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Abstract: In this article, first integral method (FIM) is used
to acquire the analytical solutions of (3+1)-D Wazwaz–
Benjamin–Bona–Mahony and (2+1)-D cubic Klein–Gordon
equation. New soliton solutions are obtained, such as soli-
tons, cuspon, and periodic solutions. FIM is a direct method
to acquire soliton solutions of nonlinear partial differential
equations (PDEs). The proposed technique can be used for
solving higher dimensional PDEs. FIM can be implemented
to solve integrable and ion-integrable equations.
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1 Introduction

Nonlinearity exists in various applications such as biology,
physics, fluid dynamics, chemical, and process engineering.
Various real-world phenomena can be studied by solving

the nonlinear partial differential equations (PDEs) with the
help of analytical solution. Researchers applied first integral
method (FIM) for finding analytical solutions of nonlinear
PDEs such as in refs [1–4].

Different accurate and efficient numerical methods
already exist in the literature, but still finding analytical
solutions is important. Analytical solutions provide the
physical information about the physical behaviour of a
system. Different analytical and numerical techniques
have been applied for solving PDEs such as the Sardar-
subequation method [5], the extended rational sine–
cosine and rational sinh–cosh methods [6], the extended
G G2( )′∕ -expansion technique [7], the sine-Gordon expan-
sion method [8], the inverse scattering transform [9], Hir-
ota’s bilinear method [10], the sine–cosine method [11],
the homotopy perturbation method [12], the homotopy
analysis method [13,14], the variational iteration method
[15–17], the extended tanh-function method [18], the
exponential function method [19–22], and meshless methods
[23–27]. Many researchers obtained analytical solution in the
field of mechanical and thermal engineering [28–31].

Feng presented FIM for finding the soliton solutions
of nonlinear PDEs [32]. The suggested algorithm is related
to commutative algebra and ring theory. FIM is a direct
mathematical method for acquiring soliton solutions of
nonlinear PDEs. FIM have been implemented to solve
both equations integrable and nonintegrable [33–37].

This study is new as we implemented FIM to the
models, namely, variants of (3+1)-D Wazwaz–Benjamin–
Bona–Mahony (WBBM) equations, and (2+1)-D cubic Klein–
Gordon (CKG) equation, for the first time and obtained new
analytical solutions. FIM can produce precise outcomes
consisting of no arbitrary constants. In comparing with
other methods, the selected algorithm has many benefits,
for example, FIM provides exact and explicit solutions and
avoids for complex calculations. In this work, we applied
FIM to different variants of WBBM equation and CKG
equation.
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Firstly, we apply FIM to extract the solutions of var-
iants of WBBM equation. The WBBM equation is

ν ν νν ν 0t x x xxt+ + − = (1)

proposed in refs [22,38] and is used in modelling surface
waves of long wave length in liquids. The modified form
of WBBM equation is

ν ν ν ν ν 0.t x x xxt
2

+ + − = (2)

Moreover, it is realistic to study higher dimensional and
different modification of Eq. (2). Three types of modifica-
tions of Eq. (2) are given as follows:

ν ν ν u ν 0.t x y xzt
2

+ + − = (3)

ν ν ν ν ν 0.t z x xyt
2

+ + − = (4)

ν ν ν ν ν 0.t y z xxt
2

+ + − = (5)

Secondly, we will extract the analytical solution of (2+1)-
D CKG equation using the proposed method.

v v v αv βv 0.xx yy tt
3

+ + + + = (6)

In the quantum field theory, the Klein–Gordon equation
is amongst the most significant mathematical models.
Dispersive wave processes in relativistic physics are
explained by this equation. Plasma physics and non-
linear optics are two more fields where it might be
found. The solution of the Klein–Gordon equation was
also extracted using the inverse scattering and Backlund-
transformation method.

The following is the layout of this article. The proce-
dure of FIM are discussed in Section 2. Analytical solu-
tions of three variations of the WBBM equation and the
Klein–Gordon equation are given in Section 3. Summary
of the work is discussed in Section 4.

2 Procedure of FIM

Step 1: Consider a nonlinear PDE:

E ν ν ν ν ν, , , , , 0.x t xx xt( )… = (7)

Using the following variable, the travelling wave solu-
tions of Eq. (7) can be obtained.

