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Abstract: In this study, data fusion algorithm is used to
classify the soil species and calibrate the soil humidity
sensor, and by using edge computing and a wireless
sensor network, farmland environment monitoring system
with a two-stage calibration function of frequency domain
reflectometer (FDR) is established. Edge computing is used
in system nodes, including the saturation value of the soil
humidity sensor, the calculated soil hardness, the calcula-
tion process of the neural network, and the model of soil
classification. A bagged tree is adopted to avoid over-fit-
ting to reduce the prediction variance of the decision tree.
A decision tree model is established on each training set,
and the C4.5 algorithm is adopted to construct each deci-
sion tree. After primary calibration, the root mean squared
error (RMSE) between the measured and standard values
is reduced to less than 0.0849%. The mean squared error
(MSE) and mean absolute error (MAE) are reduced to less
than 0.7208 and 0.6929%. The bagged tree model and
backpropagation neural network are used to classify the
soil and train the dynamic soil dataset. The output of the
trained neural network is closer to the actual soil humidity
than that of the FDR soil humidity sensor. The MAE, the
MSE, and the RMSE decrease by 1.37%, 3.79, and 1.86%.
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With accurate measurements of soil humidity, this research
shows an important guiding significance for improving the
utilization efficiency of agricultural water, saving agricul-
tural water, and formulating the crop irrigation process.
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1 Introduction

Abuse of earth resources results in unprecedented envir-
onmental crises. The development of resource utilization
mainly focuses on non-renewable fossil resources and
mineral resources currently, such as the replacement of
conventional fluid with nanofluids [1], energy storage
with nanocomposite phase change materials [2], and
increase in heat transfer with magnetic fields [3]. Plate
heat exchangers [4] and double tube heat exchangers [5]
with novel structures have been introduced in distributed
energy systems for energy saving. However, water resources
have received less attention than fossil and mineral
resources. Water resource is indispensable for social
and economic development [6]. About 85% of the global
freshwater is used for agricultural irrigation [7], and
about 53% of Chinese freshwater resource is used for
agriculture applications [8]. Only 40-50% of agricul-
tural water in developing countries has been effectively
utilized [9], and the utilization efficiency of agricultural
water is 70-80% in developed countries [10]. The accurate
measurement of soil humidity is of great significance for
improving the utilization efficiency of agricultural water,
saving agricultural water, and formulating the crop
irrigation process [11].

The frequency domain reflectometer (FDR) method is
commonly used to measure soil humidity [12]. The FDR
method is used to obtain soil humidity by measuring the
dielectric constant of the soil [13]. As the FDR soil humidity
sensor is buried in soil for a long time [14], it is aged or
corroded due to soil texture and other factors. The data
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drift occurs due to the influence of soil temperature and
soil hardness [15]. In addition, the physical properties of
soil are affected by nanoparticles due to the application of
nano-agriculture [16].

First, linear data drift over the full humidity range is
caused by aged and corroded sensors. According to this
feature, the data characteristics measured by standard
sensors are recorded first [17]. Then, the offset value is
calculated according to the data characteristics after
aging or corrosion. Second, nonlinear drift in the output
of sensors is caused because of the difference in soil tem-
perature, hardness, and soil type [18]. Based on the char-
acteristics of nonlinear data drift of sensors [19], the FDR
soil humidity sensor shows the soil humidity output value
[20], to establish the neural network relation among soil
temperature, soil hardness, and the actual soil humidity
value [21].

A novel soil classification method based on data
fusion of soil environmental parameters is proposed. A
two-stage calibration method is designed to improve the
measurement accuracy of the FDR soil humidity sensor. A
farmland environment monitoring system with a two-stage
calibration function of the FDR sensor is established using
edge computing and a wireless sensor network.

2 Experimental investigations

In order to verify a linear rule of data drift due to aging
and corrosion problems of FDR soil humidity sensors, the
soil samples were collected on the Beichen Campus of
Hebei University of Technology in Tianjin, China.
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2.1 Primary calibration of FDR soil humidity
sensor

The standard FDR soil humidity sensor marked A was
accurate, and the other sensors marked B and C were
used for 1year and 2 years, respectively. In order to verify
the linear drift characteristics of the sensors, three sen-
sors were used for the experimental analysis of the soil at
the same humidity [22].

