϕ β1 , , such that

⎧

⎨
⎩

[ ]

[ )
=

∈

∈ ∞

β
α α

α
α

, 0, 1
1 , 1, .

(22)

Proof. (i) By applying the Cauchy–Schwarz inequality,
from (17), we have

⎡

⎣

⎢
⎢

( ) ( ) ( )
⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

( ) ( ) ( ) ( )
⎤

⎦

⎥
⎥

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

∫

∫

∫ ∫

=

≤

∞

−

∞

−

∞ ∞

−

m t x f x x

m t f x f x x x

m x f x x x f x x

Θ d

Θ d

d Θ d ,

ψ
α

ψ
α

ψ
α

0

1

2

0

1

2

0

2

0

2 2
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for all ∈

+�α . Recalling Theorem 21 in ref. [18], it implies
that �[ ( )] ( ( ))=m X σ XΨψ

2 2 . On the other hand, we have

( ) ( ) ( )∫ = −

∞

− x f x x αΘ d Γ 2 1 ,α

0

2 2

and it is nonnegative for any > /α 1 2. Consequently, the
proof is concluded. The claim (ii) is readily received from
(10) by using the relation (22), and this completes the
proof. □

The TSDbound in Theorem 3.4 is decreasing (increasing)
in α for ( )/ < ≤ ≥α α1 2 1 1 ; however, it can be applied for

> /α 1 2. While the TRA bound can be applied for all ∈

+�α .
So, this bound is a suitable alternative for the case of

< /α 1 2. The next example delivers these notes.

Example 3.1. Let �∈

+X have a standard exponential
distribution with the survival function ( ) = >

−S x e x, 0x .
By considering ( ) = ≥x x kΨ , 1k , we obtain

( ) ( ) ( )
( )

∫ ∫= = =

∞ ∞

− −Π X ϕ x S x x k x e x k k
β

d d Γ ,ϕ β
β k βx

k,

0 0

1

for all >β 0. To provide an expression for the trans-
formed variance and the WFGCRE of exponential distri-
bution, first note that

( ) ( )∫= =

∞

− −m t k x x k t ke e d e Γ , ,t

t

k x t
Ψ

1

where ( )t kΓ , denotes the upper incomplete gamma func-
tion. Now, due to Theorem 3 in ref. [18], we have

( ) ( ) ( ) [ ( )]∫= = + − +

∞

−σ X m t t k ke d Γ 1 2 Γ 1 .k t2

0

Ψ
2

Moreover, Theorem 2.5 implies that

E ( )
( )

( )
=

+

+

X k α k
α

Γ
Γ 1

.α
Ψ

Now, Theorem 3.4 gives

E ( )
( )

( )[ ( ) [ ( )] ]≤ − + − +X
α

α k k1
Γ

Γ 2 1 Γ 1 2 Γ 1 ,α
Ψ 2

in which > /α 1 2. Taking into account

⎧

⎨
⎩

[ ]

[ )
=

∈

∈ ∞

β
α α

α
α

, 0, 1
1 , 1,

,

Part (ii) of Theorem 3.4 gives

E ( )
( )

( ) ( )
[ ]≤

− +

∈

− −

X kα k
α α

αe Γ
1 Γ 1

, 0, 1α
α k α

α
Ψ

and

E ( )
( )

( ) ( )
[ )≤

− +

∈ ∞

+ −

X kα k
α α

αe Γ
1 Γ 1

, 1, .α
α k α

α
Ψ

2

In Figures 2–4, we depicted the TSD and the TRA
bounds as shown in Theorem 3.4 as well as the plot of

E ( )Xα
Ψ for [ ]∈α 0, 1 in the left panel and for [ )∈ ∞α 1, in

the right panel for =k 1, 2, 3, respectively. For this model,
the transformed SD bound is not computed for all =k 1, 2, 3
when [ ]∈α 0, 0.5 In this case, when [ ]∈α 0.5, 1 , the TSD
bound has better result.

3.2 Stochastic comparisons

Hereafter, we present some ordering properties of the
weighted FGCRE. We recall, in general, that the usual sto-
chastic ordering does not imply the ordering of weighted
FGCREs. The counterexample 3 in ref. [12] validates this
claim. Before beginning the subsequent theorem, we require
the next definition due to ref. [18].

Definition 3.1. Let ( )( )m tXΨ 1 and ( )( )m tXΨ 2 , be the WMRL
functions of �∈

+X1 and �∈

+X2 , respectively. Further,
assume ( )⋅ϕ be a nonnegative weight function. Then,
we say that X1 is smaller than X2 in the WMRL with respect

to the weight function ( )ϕ t , denoted by ≤X Xwmrl
ϕ

1 2, if
( ) ( )( ) ( )≤m t m tX XΨ Ψ1 2 , for all ≥t 0.

Now, we state the next theorem.

Theorem 3.5. Let �∈

+X X,1 2 with CDFs ( )F x1 and ( )F x2 ,
and WMRL functions ( )( )m tψ X1 and ( )( )m tψ X2 , respectively,
and such that ≤X Xst1 2. Then, for all ∈

+�α ,

(i) if ≤X Xwmrl
ϕ

1 2 and either X1 or X2 is IWMRL, then

E E( ) ( )≤X Xα α
Ψ

1
Ψ

2 .

(ii) if ≥X Xwmrl
ϕ

1 2 and either X1 or X2 is DWMRL, then

E E( ) ( )≥X Xα α
Ψ

1
Ψ

2 .

Proof. We assume that the survival function of =X i,i α,
1, 2, is given by ( ) ( ( ))= >S x K S x x, 0i α α i, . Let X2 be IWMRL.
From (17), we obtain

Weighted survival functional entropy and its properties  7



E

E

�

�

�

( ) ( )

( )

( )

( )

( )

( )

( )

[ ]

[ ]

[ ]

=

≤

≤

=

X m X

m X

m X

X .

