
Research Article

Gysbert Nicolaas de Waal, Appanah Rao Appadu*, and Christiaan Johannes Pretorius

Some standard and nonstandard finite difference
schemes for a reaction–diffusion–chemotaxis
model

https://doi.org/10.1515/phys-2022-0231
received November 20, 2022; accepted January 31, 2023

Abstract: Two standard and two nonstandard finite dif-
ference schemes are constructed to solve a basic reac-
tion–diffusion–chemotaxis model, for which no exact
solution is known. The continuous model involves a
system of nonlinear coupled partial differential equa-
tions subject to some specified initial and boundary con-
ditions. It is not possible to obtain theoretically the
stability region of the two standard finite difference
schemes. Through running some numerical experiments,
we deduce heuristically that these classical methods give
reasonable solutions when the temporal step size k is
chosen such that k 0.25≤ with the spatial step size h fixed
at h 1.0= (first novelty of this work). We observe that
the standard finite difference schemes are not always
positivity preserving, and this is why we consider non-
standard finite difference schemes. Two nonstandard
methods abbreviated as NSFD1 and NSFD2 from
Chapwanya et al. are considered. NSFD1 was not used
by Chapwanya et al. to generate results for the basic
reaction–diffusion–chemotaxis model. We find that
NSFD1 preserves positivity of the continuous model if

some criteria are satisfied, namely, ϕ k
ψ h γ σ β
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and

β σ≤ , and this is the second novelty of this work.
Chapwanya et al. modified NSFD1 to obtain NSFD2, which

is positivity preserving if R ϕ k
ψ h γ
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= = and σR2 1≤ , that is

σ γ≤ , and they presented some results. For the third high-
light of this work, we show that NSFD2 is not always con-
sistent and prove that consistency can be achieved if β 0→

and 0k
h2 → . Fourthly, we show numerically that the rate of

convergence in time of the four methods for case 2 is
approximately one.

Keywords: standard finite difference method, nonstan-
dard finite difference method, consistency, positivity pre-
serving, cross-diffusion

Nomenclature

conc. concentration
pop. population
PDE partial differential equation
SFD standard finite difference
NSFD nonstandard finite difference
k temporal step size
h spatial step size
n time level
m space level
η x t,( ) population of bacteria
a x t,( ) food concentration
N approximation for population

of bacteria
A approximation for food

concentration
σ diffusion coefficient of the cells
γ diffusion coefficient of the

attractants
β chemotactic term
λ spontaneous production coef-

ficient of attractant
ω decay coefficient of attractant

activity
R ϕ k

ψ h 2
( )

[ ( )]
=

1 Introduction

Diffusion equations are often in the form of reaction–
diffusion and advection–diffusion, which have been well
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studied in the modeling of biological processes [1]. Advec-
tion–diffusion models are often used in the field of ocea-
nography to study ocean tracers, such as large-scale ocean
circulation [2]. Reaction–diffusion processes can be widely
observed in nature, notably in the formation and spread of
patterns such as spots and stripes over the surface of ani-
mals through the chemical interaction between cells [3].
Unlike reaction–diffusion and advection–diffusion, the
mathematical analysis for cross-diffusion equations is a
challenge that is largely underdeveloped [1]. Cross-diffu-
sion arises when the concentration gradient of one species
induces the flux of another species [4]. Cross-diffusion
equations are fundamental in the modeling of several nat-
ural processes such as cancer growth [5], population
dynamics via Volterra–Lotka cross-diffusion systems [6]
and chemotaxis [7]. Theoretically, equations consisting
of cross-diffusion terms are challenging largely due to
being strongly coupled nonlinear parabolic systems that
do not enjoy the maximum principle, and thus, deriving
appropriate estimates and proving the existence of positive
solutions are not easy [1]. However, in refs [8] and [9],
some results on global and local existence of solutions
as well as on their long-time behaviour have been estab-
lished. Recently, some results on the existence and unique-
ness of solutions (wellposedness) were obtained in refs [10]
and [11]. Standard finite difference (SFD) methods lack the
ability to preserve positivity; in contrast, the numerical solu-
tions from nonstandard finite difference (NSFD) methods
can preserve properties from the exact solution when sol-
ving a differential equation, and this makes NSFD methods
appealing [12]. Ronald E. Mickens started to work on NSFD
methods around 1990. Another advantage of NSFD over
classical methods for reaction–diffusion equations is that
classical methods can experience blow up at long propaga-
tion time [13,14]. Studying the stability is not easy for clas-
sical finite difference methods discretising nonlinear partial
differential equations (PDEs). The freezing coefficient tech-
nique and von Neumann stability analysis can be used, but
freezing coefficient is not a very accurate technique.