ζ x ct.= − (8)

ν x t ν ζ, .( ) ( )= (9)

We make the following modifications as a result of this.
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Eq. (10) changes the PDE (7) to an ODE:

G ν ν
ζ

ν
ζ

, , , 0.
2

2⎜ ⎟
⎛

⎝

⎞

⎠

∂

∂

∂

∂

… = (11)

Here, ν ν ζ( )= represents an unknown function.
Step 2: The solution of above mentioned ODE (c.f. Eq.
(11)) is presented as follows:

ν x t f ζ, .( ) ( )= (12)

Furthermore, the following variable is introduced and the
presented as follows:

x ζ f ζ y ζ f ζ
ζ

, .( ) ( ) ( )
( )

= =

∂

∂

(13)

Step 3: Applying conditions of the aforementioned step, Eq.
(11) can be transformed into a following system of ODEs:

x ζ y ζ y ζ F x ζ y ζ, , .( ) ( ) ( ) ( ( ) ( ))′ = ′ = (14)

The general solution of Eq. (14) can be acquired subject to the
existence of the integral. The division theorem can be used to
obtain first integral of Eq. (14), which reduces Eq. (11) to a
first-order integrable ODE. Afterwards, the acquired equation
is solved to obtain an analytical solution of Eq. (7).

Division theorem: Suppose that A ξ ϖ,( ) and B ξ ϖ,( )

are two polynomials in complex domain ξ ϖ,�( ), such that
A ξ ϖ,( ) represents an irreducible polynomial in ξ ϖ,�( ). If
B ξ ϖ,( ) vanishes all zeros of A ξ ϖ,( ), then a polynomial
D ξ ϖ,( ) exists in ξ ϖ,�( ) such that

B ξ ϖ A ξ ϖ D ξ ϖ, , , .[ ] [ ] [ ]= (15)

3 The first integral method’s
applications

3.1 (3+1)-D WBBM equation of type 1

3.1.1 (3+1)-D WBBM equation of type 1

Consider type 1 (3+1)-D WBBM equation:
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ν ν ν ν ν 0.t x y xzt
2

+ + − = (16)

Applying the following transformation,

ν x y z t ν ζ ζ kx λy μz ct, , , .( ) ( )= = + + − (17)
Using Eqs. (16) and (17) leads to the subsequent ODE:

k c ν λν ν kμcν 0.2( )− ′ + ′ + ‴ = (18)

Applying integration with respect to ζ , we have

ν k c
kμc

ν λ
μck

ν
3

.3
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−

− (19)

Variables are defined as x ν ζ( )= and y ν ζ( )= ′ . Eq. (19) is
identical to the autonomous system.
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(20)

Here, x ζ( ) and y ζ( ) are supposed to nontrivial solutions
of Eq. (20). Moreover, irreducible polynomial is denoted
by r x y e x y, m

n
m

m
0( ) ( )= ∑

=
in �; thus,

r x ζ y ζ e x ζ y ζ, 0.
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=

(21)

Here, e xm( ), m n0, 1, 2 ,= … are polynomial of x and
e x 0n( ) ≠ . Moreover, Eq. (21) is known as the first integral
of Eq. (20). A polynomial such as, q x l x y( ) ( )+ is obtained
from division theorem.

r
ζ

r
x

x
ζ

r
y

y
ζ

q x l x y e x yd
d

.
m

n

m
m

0
⎜ ⎟[ ( ) ( ) ]
⎛

⎝

( )
⎞

⎠

∑=

∂

∂

∂

∂

+

∂

∂

∂

∂

= +

=

(22)

We obtain n 1= from Eq. (21). Letting n 1= for equalizing
coefficients of y m 0, 1, 2m ( )= in Eq. (22), we obtain the
following equations:

e x l x e x ,1 1( ) ( ) ( )′ = (23)

e x q x e x l x e x ,0 1 0( ) ( ) ( ) ( ) ( )′ = + (24)

q x e x e x c k
kμc

x λ
μck
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3

.0 1
3
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⎞

⎠
=

−

− (25)