α ψ X α

ψ X α

ψ X α

α

1,
Ψ

1 1,

1,

2,

2,
Ψ

2

1

2

2

(23)

The first inequality in (23) is given using the assumption
≤X Xwmrl

ϕ
1 2; however, the last inequality derives from

Lemma 1 in [12] by noting that ≤X Xst1 2. Now, let X1 be
IWMRL. Then, we similarly have

E

E

�

�

�

( ) ( )

( )

( )

( )

( )

( )

( )

[ ]

[ ]

[ ]

=

≤

≤

=

X m X

m X

m X

X .

α ψ X α

ψ X α

ψ X α

α

1,
Ψ

1 1,

2,

2,

2,
Ψ

2

1

1

2

Figure 2: The TSD (dashed line) and the TRA (dotted line) bounds as
well as the exact value of WFGCRE (solid line) for the exponential
model for various values of =k 1 when [ ]∈α 0, 1 (left) and [ )∈α 1, ∞
(right).

Figure 3: The TSD (dashed line) and the TRA (dotted line) bounds as
well as the exact value of WFGCRE (solid line) for the exponential
model for various values of =k 2 when [ ]∈α 0, 1 (left) and

[ )∈α 1, ∞ (right).
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Hence, the stated results in (i) follow. In a similar manner,
Part (ii) can be obtained. □

The following theorem shows identical results under
a few distinct hypotheses. The proof is parallel, and
hence, it is skipped.

Theorem 3.6. Under the conditions of Theorem 3.5, if

≤X Xhr1 2, and X1 or X2 is IWMRL, then E E( ) ( )≤X Xα α
Ψ

1
Ψ

2
for all ∈

+�α .

Proof. Let X1 be IWMRL. From (17), we obtain

E

E

�

�

�

( ) ( )

( )

( )

( )

( )

( )

( )

[ ]

[ ]

[ ]

=

≤

≤

=

X m X

m X

m X

X .

α ψ X α

ψ X α

ψ X α

α

1,
Ψ

1 1,

2,

2,

2,
Ψ

2

1

1

2

It is well known that ≤X Xhr1 2 implies ≤X Xst1 2, and this
yields ≤X Xα st α1, 2, for all for all ∈

+�α due to Lemma 1 in
ref. [12], and hence, the first inequality is concluded since

( )( )m xψ X1 is increasing. The second inequality is obtained
by recalling the relation (42) of ref. [18]. When X2 is
IWMRL, the proof is similar. □

The subsequent outcome is applied with the MRL
order. It readily follows from relation (37) in ref. [18].

Corollary 3.1. Under the conditions of Theorem 3.5, it
holds that
(i) If ≤X Xmrl1 2 and either X1 or X2 is IWMRL, then

E E( ) ( )≤X Xα α1,
Ψ

1 2,
Ψ

2 , for all ∈

+�α .
(ii) If ≥X Xmrl1 2 and either X1 or X2 is DWMRL, then

E E( ) ( )≥X Xα α1,
Ψ

1 2,
Ψ

2 , for all ∈

+�α .

Hereafter, we provide an application of the afore-
mentioned result. The first one is based on the random
minima. To this aim, we assume a discrete nonnegative
random variable N , which is independent of random vari-
ables …X X, ,1 2 . Hence, the minimum extreme order sta-
tistics is given as { }= …X X X Xmin , , ,N N1: 1 2 . Now, let us
see the subsequent theorem.

Theorem 3.7. If ( )ϕ x is nondecreasing in x, then

E E( ) ( )≥X Xα N α N
Ψ

1:
Ψ

1:1 2 for all ∈

+�α provided that
≤N Nlr1 2 and X is DFR.

Proof. First, we note that ≥X XN lr N1: 1:1 2 yields ≥X XN hr N1: 1:1 2

due to Theorem 2.4 in ref. [21]. Moreover, based on the
assumption, X is DFR which implies that either X N1: 1 or
X N1: 2 is DFR (see ref. [22], and this implies the IMRL prop-
erty. Since ( )ϕ x is increasing in x, Theorem 2 of ref. [18]
yields X N1: 1 or X N1: 2 is IWMRL. Consequently, Theorem 3.6
finishes the proof. □

4 Conclusion

We have introduced a new measure of entropy, the
weighted FGCRE associated with a random lifetime. The

Figure 4: The TSD (dashed line) and the TRA (dotted line) bounds as
well as the exact value of WFGCRE (solid line) for the exponential
model for various values of =k 3 when [ ]∈α 0, 1 (left) and

[ )∈α 1, ∞ (right).
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new measure has some connections with the weighted
fractional Shannon entropy. Stochastic comparisons of
distributions over several known stochastic orders were
performed using the new measure. The new measure was
used to derive the weighted fractional generalized CRE
for randomminima. Shannon entropy is crucial in several
areas of statistical mechanics and information theory. In
this case, the notion of entropy as a measure of uncer-
tainty plays a crucial role in statistics, thermodynamics,
information theory, and machine learning. In this work,
we have defined a new measure of uncertainty given by
the weighted fractional generalized residual cumulative
entropy of a nonnegative absolutely continuous random
variable. We have derived several other properties for this
measure, including its various representations, upper
and lower bounds for it, and some other useful results.

In the future of this study, the weighted fractional
generalized CRE will be used to analyze coherent sys-
tems. The study of such systems in the context of infor-
mation theory and in terms of the new measure pro-
posed in this article will be a useful investigation,
since the concept of uncertainty plays a crucial role in
the analysis and evaluation of coherent systems in
industry and engineering.
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