NSFD methods are very popular to solve reaction–
diffusion PDEs. For reaction–diffusion equations, we
can obtain conditions for which NSFD methods are posi-
tivity preserving and we can prove boundedness [15].
Positivity and boundedness will ensure stability [15]. It
is also difficult to study properties such as stability due to
the nature of cross-diffusion systems when SFD methods
are used. NSFD schemes are constructed by using some
fundamental principles [16]:
1) The denominator of the discrete derivative must be

replaced by a more general function, for example,
u
t

u u
ϕ k

m
n

m
n1

( )
≈

∂

∂

−
+

, where, for example, ϕ k kexp 1( ) ( )= − .

2) In general, we use non-local representation of non-
linear terms [17], for example, u u um m m

2
1( ) ≈ + and

u u u u2m m m m
3 3 2

1( ) ( ) ( )≈ − + .
3) The difference equation should have the same order as

the original equation. In general, when the order of
the difference equation is larger than the order of the
differential equation, spurious solutions might appear
as discussed in ref. [18].

4) The discrete approximation should preserve some
important properties of the corresponding differential
equation. Properties such as boundedness and posi-
tivity should be preserved [19].

If at least one of the first two principles given above is
satisfied, we call the scheme a NSFD method [17,20].
Some literature and definitions can be found in ref. [21],
and some previous works on reaction–diffusion using
NSFD methods can be found in refs [22–25].

This article is presented as follows. In Section 2, we
describe the basic reaction–diffusion–chemotaxis model to
be solved, and we also give some discussion on how the
numerical rate of convergence can be calculated in Section
3. Section 4 is dedicated to the two standard schemes SFD1
and SFD2 to solve the reaction–diffusion–chemotaxismodel.
In Sections 4.3 and 4.4, we present some numerical results.
Sections 5 and 6 are dedicated to the two nonstandard
schemes NSFD1 and NSFD2 to solve the reaction–diffu-
sion–chemotaxis model. In Section 5.1, we describe the
NSFD1 scheme and check the consistency. We present
some numerical results in 5.2 for NSFD1. In Section 6.1, we
describe NSFD2 scheme [1], and we also check the consis-
tency. In Section 6.2, some numerical results are presented
for NSFD2. In Section 7, we give some concluding remarks.

2 The basic reaction–diffusion–
chemotaxis model

Chemotaxis refers to the chemically directed movement
of a bacterial population η up a gradient in the food a that
the bacteria consume.

The mathematical model for the basic reaction–dif-
fusion–chemotaxis model proposed in ref. [7], is described
as follows:

η
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σ η
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β
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η a
x
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where η x t,( ) and a x t,( ) describe the population of bac-
teria and food concentration, respectively.
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The parameters λ, γ, β, ω, and σ are positive con-
stants and γ σ> [7].

Since Eq. (1) contains η
t

∂

∂

on the left-hand side and

ηx
a
x( )

∂

∂

∂

∂
on the right-hand side, the system considered is a

cross-diffusion system, the concentration gradient of the
bacterial population induces a flux on the concentration
gradient of food (attractant).

We consider the following initial conditions given
in [1]:

η x x a x x, 0 exp and , 0 exp .2 2( ) ( ) ( ) ( )= − = −

We will work with the spatial domain x 10, 10[ ]∈ − and
the time domain t 0, 40[ ]∈ . The zero-flux boundary con-
ditions are considered at both the right boundary and the
left boundary in this work [26].

The parameters are chosen as follows:
Case 1: λ γ β ω 1= = = = and σ 0.5= [1].
Case 2: λ γ ω 1= = = , σ 0.5= and β 0.025= .
We have considered case 2, as one of the conditions

for positivity of NSFD1 is that β σ≤ . Also, to make NSFD2
consistent, we require β 0→ . (More explanation is pro-
vided on pages 12, 13, 14, 16 and 17.)

3 Analysis of convergence

As we do not have an analytical solution, we obtain the
numerical rate of convergence in time by using

R
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ln 2
,T

E
E

k

k
2

⎜ ⎟
⎛

⎝

⎞

⎠

( )
=

(3)

where E N Nk k k2∣∣ ∣∣= − and E N Nkk k
2 2

∣∣ ∣∣= − are discrete
maximum norm errors [22,23].

All numerical simulations are done in MATLAB using
an Intel Core i5-10600k with 16GB RAM.

4 Classical methods to solve the
reaction–diffusion–chemotaxis
model

4.1 SFD1 to solve the continuous model

We construct SFD1 by using forward difference approxi-
mation for η

t
∂

∂

, a
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. By substituting these into

Eqs. (1) and (2), we obtain the following system of equations:
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where h denotes the spatial step size and k is the tem-
poral step size.