Here, e xm( ) are polynomials of x. From Eq. (22), we obtain
that e x1( ) is a constant. As a result, l x 0( ) = . Furthermore,
we suppose that e x 11( ) = . Afterwards, balancing the
degree of q x( ) and e x0( ) and utilizing these results lead
to q xdeg 1( ( )) = . Consider q x A x B1 0( ) = + , and Eq. (24) is
re-written as follows:

e x A x B x A1
2

.0 1
2

0 0( ) = + + (26)

The solution of Eq. (25) is acquired using the values
of e x0( ), q x( ), l x( ), and e x1( ). We acquire a system of

nonlinear algebraic equations. The solution of obtained
algebraic equations leads to the following constants.
Case i:
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μck
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− (27)

The following result is obtained: considering Eqs. (27)
and (21):
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− (28)

By using Eqs. (28) and (20), the first solution of 3 1( )+ -D
WBBM equation of type 1 is obtained.

ν x y z t c k
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Case ii: We obtain

B A λ
μck

A kμc
λ

c k
kμc

0, 2
3

, 3
2
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−

− (30)

The following result is acquired considering Eqs. (30) and
(21).
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By using Eqs. (31) and (20), the second solution of (3+1)-D
WBBM equation of type 1 is achieved.

ν x y z t c k
λ

c k
kμc

kx λy μz ct ξ

, , , 3 tan
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Figures 1–3 depict the graphical representation of the
solution ν x y z t, , ,1( ) of the WBBM equation using dif-
ferent values of ν, k, λ, and c. These figures show that
amplitude is decreasing towards left, right, or central
position, and for large distance, these solitaires are
asymptotically zero.

3.2 (3+1)-D WBBM equation of type 2

3.2.1 (3+1)-D WBBM equation of type 2

Consider type 2 (3+1)-D WBBM equation:

ν ν ν ν ν 0.t z x xyt
2

+ + − = (33)
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Applying the following transformation:

ν x y z t ν ζ ζ kx λy μz ct, , , .( ) ( )= = + + − (34)

Eq. (33) takes the subsequent form of ODE:

μ c ν kν ν kλcν 0.2( )− ′ + ′ + ‴ = (35)

By applying integration with respect to ζ , we have
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Introducing variables x ν ζ( )= and y ν ζ( )= ′ , Eq. (36) is
identical to the autonomous system.

x
ζ

y

y
ζ

c μ
kλc

x k
λck

x

d
d

,

d
d 3

.3⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=

=

−

−

(37)

Suppose that x ζ( ) and y ζ( ) represent nontrivial form of
solutions of Eq. (37). Moreover, irreducible polynomial is
denoted by r x y e x y, m

n
m

m
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=
in �; thus,
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=
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where e xm( ), m n0, 1, 2 ,= … represent polynomial of x
and e x 0n( ) ≠ . Furthermore, Eq. (38) is a first integral of
Eq. (37). Implementing division theorem on a polynomial
such as, q x l x y( ) ( )+ , leads to the subsequent results:
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By using Eq. (38), we obtain n 1= . Equating coefficients
of y m 0, 1, 2m( )= into Eq. (39) and using n 1= lead to the
following equations:

e x l x e x ,1 1( ) ( ) ( )′ = (40)

e x q x e x l x e x ,0 1 0( ) ( ) ( ) ( ) ( )′ = + (41)

q x e x e x c μ
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Here, e xj( ) are polynomials in x. From Eq. (40), e x1( ) is a
constant and l x 0( ) = . We assume that e x 11( ) = . Balancing
the degree of q x( ) and e x0( ). After putting these values, we
obtain that q xdeg 1( ( )) = . Furthermore, q x A x B1 0( ) = + ;
therefore, Eq. (41) gives,

e x A x B x A1
2

.0 1
2

0 0( ) = + + (43)

Figure 1: Solution ( )ν x y z t, , ,1 of first (3+1)-D WBBM equation at
=k 3, =c 2, =t 1, =x 1, =λ 2, and =μ 1.

Figure 2: Solution ( )ν x y z t, , ,1 of first (3+1)-D WBBM equation at
=k 3, =c 2, =y 1, =x 1, =λ 2, and =μ 1.