Three sensors were buried in an even array in a
plastic vessel, which was filled with dry soil samples.
Add water evenly, so that the soil humidity inside the
vessel gradually increases to the maximum, and a full
humidity range was measured simultaneously with these
three sensors. Test results are presented in Figure 1. It is
found that the growth rate of the sensor output is slowing
down with the increase in water injection. When its output
reaches the saturation of soil humidity sensors, the output
values of the sensors no longer increase with the amount
of water injected. The output saturation values of sensors
A, B, and C are 46.63, 55.79, and 58.93%. Sensors B and C,
which are buried in soil for a few years, provide a large
data offset than the standard sensor A. This part of the data
offset is linear, and the curves show a larger overall value
within the whole range of humidity.

According to the characteristics of sensors, the sensor
with numerical fault can be calibrated by data compensa-
tion. As long as the output values of the standard sensor
and the error sensor under a different soil humidity are
measured, the data compensation can be carried out
according to the difference.

In the actual greenhouse or farmland, it is difficult to
use standard sensors and non-standard sensors to
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Figure 1: Relation curves between sensor outputs and water injection time.



DE GRUYTER

measure the output data under the same soil humidity
conditions without manual operation [23]. The data com-
pensation is carried out by measuring the saturation
process curves of the non-standard soil sensors and the
standard soil sensor. The soil humidity sensor will reach
its output saturation value during irrigation time or rainy
season, which corresponds to the highest points of sen-
sors A and B as shown in Figure 1. The compensation
value for the linear data is shown in Eq. (1) as follows:

V=VS - VS, 1

where V represents the compensation value for linear
data, VS; represents the saturation value from a non-stan-
dard humidity sensor, and VS, represents the saturation
value from the standard soil humidity sensor.

Aging and corrosion on humidity sensors are slow pro-
cesses. The compensation value V is calculated according to
Eq. (1) after the output saturation value of the non-standard
sensor is monitored by the agricultural personnel for irriga-
tion or in the rainy season. The sensor is calibrated
according to the following equation:

E=M-V, 2

where E represents the calibrated soil humidity, M repre-
sents measured values from the non-standard soil humidity
sensor, and V is the linear data compensation.

In Eq. (1), the output saturation value of the standard
soil moisture sensor is unique and measured by the stan-
dard soil moisture sensor, while the output saturation
value of each non-standard soil moisture sensor is dif-
ferent. The compensation value for linear data of each
non-standard soil moisture sensor is obtained by sub-
tracting the two. For a specific non-standard sensor,
Eq. (2) is used to subtract the measured value from the
compensation value of linear data to carry out data com-
pensation for the non-standard soil moisture sensor. The
data of the non-standard soil moisture sensor that is
closer to the actual soil moisture after linear data com-
pensation are obtained, namely, the E value.

2.2 Secondary calibration of FDR soil
humidity sensor

Because only the linear compensation of the sensor cannot
meet the requirements of agricultural utilizations, it is
necessary to carry out the secondary calibration. Soil dis-
tributed in China is roughly divided into loam, brown soil,
and sandy soil. Three soil samples were used in this
experiment. For the same soil humidity in actual farmland,
the FDR humidity sensor is affected by soil temperature,
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soil hardness, and soil type [24]. In the secondary calibra-
tion, the data set of corresponding relationships among
soil temperature, soil hardness, soil type, output values
of the humidity sensor, and actual soil humidity was
obtained through many experiments. First, the soil was
classified by the relationship among soil type, soil tem-
perature, soil hardness, and output humidity of the FDR
soil sensor after the primary calibration [25]. The backpro-
pagation (BP) neural network algorithm was used to train
the data set to get the characteristics of the neural network
[26]. According to the network characteristics, the actual
soil humidity value was obtained by inputting soil tem-
perature, soil hardness, and output humidity of the FDR
soil sensor.

In the experiment, the temperature range was from
10 to 50°C and the temperature gradient was 1°C. The soil
hardness means the amount of soil pressure per cm?. The
pressure value was measured by pressure sensors, and
the surface area of the sensor-sensitive element was mea-
sured. The soil hardness is calculated by Eq. (3) as
follows:

H=F/S, 3

where H represents the soil hardness, F represents the
pressure value measured by the pressure sensor, and S
represents the surface area of the sensor-sensitive ele-
ment. The suitable range of soil hardness for crop growth
in this experiment was 20-80 N/cm”.