Rewriting Eqs. (4) and (5) yields
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To check for consistency and to obtain the order of accu-
racy of SFD1 scheme, we obtain the Taylor series expan-
sion of Eqs. (6) and (7) about the point t x,n m( ). By
dividing throughout by k and after some rearrangement,
we have
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We therefore conclude that SFD1 scheme is consistent
with the PDEs given by Eqs. (1) and (2). The scheme is
first-order accurate in time.

4.2 SFD2 to solve the continuous model

We construct SFD2 by using forward difference approx-
imation for η
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obtain SFD2:
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Eq. (2) is discretised in a similar way as in SFD1. We
therefore have

N σk
h

N N N

βk
h

N A A

βk
h

N A A

βk
h

N A A A N

2

4

4

2

m
n

m
n

m
n

m
n

m
n

m m
n

m
n

m m
n

m
n

m m
n

m
n

m
n

1
2 1 1

2 1 1 1

2 1 1 1

2 1 1

[ ]

[ ( )]

[ ( )]

[ ( )]

= − +

− −

+ −

− − + +

+

+ −

+ + −

− + −

+ −

(9)

and

A λkN ωkA A γk
h

A A A2 .m
n

m
n

m
n

m
n

m
n

m
n

m
n1

2 1 1[ ]= − + + − +
+

+ −

We now check for consistency and obtain the order of
accuracy of SFD2 scheme. From the Taylor series expan-
sion of Eqs. (7) and (9) about the point t x,n m( ), dividing
throughout by k and after some rearrangement, we have
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We conclude that SFD2 scheme is consistent with the
PDEs given by Eqs. (1) and (2). The scheme is first-order
accurate in time and second order accurate in space.

4.3 Numerical results for SFD1 and SFD2:
Case 1

Stability analysis using the Von Neumann condition cannot
be used for the two standard schemes as the equations are
coupled. We note that x 10, 10[ ]∈ − and t 0, 40[ ]∈ . We fix
h 1.0= , and observe that the numerical solutions are unbounded

when k 0.540
80= = , as shown in Figure 1.We then keep h 1.0=

fixed and decrease k k k k etc, , , .40
81

40
82

40
83( )= = = until we

obtain reasonable numerical solutions. We note that rea-
sonable solutions here refer to solutions that are bounded
with possibly some dispersive oscillations at some values
of x and t. Figure 2 displays numerical solutions using
SFD1 with h 1.0= and k 0.3008= . We see that the choice

of h k1.0, 0.2540
160= = = give reasonable numerical solu-

tions as displayed in Figure 3. Figure 4 displays numerical
solutions vs x at some values of time t using SFD1 with
h k1.0, 0.25= = .

The same approach is used to obtain some values
of k and h with reasonable numerical solutions for the
SFD2 scheme for case 1. Here also, the combination of
h k1.0, 0.5= = gives numerical solutions that are
unbounded as seen in Figure 5. We have reasonable
numerical solutions using h k1.0, 0.25= = , as depicted
in Figure 6. Plots of numerical solutions vs x at some
values of time using SFD2 with h k1.0, 0.25= = are dis-
played in Figure 7.

In Tables 1 and 2, the numerical rate of convergence
in time is obtained using SFD1 and SFD2 for case 1,
and we conclude that the order of convergence in time
is one.
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4.3.1 SFD1 (case 1)

Figure 1: Results for the chemotaxis model using SFD1 for case 1 with
=k 0.5 and =h 1.0. (a) Plot of numerical solution for food conc. vs x

vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t , and
(c) plot of numerical solutions vs t at ( ) =x 11 0. Figure 2: Results for the chemotaxis model using SFD1 for case 1

with =k 0.3008 and =h 1.0. (a) Plot of numerical solution for food
conc. vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x
vs t , (c) plot of numerical solutions vs t at ( ) =x 11 0, and (d) zoomed
area of subfigure (c).
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Figure 3: Results for the chemotaxis model using SFD1 for case 1
with =k 0.25 and =h 1.0. (a) Plot of numerical solution for food
conc. vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x
vs t , (c) plot of numerical solutions vs t at ( ) =x 11 0, and (d) zoomed
area of subfigure (c).

Figure 4: Plot of numerical solutions vs x at some values of t using
SFD1 for case 1 with =k 0.25 and =h 1.0. (a) Plot of numerical
solution vs x at =t 0, (b) plot of numerical solution vs x at =t 2, (c)
plot of numerical solutions vs t at =t 10, and (d) plot of numerical
solutions vs t at =t 20.
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4.3.2 SFD2 (case 1)

Figure 5: Results for the chemotaxis model using SFD2 for case 1
with =k 0.5 and =h 1.0. (a) Plot of numerical solution for food conc.
vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t ,
and (c) plot of numerical solutions vs t at ( ) =x 11 0.