Figure 3: Solution ( )ν x y z t, , ,1 of first (3+1)-D WBBM equation at
=k 3, =c 2, =z 1, =x 1, =λ 2, and =μ 1.
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The solution of Eq. (42) is acquired by putting the
values of e x0( ), q x( ), l x( ), and e x1( ). Finally, a system of
algebraic equations is acquired. The solution of obtained
algebraic equations leads to the following constants.
Case i:

B A k
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A kλc
k
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− (44)

The following result is acquired considering Eqs. (44) and
(38).
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By using Eqs. (45) and (37), the first solution of WBBM
equation of type 2 is obtained.
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Case ii:

B A k
λck

A kλc
k

c μ
kλc

0, 2
3

, 3
2

.0 1 0 ⎛

⎝

( ) ⎞

⎠
= = −

−

= −

−

− (47)

The following result is obtained by substituting Eq. (47)
into Eq. (38).
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Using Eqs. (48) and (37), the solution of (3+1)-DimWBBM
equation of type 2 is expressed as follows:

ν x y z t c μ
k
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, , , 3 tan
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Figures 4–6 show a graphs for the various values of μ, k,
λ, and c in the function ν x y z t, , ,1( ). These solitons are
cuspons.

3.3 The (3+1)-D WBBM equation of type 3

3.3.1 (3+1)-D WBBM equation of type 3

Consider type 3 (3+1)-D WBBM equation:

ν ν ν ν ν 0.t y z xxt
2

+ + − = (50)

Applying the following transformation:

Figure 4: Solution ( )ν x y z t, , ,1 of second (3+1)-D WBBM equation at
=k 3, =c 2, =t 1, =x 1, =λ 2, and =μ 1.

Figure 5: Solution ( )ν x y z t, , ,1 of second (3+1)-D WBBM equation at
=k 3, =c 2, =y 1, =x 1, =λ 2, and =μ 1.

Figure 6: Solution ( )ν x y z t, , ,1 of second (3+1)-D WBBM equation at
=k 3, =c 2, =z 1, =x 1, =λ 2, and =μ 1.
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ν x y z t ν ζ ζ kx λy μz ct, , , ,( ) ( )= = + + − (51)

Eq. (50) leads to the ODE as follows:

λ c ν μ ν k cν
3

0.3 2( )− + + ‴ = (52)

By applying integration with respect to ζ , we have
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Introducing variables x ν ζ( )= and y ν ζ( )= ′ , Eq. (53) is
identical to the autonomous system.
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We suppose that x ζ( ) and y ζ( ) are nontrivial solutions of
Eq. (54). Moreover, irreducible polynomial is denoted by
r x y e x y, m

n
m

m
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=
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Here, e xm( ), m n0, 1, 2 ,= … are polynomial of x and
e x 0n( ) ≠ . Moreover, Eq. (55) is a first integral of Eq. (54).
Considering division theorem with q x l x y( ) ( )+ leads to
the following results:
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We suppose that n 1= in Eq. (55). As n 1= and equalizing
coefficients of y m 0, 1, 2m( )= in Eq. (56), the following
equation is obtained.

e x l x e x ,1 1( ) ( ) ( )′ = (57)

e x q x e x l x e x ,0 1 0( ) ( ) ( ) ( ) ( )′ = + (58)
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Here, e xm( ) represent polynomials in x. From Eq. (57), we
analyze that e x1( ) is a constant. As a result, l x 0( ) = .
Furthermore, e x 11( ) = and balance the degree of q x( )

and e x0( ), and after substituting these values, we obtain
q xdeg 1( ( )) = . Consider q x A x B1 0( ) = + , therefore Eq. (59)

gives,

e x A x B x A1
2

.0 1
2

0 0( ) = + + (60)

By using values of e x0( ), q x( ), l x( ), and e x1( ), Eq. (59) is
solved. By equating coefficients of x, we obtain a system

of algebraic equations. By using the solutions of non-
linear algebraic equations, unknown constants are acquired.
Case i:
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Following results are acquired by substituting Eq. (61)
into Eq. (55).
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− (62)

By using Eqs. (62) and (54), the first solution of (3+1)-D
WBBM equation is expressed as follows:

ν x y z t λ c
μ

c λ
k c

kx λy μz ct ξ

, , , 3 tan

2
0 .

1

2

( )
( )

⎡

⎣
⎢

( ) ⎤

⎦
⎥

= −

−

×

−

+ + − +

(63)

Case ii:

B A μ
k c

A k c
μ

c λ
k c

0, 2
3

,

3
2

.