A number of soil samples were thoroughly dried and
divided into 24 parts, and each piece weighed 2,400 g
marked mg. Each sample of soil was placed in a plastic
cup. The 24 cups were labeled as Ai ~ Fi (iis 1, 2, 3, and 4).
An FDR soil humidity sensor, a soil temperature sensor,
and pressure sensors were buried in each cup. Table 1
shows the weight of soil in each plastic cup, the weight
of water injected, and the soil humidity. The plastic cup
was sealed with plastic wrap to prevent water volatiliza-
tion in the soil, and water was distributed evenly in the
soil for 24 h in the plastic containers. Every accurate soil
humidity in 24 plastic containers was calculated by Eq.
(4) as follows:

mi

Hu=—",
mo + m;

(4)
where Hu represents the actual soil humidity, m; repre-
sents the weight of water added into the cup, and mq
represents the weight of soil.

The weight of water injected into the soil was mea-
sured three times, and the average value was taken to
calculate the soil moisture value after different weights
of water were injected into the dry soil through Eq. (4).
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Table 1: Labels and soil humidity

Vessel number (i =1, 2, 3, 4) Ai Bi Ci Di Ei Fi

Weight of water (unit: g) The first measurement 125.3 262.8 429.1 608.3 800.7 1028.0
The second measurement 126.2 264.8 423.0 600.3 796.3 1027.6
The third measurement 126.5 273.4 419.9 591.4 803.0 1032.6

Average weight of water (unit: g) 126.0 267.0 424.0 600.0 800.0 1029.0

Soil humidity (unit: %) 5 10 15 20 25 30

After calculation, the soil moisture of six groups of con-
tainers was 5, 10, 15, 20, 25, and 30%, respectively. The
output of the soil humidity sensor shows deviations from
the actual soil humidity due to effects of soil temperature,
hardness, and type. The secondary calibration of the FDR
soil humidity sensor is used to eliminate the measure-
ment deviations caused by soil temperature, soil hard-
ness, and soil type. The measured results are improved
using the secondary calibration, closer to the actual mea-
surement accuracy.

The testing system was established to measure and
store experimental data as shown in Figure 2.

The small experimental measurement system con-
sisted of an FDR soil humidity sensor, soil temperature
sensor, pressure sensor, data transmission unit, and cloud
monitoring platform. The sensor whose output was deviated
from the actual soil humidity was the sensor to be calibrated
at the second stage. The data transmission unit USR-G781 is
produced by Jinan YouRen Technology Company, China.

The soil in each vessel was extruded to improve the soil
hardness in each vessel as shown in Table 2.

The output of the FDR soil humidity sensor in 24
vessels was measured with a temperature gradient of
1°C from O to 50°C. In Table 1, the accurate soil humidity
calculated in the 24 vessels is 5, 10, 15, 20, 25, and 30%.
The output of the FDR soil humidity sensor is affected by
soil temperature, soil hardness, and soil types [27]. The
output measured is shown in Figures 3-5.

The experimental process was repeated using sam-
ples of brown soil and sandy soil. The output of FDR soil
humidity sensors is shown in Figures 4 and 5. From
Figures 3-5, it is found that the output of the FDR soil
humidity sensor is significantly affected by soil tempera-
ture, soil hardness, and soil type. In Figure 3, the error
reaches its maximum value of 5.28% at 50°C. The soil
hardness is 80 N/cm?, and the soil humidity is 20%.

In Figure 4, the error reaches its maximum value of
7.79% at 50°C. The soil hardness is 80 N/cm? and the soil
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Figure 2: Experimental testing system.
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Table 2: Correspondence between labels and soil hardness

Vessel number (X=A, B, C,D,E, F) X1 X2 X3 X4

Soil hardness (unit: N/cm?) 20 40 60 80

humidity is 20%. The error reaches its maximum value of
5.25% at 50°C. The soil hardness is 80 N/cm?, and the soil
humidity is 20%. In soil humidity measurement, it is
necessary to eliminate the influence of soil temperature,
soil hardness, and soil type on soil humidity sensor.

The output of the FDR soil humidity sensors buried in
three soils is used to build 984 groups of data set. Each
group of data set is composed of soil temperature, soil
hardness, FDR soil humidity sensor output, actual soil
humidity, and the type of soil.

In order to eliminate the influence of soil type on the
output of the FDR soil humidity sensor, a decision tree is
a popular model for the classification of soil [28]. Bagged
tree and random forests are the most famous and compe-
titive extensions of decision trees. Li et al. [29] pointed
out that the bagged tree combined with C4.5 is an excel-
lent performance integration approach for classification
problems [30]. A bagged tree that reduces the prediction

Prediction and monitoring model for farmland environmental system = 5

variance of the decision tree was adopted to avoid over-
fitting.