Figure 6: Results for the chemotaxis model using SFD2 for case 1
with =k 0.25 and =h 1.0. (a) Plot of numerical solution for food
conc. vs x vs t , (b) plot of numerical solution for pop. of bacteria vs
x vs t , (c) plot of numerical solutions vs t at ( ) =x 11 0, and
(d) zoomed area of subfigure (c).
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4.3.3 Numerical rate of convergence in time for SFD1 and
SFD2: Case 1

4.4 Numerical results for SFD1 and SFD2:
case 2

The same approach as discussed in Section 4.3 is used to
display numerical solutions using SFD1 and SFD2 for
case 2.

We present results in Figures 8, 9 and 10 using SFD1
and SFD2 and we observe that the numerical solutions
are bounded and free of dispersive oscillations. We
observe no overshoot, unlike those of case 1 (see
Figures 3 and 6).

Figures 11 and 12 show the plot of the numerical solu-
tions vs x at four values of t t 0, 2, 10, 20( )= using SFD1
and SFD2 with k 0.25= and h 1.0= .

We obtain the numerical rate of convergence in time
using SFD1 and SFD2 for case 2 in Tables 3 and 4. We
conclude that the order of convergence in time is one for
both standard schemes.

Figure 7: Plot of numerical solutions vs x at some values of t using
SFD2 for case 1 with =k 0.25 and =h 1.0. (a) Plot of numerical
solution vs x at =t 0, (b) plot of numerical solution vs x at =t 2, (c)
plot of numerical solutions vs t at =t 10, and (d) plot of numerical
solutions vs t at =t 20.

Table 2: Ek errors and the numerical rate of convergence in time
using SFD2 for case 1 at time =t 1.0 with =h 1.0 and [ ]∈x −10, 10

k E Nk E Ak R NT R AT

×2.5 10−2
×3.4792 10−4

×1.5917 10−3

×1.25 10−2
×1.6935 10−4

×7.9860 10−4 1.0388 0.9950

×6.25 10−3
×1.9319 10−5

×4.0000 10−4 0.8141 0.9975

×3.125 10−3
×5.1047 10−5

×2.0017 10−4 0.9160 0.9988

Table 1: Ek errors and the numerical rate of convergence in time
using SFD1 for case 1 at time =t 1.0 with =h 1.0 and [ ]∈x −10, 10

k E Nk E Ak R NT R AT

×2.5 10−2
×8.1638 10−4

×1.7850 10−3

×1.25 10−2
×3.9681 10−4

×9.0491 10−4 1.0408 0.9801

×6.25 10−3
×1.9559 10−4

×4.5532 10−4 1.0206 0.9909

×3.125 10−3
×9.7100 10−5

×2.2834 10−4 1.0103 0.9957
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4.4.1 SFD1 (case 2)

Figure 8: Results for the chemotaxis model using SFD1 for case 2 with
=k 0.3008 and =h 1.0. (a) Plot of numerical solution for food conc. vs x

vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t , (c) plot of
numerical solutions vs t at ( ) =x 11 0, and (d) zoomed area of subfigure (c).

Figure 9: Results for the chemotaxis model using SFD1 for case 2 with
=k 0.25 and =h 1.0. (a) Plot of numerical solution for food conc. vs x vs

t , (b) plot of numerical solution for pop. of bacteria vs x vs t , (c) plot of
numerical solutions vs t at ( ) =x 11 0, and (d) zoomedareaof subfigure (c).
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4.4.2 SFD2 (Case 2)

Figure 10: Results for the chemotaxis model using SFD2 for case 2
with =k 0.25 and =h 1.0. (a) Plot of numerical solution for food
conc. vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x
vs t , (c) plot of numerical solutions vs t at ( ) =x 11 0, and (d) zoomed
area of subfigure (c).

Figure 11: Plot of numerical solutions vs x at some values of t using
SFD1 for case 2 with =k 0.25 and =h 1.0. (a) Plot of numerical
solution vs x at =t 0, (b) plot of numerical solution vs x at =t 2, (c)
plot of numerical solutions vs t at =t 10, and (d) plot of numerical
solutions vs t at =t 20.
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4.4.3 Numerical rate of convergence in time for SFD1 and
SFD2: case 2

5 NSFD method to solve the
reaction–diffusion–chemotaxis
model

The logistic equation is the space independent case of

u
t

u u
x

u c
x

1 ,( ) ⎛
⎝

⎞
⎠

∂

∂

= − −
∂

∂

∂

∂

(10)

which is

u
t

u ud
d

1 .( )= −

An exact scheme constructed in [20] to discretise
u u1u

t
d
d ( )= − is:

U U
ϕ k

U U1 ,
n n

n n
1

1
( )

( )
−

= −

+

+

where ϕ k kexp 1( ) ( )= − with k 0→ .