0 1 2

0
2

2
⎛

⎝

( ) ⎞

⎠

= = −

−

= −

−

−

(64)

By using Eqs. (64) and (55), the following results are
obtained.

y ζ μ
k c

x k c
k

c λ
k c

2
3 2

3
2

.2 2

2 2

2⎜ ⎟( ) ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
=

−

+

−

− (65)

By using Eqs. (65) and (54), the second solution of (3+1)-D
WBBM equation of type 3 is expressed as follows:

ν x y z t λ c
μ

c λ
k c

kx λy μz ct ξ

, , , 3 tan

2
.

2

2 0

( )
( )

⎡

⎣
⎢

( ) ⎤

⎦
⎥

=

−

×

−

+ + − +

(66)

Figures 7–9 presents the solution (ν x y z t, , ,1( )) of WBBM
equation considering values of μ, k, λ, and c. These fig-
ures show kink soliton solutions.

3.4 The ( + )2 1 -D CKG equation

Consider 2 1( )+ -D CKG equation:

v v v αv βv 0.xx yy tt
3

+ − + + = (67)

The following transformations are used.

v x y t v ζ ζ x y λt, , , .( ) ( )= = + − (68)
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Here, λ represents a constant. Using Eqs. (68), (67) leads
to the ODE as follows:

λ v αv βv2 0.2 3( )− ″ + + = (69)

By applying integration with respect to ζ , we have

ν α
λ

v β
λ

v
2 2

.2 2
3

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
″ =

−

−

−

−

(70)

Introducing new variables x ν ζ( )= and y ν ζ( )= ′ , Eq. (70)
is identical to the autonomous system.

x
ζ

y

y
ζ

α
λ

x β
λ

x

d
d

,

d
d 2 2

.2 2
3

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠

=

=

−

−

−

−

(71)

We suppose that x ζ( ) and y ζ( ) are nontrivial solutions of
Eq. (71). Moreover, irreducible polynomial is denoted by
r x y e x y, m

n
m

m
0( ) ( )= ∑

=
in complex domain C x y,( ); thus,

r x ζ y ζ e x ζ y ζ, 0.
m

n

m
m

0
( ( ) ( )) ( ( )) ( )∑= =

=

(72)

Here, e xm( ), m n0, 1, 2 ,= … denote polynomial in x and
e x 0n( ) ≠ . Moreover, Eq. (72) is a first integral of Eq. (71).
Division theorem and a polynomial q x l x y( ) ( )+ as
follows:

r
ζ

r
x

x
ζ

r
y

y
ζ

q x l x y e x y

d
d

.
m

n

m
m

0
⎜ ⎟[ ( ) ( ) ]
⎛

⎝

( )
⎞

⎠

∑

=

∂

∂

∂

∂

+

∂

∂

∂

∂

= +

=

(73)

We assume that n 1= in Eq. (72). Suppose n 1= and
equating coefficients of y m 0, 1, 2m( )= in Eq. (73), we
obtain the following equations:

e x l x e x ,1 1( ) ( ) ( )′ = (74)

e x q x e x l x e x ,0 1 0( ) ( ) ( ) ( ) ( )′ = + (75)

q x e x e x α
λ

x β
λ

x
2 2

.0 1 2 2
3

⎜ ⎟( ) ( ) ( )⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
=

−

−

−

−

(76)

Here, e xm( ) represents polynomials in x. From Eq. (74),
we analyze that e x1( ) is a constant leads to l x 0( ) = . We
further assume that e x 11( ) = . Balancing the degree of q x( )

ande x0( ), we conclude q xdeg 1( ( )) = . Takeq x A x B1 0( ) = + ,
therefore Eq. (76) gives,

e x A x B x A1
2

.0 1
2

0 0( ) = + + (77)

By using the values of e x0( ), q x( ), l x( ), and e x1( ), Eq. (76)
is solved. Finally, a system of nonlinear algebraic

Figure 7: Solution ( )ν x y z t, , ,1 of third (3+1)-D WBBM equation at
=k 3, =c 2, =t 1, =x 1, =λ 3, and =μ 1.

Figure 8: Solution ( )ν x y z t, , ,1 of third (3+1)-D WBBM equation at
=k 3, =c 2, =y 1, =x 1, =λ 3, and =μ 1.