5.1 NSFD1

Anguelov et al. [27] discretised the Fisher-Kolmogorov-
Petrovsky-Piskunov equation i.e. λu u1u

t
u

x

2

2 ( )= + −
∂

∂

∂

∂

using a NSFD scheme for λ 0.25= , and the scheme they
propose is

Figure 12: Plot of numerical solutions vs x at some values of t using
SFD2 for case 2 with =k 0.25 and =h 1.0. (a) Plot of numerical
solution vs x at =t 0, (b) plot of numerical solution vs x at =t 2, (c)
plot of numerical solutions vs t at =t 10, and (d) plot of numerical
solutions vs t at =t 20.

Table 3: Ek errors and the numerical rate of convergence in time
using SFD1 for case 2 at time =t 1.0 with =h 1.0 and [ ]∈x −10, 10

k E Nk E Ak R NT R AT

×2.5 10−2
×2.4958 10−3

×2.6322 10−3

×1.25 10−2
×1.2297 10−3

×1.3204 10−3 1.0212 0.9953

×6.25 10−3
×6.1041 10−4

×6.6100 10−4 1.0105 0.9983

Table 4: Ek errors and the numerical rate of convergence in time
using SFD2 for case 2 at time =t 1.0 with =h 1.0 and [ ]∈x −10, 10

k E Nk E Ak R NT R AT

×2.5 10−2
×2.4629 10−3

×2.6134 10−3

×1.25 10−2
×1.2137 10−3

×1.3113 10−3 1.0210 0.9949

×6.25 10−3
×6.0246 10−4

×6.5653 10−4 1.0104 0.9981
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U U
ϕ k

U U U
ψ h

U U U U

2

25 1
3

,

m
n

m
n

m
n

m
n

m
n

m
n m

n
m
n

m
n

1
1 1

2

1 1 1

( ) [ ( )]

( )

−
=

− +

+ −
+ +

+

+ −

+ − +

where ϕ k k1 exp 25
25( )

( )
=

− − and ψ h h( ) = .

We use the same discretisation for u
t

∂

∂

and u
x

2

2
∂

∂

as given

in the study by Anguelov et al. [27]. The same discretisa-
tion for u

x
∂

∂

as Chapwanya et al. [1] is used.
This gives the following scheme referred to as NSFD1

for the continuous chemotaxis model:

N N
ϕ k

σ N N N
ψ h

β N N
ψ h

A A
ψ h

βN A A A
ψ h

2

2 ,

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n m

n
m
n

m
n

1
1 1

2

1 1

1 1
2

⎜ ⎟

⎜ ⎟⎜ ⎟

⎜ ⎟

( )
⎛

⎝ [ ( )]
⎞

⎠

⎛

⎝ ( )
⎞

⎠

⎛

⎝ ( )
⎞

⎠

⎛

⎝ [ ( )]
⎞

⎠

−
=

− +

−
− −

−
− +

+

+ −

− −

+ −

(11)

and

A A
ϕ k

λN ωA

γ A A A
ψ h
2 ,

m
n

m
n

m
n

m
n

m
n

m
n

m
n

1
1

1 1
2⎜ ⎟

( )

⎛

⎝ [ ( )]
⎞

⎠

−
= −

+
− +

+

+

+ −

(12)

where ϕ k kexp 1( ) ( )= − and ψ h h( ) = .
Eq. (11) can be rewritten as follows:

N N σϕ k
ψ h

N N N

βϕ k
ψ h

N A N N A N

βϕ k
ψ h

N A A A

2

2 ,

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

1
2 1 1

2 1 1

2 1 1

( )

[ ( )]
( )

( )

[ ( )]
( ( ) ( ))

( )

[ ( )]
( )

− = − +

− − − −

− − +

+

+ −

− −

+ −

or

N N σϕ k
ψ h

N σϕ k
ψ h

βϕ k
ψ h

A A

N σϕ k
ψ h

βϕ k
ψ h

A A

1 2

.

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

1
1 2

2 2 1

1 2 2 1

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

( )

[ ( )]
⎞

⎠

⎛

⎝

( )

[ ( )]

( )

[ ( )]
( )⎞

⎠

⎛

⎝

( )

[ ( )]

( )

[ ( )]
( )⎞

⎠

=

+ − + −

+ + −

+

+

+

− −

(13)

We note that NSFD1 was derived by Chapwanya et al. [1]
for the chemotaxis model, but they did not use the scheme
to present results and also did not study the positivity and
boundedness of the method as their aim was to modify
NSFD1 to obtain a positivity preserving method.

For simplification, the following relation is used,

namely, ϕ k
ψ h γ

1
22

( )

[ ( )]
= .

Hence, Eqs. (12) and (13) give

N σ
γ

N

σ
γ

β
γ

A A N

σ
γ

β
γ

A A N

2

1
2

2 2
,

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

1
1

1

1 1

⎜ ⎟

⎜ ⎟

⎛

⎝
( )⎞

⎠

⎛

⎝
( )⎞

⎠

=

+ − + −

+ + −

+

+

+

− −

(14)

and

A ϕ k λN A A
ωϕ k

2
1

.m
n m

n
m
n

m
n

1 1 1( ) ( )

( )
=

+ + ∕

+

+ + − (15)

We note that Am 1
0

−
, Am

0 and Am 1
0

+
lie from 0 to 1. The

scheme given by Eq. (14) preserves positivity of the con-
tinuous model if

σ
γ

β
γ

γ β σ1
2

0 2 2 ,− − ≥ ⇒ ≥ +

and

σ
γ

β
γ

σ β
2 2

0 ,− ≥ ⇒ ≥

and the initial conditions must be non-negative.
The scheme given by Eq. (15) preserves positivity of

the continuous model if the initial conditions are non-
negative, i.e., A N0, 0m m

0 0
≥ ≥ , and there is no other con-

dition needed.
To check for consistency and to obtain the order of accu-

racy of NSFD1 scheme, we consider Eqs. (14) and (15) and the
Taylor series expansions about the point t x,n m( ). After some

re-arrangement using 1k
ϕ k( )

≈ and ψ h h( ) = , we obtain

N
t

σ N
x

β N
x

A
x

βN A
x

k N
t

k N
t

k N
t

hβ N
x

A
x

N
x

A
x

h β σ N
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x

N
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x

N
x

A
x

N
x

A
x

h β N
x
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x

N
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A
x

N
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A
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N
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A
x
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2
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4
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⎠
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⎠
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∂
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∂

∂
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∂

∂

∂

∂

+
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∂
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∂

∂

−
∂

∂

−
∂

∂

+
∂

∂

∂

∂

+
∂
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∂

∂

+
∂

∂

−
∂

∂

+
∂

∂

∂

∂
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∂
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∂

∂

+
∂

∂

∂

∂

−
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∂

∂

+
∂

∂

∂

∂

+
∂

∂

∂

∂

+
∂

∂

∂

∂

+ …

and

A
t

λN ωA γ A
x

k A
t

ω A
t

k A
t

ω A
t

k ω A
t

k ω A
t

h γ A
x

2
2

6
3

6 24 12

2

2

2

2

2 3

3

2

2

3 3

3

4 4

4

2 4

4
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∂

∂
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∂

∂
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∂

∂
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∂

+
∂

∂
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∂

∂

−
∂

∂

+
∂

∂

+ …
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As k h, 0→ , we have

N
t

σ N
x

β N
x

A
x

βN A
x

0
2

2

2

2
∂

∂

−
∂

∂

+
∂

∂

∂

∂

+
∂

∂

=

and

A
t

λN ωA γ A
x

0.
2

2
∂

∂

− + −
∂

∂

=

We, therefore, conclude that the NSFD1 scheme is con-
sistent with the PDEs given by Eqs. (1) and (2). The
scheme is first-order accurate in time.

5.2 Numerical results for NSFD1

5.2.1 Case 1

In the construction of NSFD1, the relationship ϕ k
ψ h γ

1
22

( )

[ ( )]
=

is used and since γ 1= , we have ϕ k
ψ h

1
22

( )

[ ( )]
= . For NSFD1 to

preserve positivity of the continuous model, we showed
in Section 5.1 that we need γ β σ2 2≥ + and σ β≥ . For
case 1, γ β σ2 2≥ + is satisfied, but σ β≥ is not satisfied
as β 1= and σ 0.5= . This means that all the conditions
for positivity cannot be met when NSFD1 is used to solve
case 1.

Since ϕ k
ψ h

1
22

( )

[ ( )]
= , we can choose the following combi-

nations of k and h:
(1) h k1.0, 0.4055= = .
(2) h k0.5, 0.1178= = .

We present numerical results in Figures 13 and 14 using
NSFD1 for case 1 and observe some overshoot and non-
smooth profiles.