Figure 9: Solution ( )ν x y z t, , ,1 of third (3+1)-D WBBM equation at
=k 3, =c 2, =z 1, =x 1, =λ 3, and =μ 1.
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equations are obtained. By solving the acquired system of
equations, unknown constant values are obtained.
Case i:

A β
λ

B

A α
λ

λ
β

2
2

, 0,

2
2

2
.

1 2 0

0 2

2
⎜ ⎟⎛

⎝
⎞
⎠

⎛

⎝

( ) ⎞

⎠

=

−

−

=

=

−

−

−

−

(78)

Following results are obtained using Eqs. (78) and (72).

y ζ β
λ

x λ
β

α
λ

2
2 2

2
2 2

.1 2

2 2

2⎜ ⎟( ) ⎛

⎝

⎞

⎠

⎛
⎝

( ) ⎞
⎠

= −

−

−

−

−

−

−

−

(79)

By using Eqs. (79) and (71), we obtain the first solution of
CKG equation and is expressed as follows:

ν x y t α
β

λ

α
λ

x y λt ξ

, , 2 tan

2
0 .

1
2

2

( ) ( )

⎡

⎣
( ) ⎤

⎦

= − −

×

−

−

+ − +

(80)

Case ii:

B A β
λ

A α
λ

λ
β

0, 2
2

,

2
2

2
.

0 1 2

0 2

2
⎜ ⎟⎛

⎝
⎞
⎠

⎛

⎝

( ) ⎞

⎠

= = −

−

−

= −

−

−

−

−

(81)

The following results are obtained using Eqs. (78) and
(72).

y ζ β
λ

x λ
β

α
λ

2
2 2

2
2 2

.2 2

2 2

2⎜ ⎟( ) ⎛

⎝

⎞

⎠

⎛
⎝

( ) ⎞
⎠

=

−

−

+

−

−

−

−

(82)

By using Eqs. (82) and (71), the second solution of CKG
equation solution is presented as follows:

ν x y t α
β

λ α
λ

x y λt ξ, , 2 tan
2

.2
2

2 0( ) ( ) ⎡

⎣
( ) ⎤

⎦
= −

−

−

+ − +

(83)

Figure 10 displays the solution function ν x y z t, , ,1( ) con-
sidering the values of α, β, and λ. Figure 10 displays kink-
type of solutions. Solitary wave solutions for WBBM type
1 and cuspons for WBBM type 2 were obtained. Solitons
and kink-type solutions of WBBM type 3 and the (2+1)-D
CKG equation are obtained. All presented soliton solu-
tions satisfy their respective models.

4 Conclusion

The solutions of nonlinear (3+1)-D WBBM and (2+1)-D
CKG equation were obtained using FIM. New solitary
wave solutions for WBBM type 1 and cuspons for WBBM
type 2 were obtained. Solitons and kink-type solutions
were acquired for WBBM type 3 and the (2+1)-D CKG
equations, respectively. The suggested method allows
us to easily conduct tedious and difficult algebraic com-
putations with the assistance of a computer. FIM is a
straightforward and concise method and capable of sol-
ving nonlinear system arises in mathematical physics
and engineering.

Funding information: This study was supported by Project
Number (RSP2023R401), King Saud University, Riyadh,
Saudi Arabia.

Author contributions: All authors have accepted respon-
sibility for the entire content of this manuscript and
approved its submission.

Conflict of interest: The authors state no conflict of
interest.

References

[1] Ahmad I, Khan MN, Inc M, Ahmad H, Nisar KS. Numerical
simulation of simulate an anomalous solute transport model
via local meshless method. Alexandr Eng J.
2020;59(14):2827–38.

[2] Wang F, Ahmad I, Ahmad H, Alsulami MD, Alimgeer KS,
Cesarano C, et al. Meshless method based on RBFS for solving
three-dimensional multi-term time fractional PDEs arising in
engineering phenomenons. J King Saud Univ-Sci.
2021;33(8):101604.

[3] Liu X, Ahsan M, Ahmad M, Nisar M, Liu X, Ahmad I, et al.
Applications of Haar wavelet-finite difference hybrid method

Figure 10: Solution ( )ν x y t, ,1 of (2+1)-D CKG equation using =t 1,
=β 1, =λ 1, and =α 2.

8  Shumaila Javeed et al.



and its convergence for hyperbolic nonlinear Schrödinger
equation with energy and mass conversion. Energies.
2021;14(23):7831.

[4] Ahmad I, Ahmad H, Abouelregal AE, Thounthong P, Abdel-
Aty M. Numerical study of integer-order hyperbolic telegraph
model arising in physical and related sciences. Europ Phys J
Plus. 2020;135(9):1–14.

[5] Rezazadeh H, Inc M, Baleanu D. New solitary wave solutions
for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-
Mahony equations. Front Phys. 2020;8:332.

[6] Vahidi J, Zekavatmand SM, Rezazadeh H, Inc M, Akinlar MA,
Chu YM. New solitary wave solutions to the coupled Maccarias
system. Results Phys. 2021;21:103801.

[7] Jhangeer A, Rezazadeh H, Seadawy A. A study of travelling,
periodic, quasiperiodic and chaotic structures of perturbed
Fokas-Lenells model. Pramana. 2021;95(1):1–11.

[8] Kallel W, Almusawa H, Mirhosseini-Alizamini SM, Eslami M,
Rezazadeh H, Osman MS. Optical soliton solutions for the
coupled conformable Fokas-Lenells equation with spatio-
temporal dispersion. Results Phys. 2021;26:104388.

[9] Zhang X, Chen Y. Inverse scattering transformation for gener-
alized nonlinear Schrödinger equation. Appl Math Lett.
2019;98:306–13.

[10] Hirota R. The direct method in soliton theory. No. 155. United
Kingdom: Cambridge University Press; 2004.

[11] Yusufoğlu E, Bekir A, Alp M. Periodic and solitary wave solutions
of Kawahara and modified Kawahara equations by using
sine–cosine method. Chaos Soliton Fractal. 2008;37(4):1193–7.

[12] Dehghan M, Manafian J. The solution of the variable coeffi-
cients fourth-order parabolic partial differential equations
by the homotopy perturbation method. Zeitschrift für
Naturforschung A. 2009;64(7–8):420–30.

[13] Wang F, Ali SN, Ahmad I, Ahmad H, Alam KM, Thounthong P.
Solution of Burgers’ equation appears in fluid mechanics by
multistage optimal homotopy asymptotic method. Thermal
Sci. 2022;26(1 Part B):815–21.

[14] Ali SN, Ahmad I, Abu-Zinadah H, Mohamed KK, Ahmad H.
Multistage optimal homotopy asymptotic method for the K
(2, 2) equation arising in solitary waves theory. Thermal Sci.
2021;25(Spec. issue 2):199–205.

[15] Anjum N, He JH. Laplace transform: making the variational
iteration method easier. Appl Math Lett. 2019;92:134–8.

[16] Ahmad H, Khan TA, Ahmad I, Stanimirović PS, Chu YM. A new
analyzing technique for nonlinear time fractional Cauchy
reaction-diffusion model equations. Results Phys.
2020;19:103462.

[17] Ahmad H, Khan TA, Stanimirović PS, Chu YM, Ahmad I.
Modified variational iteration algorithm-II: convergence
and applications to diffusion models. Complexity.
2020;2020:1–14.

[18] Fan E. Extended tanh-function method and its applications
to nonlinear equations. Phys Lett A. 2000;277(4):212–8.

[19] He JH, Wu XH. Exp-function method for nonlinear wave equa-
tions. Chaos Solitons Fractal. 2006;30(3):700–8.

[20] Heris JM, Bagheri M Exact solutions for the modified KdV and
the generalized KdV equations via exp-function method.
J Math Extension. 2020;4(2):75–95.

[21] Javeed S, Baleanu D, Nawaz S, Rezazadeh H. Soliton solutions
of nonlinear Boussinesq models using the exponential func-
tion technique. Phys Scr. 2021;96(10):105209.

[22] Javeed S, Saleem Alimgeer K, Nawaz S, Waheed A, Suleman M,
Baleanu D, et al. Soliton solutions of mathematical physics
models using the exponential function technique. Symmetry.
2020;12(1):176.