5.2.2 Case 2

For case 2, λ γ ω 1= = = , σ 0.5= , and β 0.025= . Since
ϕ k
ψ h γ

1
22

( )

[ ( )]
= and γ 1= , we have ϕ k

ψ h
1
22

( )

[ ( )]
= . Also, the two

conditions for positivity are met, i.e., γ β σ2 2≥ + and
σ β≥ . This means that all the conditions for positivity
are met when NSFD1 is used to solve case 2.

Since ϕ k
ψ h

1
22

( )

[ ( )]
= , we can choose the following combi-

nations of k and h:
(1) h k1.0, 0.4055= = .
(2) h k0.5, 0.1178= =

We present results in Figures 15 and 16 and observe quite
smooth profiles as well as all numerical solutions are
bounded between 0 and 1 for x 10, 10[ ]∈ − and
t 0, 40[ ]∈ , for case 2.

Figure 13: Results for the chemotaxis model using NSFD1 with
=k 0.4055 and =h 1.0. (a) Plot of numerical solution for food conc.

vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t ,
(c) plot of numerical solutions vs t at ( ) =x 11 0, and (d) zoomed area
of subfigure (c).
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Figure 14: Results for the chemotaxis model using NSFD1 with
=k 0.1178 and =h 0.5. (a) Plot of numerical solution for food conc.

vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t ,
(c) plot of numerical solutions vs t at ( ) =x 21 0, and (d) zoomed area
of subfigure (c).

Figure 15: Results for the chemotaxis model using NSFD1 with
=k 0.4055 and =h 1.0. (a) Plot of numerical solution for food conc.

vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t ,
(c) plot of numerical solutions vs t at ( ) =x 11 0, and (d) zoomed area
of subfigure (c).
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We verify numerically that the order of convergence
in time is one as displayed from calculations in Table 5.

6 Modification of NSFD1 scheme

6.1 NSFD2

Chapwanya et al. [1] derived NSFD2 by modifying NSFD1.
In NSFD2, Nm

n 1+ is calculated differently to Eq. (14),
but Am

n 1+ is obtained similarly as in Eq. (15).
We start with Eq. (11), i.e.,

N N
ϕ k

σ N N N
ψ h

β N N
ψ h

A A
ψ h

βN A A A
ψ h

2

2 ,

m
n

m
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m
n
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n
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⎜ ⎟⎜ ⎟

⎜ ⎟
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+ −

− −
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which can be rewritten as follows:
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β N A N A N A N A
ψ h

2
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(16)

Chapwanya et al. [1] multiplied the negative term of the
RHS of Eq. (16) by N

N
m
n

m
n

1+

.

Figure 16: Results for the chemotaxis model using NSFD1 with
=k 0.1178 and =h 0.5. (a) Plot of numerical solution for food conc.

vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t ,
(c) plot of numerical solutions vs t at ( ) =x 21 0, and (d) zoomed area
of subfigure (c).

Table 5: Ek errors and the numerical rate of convergence in time
using NSFD1 for case 2 at time =t 1.0 with ( ( ) )=h k2 exp − 1
and [ ]∈x −10, 10

k E Nk E Ak R NT R AT

×1.0137 10−1
×2.1687 10−1

×1.9108 10−1

×5.0683 10−2
×1.0718 10−1

×8.0873 10−2 1.0168 1.2404

×2.5342 10−2
×5.5393 10−2

×3.9676 10−2 0.9523 1.0274
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Eq. (16) is modified to
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The first equation for NSFD2 is therefore
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where R ϕ k
ψ h 2

( )

[ ( )]
= .

From Eq. (12), we have
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and using the functional relation ϕ k
ψ h γ

1
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= , we obtain
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Theorem 1. NSFD2 preserves positivity of the continuous
model if σR2 1≤ :

N A N A, 0 , 0.m
n

m
n

m
n

m
n1 1

≥ ⇒ ≥
+ +

Since R ϕ k
ψ h γ

1
22

( )

[ ( )]
= = , we have that σR2 1≤ , which gives

1σ
γ

2
2 ≤ , i.e., σ γ≤ .

To check for consistency and to obtain the order of
accuracy of NSFD2 scheme, we consider Eq. (18) and the
Taylor series expansions about the point t x,n m( ). After some

rearrangement using 1k
ϕ k( )

≈ and R ϕ k
ψ h 2

( )

[ ( )]
= , we obtain
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As k h, 0→ , we have
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We therefore conclude that NSFD2 scheme is not con-
sistent with the PDE given by Eq. (1). We would like to
mention that the consistency of NSFD2 was not checked
in [1]. This is a novel result obtained.

From Eq. (19), we see that NSFD2 can be made con-
sistent if β 0→ and 0k

h2 → . For this reason, we consid-
ered case 2 with β 0.025= .