[23] Ahmad I, Ahsan M, Elamin AEA, Abdel-Khalek S, Inc M.
Numerical simulation of 3-D Sobolev equation via local mesh-
less method. Thermal Sci. 2022;26(Spec. issue 1):457–62.

[24] Ahmad I, Abdel-Khalek S, Alghamdi AM, Inc M. Numerical
simulation of the generalized Burger’s-Huxley equation via two
meshless methods. Thermal Sci. 2022;26(Spec. issue 1):463–8.

[25] Wang F, Hou E, Ahmad I, Ahmad H, Gu Y. An efficient meshless
method for hyperbolic telegraph equations in (1+1) dimen-
sions. Comput Model Eng Sci. 2021;128(2):687–98.

[26] Ahmad I, Seadawy AR, Ahmad H, Thounthong P, Wang F.
Numerical study of multi-dimensional hyperbolic telegraph
equations arising in nuclear material science via an efficient
local meshless method. Int J Nonlinear Sci Numer Simulat.
2022;23(1):115–22.

[27] Wang F, Zhang J, Ahmad I, Farooq A, Ahmad H. A novel
meshfree strategy for a viscous wave equation with variable
coefficients. Front Phys. 2021;9:701512.

[28] Samadi H, Mohammadi NS, Shamoushaki M, Asadi Z,
Ganji DD. An analytical investigation and comparison of
oscillating systems with nonlinear behavior using AGM and
HPM. Alexandr Eng J. 2022;61(11):8987–96.

[29] Hosseinzadeh S, Hosseinzadeh K, Hasibi A, Ganji DD.
Hydrothermal analysis on non-Newtonian nanofluid flow of
blood through porous vessels. Proceedings of the Institution
of Mechanical Engineers, Part E: Journal of Process Mechanical
Engineering. 2022;236(4):1604–15.

[30] Alaraji A, Alhussein H, Asadi Z, Ganji DD. Investigation of heat
energy storage of RT26 organic materials in circular and
elliptical heat exchangers in melting and solidification pro-
cess. Case Stud Thermal Eng. 2021;28:101432.

[31] Hosseinzadeh S, Hosseinzadeh K, Hasibi A, Ganji DD. Thermal
analysis of moving porous fin wetted by hybrid nanofluid with
trapezoidal, concave parabolic and convex cross sections.
Case Stud Thermal Eng. 2022;30:101757.

[32] Feng ZS. The first integral method to study the Burgers-Korteweg-
de Vries equation. J Phys A Math Gen. 2002;35(2):343–9.

[33] Javeed S, Abbasi MA, Imran T, Fayyaz R, Ahmad H, Botmart T.
New soliton solutions of simplified modified Camassa Holm
equation, Klein-Gordon-Zakharov equation using first integral
method and exponential function method. Results Phys.
2022;38:105506.

[34] Lu B. The first integral method for some time fractional differ-
ential equations. J Math Anal Appl. 2012;395(2):684–93.

[35] Mirzazadeh M, Eslami M. Exact solutions of the Kudryashov-
Sinelshchikov equation and nonlinear telegraph equation
via the first integral method. Nonlinear Anal Model Control.
2012;17(4):481–8.

[36] Taghizadeh N, Mirzazadeh M, Farahrooz F. Exact solutions
of the nonlinear Schrodinger equation by the first integral
method. J Math Anal Appl. 2011;374(2):549–53.

[37] Feng Z, Wang X. The first integral method to the two-dimen-
sional Burgers-Korteweg-de Vries equation. Phys Lett A.
2003;308(2):173–8.

[38] Wu XHB, He JH. Exp-function method and its application
tononlinear equations. Chaos Soliton Fractal.
2008;38(3):903–10.

Soliton solutions of modified (3+1)-D WBBM and (2+1)-D CKG equations  9


	1 Introduction
	2 Procedure of FIM
	3 The first integral method's applications
	3.1 (3+1)-D WBBM equation of type 1
	3.1.1 (3+1)-D WBBM equation of type 1

	3.2 (3+1)-D WBBM equation of type 2
	3.2.1 (3+1)-D WBBM equation of type 2

	3.3 The (3+1)-D WBBM equation of type 3
	3.3.1 (3+1)-D WBBM equation of type 3

	3.4 The (2+1)-D CKG equation

	4 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