Choosing different combinations of k and h result in
the following modified equations for case 2:

For k h0.4055, 1.0= = , we have

N N N A NA

N N N

N A NA N A

N
N N N

N

NA N A A A NA

0.5 0.025 0.025
0.4055

2
0.4055

6
0.4055

24
1

80
1

480
1

960
811

8000
1 0.4055

2
0.4055

6
0.4055

24

2 1
2

t xx x x xx

tt ttt tttt

x xx xxxx x xxxx

t tt ttt

tttt

x x xx xx

2 3

2

3

( ) ( )

( ) ( )

⎛
⎝

⎞
⎠

⎡

⎣⎢

⎤

⎦⎥

⎛
⎝

( ) ⎞
⎠

− + +

= − − −

+ − +

− × + +

+

× − − + + + …

(20)

For k h0.1178, 0.5= = , we have
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N N N A NA

N N N

N A NA N A

N

N N N N

NA N A A A NA

0.5 0.025 0.025
0.1178

2
0.1178

6
0.1178

24
1

160
1

1920
1

7680
589

50000
1

0.1178
2

0.1178
6

0.1178
24

2 1
2

1
4

1
128

1
4

t xx x x xx

tt ttt tttt

x xx xxxx x xxxx

t tt ttt tttt

x x xx xx

2 3

2 3

( ) ( )

⎛
⎝

⎞
⎠

⎡

⎣⎢
⎤

⎦⎥

⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤

⎦⎥

− + +

= − − −

+ − +

−

× + + +

× − − + +

+ …

(21)

From Eqs. (20) and (21), we can deduce that the
choices k h0.4055, 1.0= = , and k h0.1178, 0.5= = seem
reasonable which makes NSFD2 consistent.

6.2 Numerical results for NSFD2

We now present results for the two cases using NSFD2.
The profiles from case 1 are not very informative as NSFD2
is not consistent for case 1.

We can choose the following combinations of k and
h:
(1) h k1.0, 0.4055.= =

(2) h k0.5, 0.1178.= =

We display plots of numerical solutions using NSFD2 in
Figures 17 and 18 for case 1 and Figures 19 and 20 for case 2.

From Figures 17 and 18, we observe some overshoot
and uneven profiles when case 1 β σ( )> is considered,
similar to that of NSFD1. We observe from Figures 19 and
20 that case 2 β σ( )≤ results in numerical solutions that
are bounded between 0 and 1 and fairly smooth profiles
are obtained.

Table 6 gives the maximum norm errors Ek( ) and the
numerical rate of convergence in time RT( ) for NSFD2. We
conclude that NSFD2 is first-order accurate in time for case 2.

6.2.1 Case 1

Figure 17: Results for the chemotaxis model using NSFD2 with
=k 0.4055 and =h 1.0. (a) Plot of numerical solution for food conc. vs x

vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t , (c) plot of
numerical solutions vs t at ( ) =x 11 0, and (d) zoomedareaof subfigure (c).
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6.2.2 Case 2

Figure 18: Results for the chemotaxis model using NSFD2 with
=k 0.1178 and =h 0.5. (a) Plot of numerical solution for food conc.

vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t ,
(c) plot of numerical solutions vs t at ( ) =x 21 0, and (d) zoomed area
of subfigure (c).

Figure 19: Results for the chemotaxis model using NSFD2 with
=k 0.4055 and =h 1.0. (a) Plot of numerical solution for food conc.

vs x vs t , (b) plot of numerical solution for pop. of bacteria vs x vs t ,
(c) plot of numerical solutions vs t at ( ) =x 11 0, and (d) zoomed area
of subfigure (c).
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7 Conclusion

In this work, two SFD methods and two NSFD methods
were used to solve a basic reaction–diffusion–chemotaxis
model consisting of a cross-diffusion term and a system
of nonlinear coupled PDEs requiring positivity preserving
numerical solutions. The standard methods SFD1 and
SFD2 resulted in unreasonable numerical solutions at
some combinations of values of k and h, and it was not
possible to study the stability theoretically.

NSFD1 was not always positivity preserving depending
on the parameters used. NSFD1 can be used when condi-
tions for positivity hold, that is, when γ σ β2 2≥ + and
σ β≥ , such as case 2. The classical schemes (SFD1 and
SFD2) and the nonstandard schemes (NSFD1 and NSFD2)
resulted in more favourable numerical solutions when case
2 β σ( )≤ was considered. NSFD2 was obtained by appro-
priate modification of NSFD1 and preserved positivity when
σR2 1≤ . However, we established that NSFD2 is in general
not consistent with the PDE describing the population of
bacteria given by Eq. (1). We found that a suitable choice of
β can render NSFD2 consistent.
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