The bagged tree involves three steps. The original
data are separated into subset data in step 1. Step 2 is
to build a classifier on each data subset. Step 3 is the
majority voting, which selects the best classifier from
all the classifiers [31].

In the model of bagged tree, the C4.5 algorithm was
used to construct trees based on a subset. The data set
included soil temperature, soil hardness, and the output
of the FDR soil humidity sensor. There were three labels:
loam, brown soil, and sandy soil. In the C4.5 algorithm,
the gain rate of the attribute needs to be calculated, and
Egs (5)-(8) show the calculation method. The basic infor-
mation entropy represents the degree of chaos in the data
set as Eq. (5). Information entropy is a basic concept of
information theory, which describes the uncertainty of
the occurrence of each possible event of an information
source.

€]
entropy(D) = - Y Pr(¢)log,Pr(c),

j=1

©)

where D represents a data set, Pr(¢;) represents the prob-
ability of category ¢; in data set D, C represents the
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Figure 3: Output of FDR soil humidity sensor at various soil temperatures and hardness in loam.
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Figure 4: Output of FDR soil humidity sensor at various soil temperatures and hardness in brown soil.
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Figure 5: Output of FDR soil humidity sensor at various soil temperatures and hardness in sandy soil.
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number of categories in data set D, and entropy(D) repre-
sents the entropy of the data set D. After the data set is
divided into v subsets according to attributes, the entropy
of the data set is calculated as the following equation:

v

entropy(4;, D) = )
1

D.
—L|*entropy(D;), 6)

where 4; is an attribute of data set D, D; is a subset of data
set D divided by attributes, v is the number of attributes
in the data set, and entropy(D;) is the entropy of the
subset D; and entropy(D;). The information gain of attri-
bute A4; is calculated by the following equation:

gain(D, A;) = entropy(D) — entropy(4;, D), (7)

where gain(D, A;) represents the information gain of attri-
bute A;. The information gained is biased to select attri-
butes with more values. In order to correct this bias, the
entropy of the data set relative to the distribution of
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Figure 6: Flowchart of the C4.5 algorithm.

Prediction and monitoring model for farmland environmental system =—— 7

attribute values is used to normalize the information
gain, which called the information gain rate and calcu-

lated as follows:
v

entropy(4;, D) = )
j=1

D.
— |*entropy(D)), 8)

where gainRatio(D, 4;) represents the information gain
rate of attribute A;.

Figure 6 shows the flowchart of the C4.5 algorithm.
The process of building a decision tree using the C4.5
algorithm is divided into four steps. In step 1, the total
data sample MP is input. In step 2, the entropy of MP and
the entropy of each attribute are calculated. In step 3, the
information gain rate of each attribute is calculated, and
the data set is divided into the categories with the max-
imum information gain rate to generate nodes. In step 4,
the decision tree and mapping rules are obtained by
repeating step 1-step 3.

Figure 7 shows the three steps of the construction of
the bagged tree. In Figure 7, MP dataset is the entire
dataset, and n samples are selected from MP dataset as
the training set by placing back samples. A decision tree
model was established on each training set, and the C4.5
algorithm was adopted to construct each decision tree.
The models were used to vote on the results of the test
samples, so as to obtain the final prediction results.

The bagged tree algorithm is not dependent on one
decision tree, but by many decision trees to jointly deter-
mine the prediction results, which can improve the accu-
racy and stability of the results, but also avoid the problem
of over-fitting.

In this study, BP neural network was used for data
fusion. The mathematical equation of the mapping rela-
tionship between input and output in advance is not
necessary to determine in the artificial neural network
[32]. Learning specific rules through training obtained
the result closest to the expected output value [33]. The
BP neural network is a multi-layer feed-forward network
trained according to error BP. With the gradient descent
and searching gradient, this BP algorithm [34] minimized
the mean squared error (MSE) of the actual output value
and the expected output value of the network [35].

The basic BP algorithm includes two processes: for-
ward propagation of signal and backward propagation of
error [36]. The error output, the adjustment weight, and
threshold are calculated from input to output. In forward
propagation, the input signal acts on the output node
through the hidden layer, which generates the output
signal through nonlinear transformation. If the actual
output is inconsistent with the expected output, the pro-
cess of backward propagation is to be carried out.
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Figure 7: Model of the bagged tree.

Backward propagation of error is apportioned to all units
of each layer, which means that the output error is trans-
mitted back to the input through the hidden layer. The
error is lowered along the gradient direction by adjusting
the connection strengths between the input node and the
hidden layer node and between the hidden layer node
and the output node [37]. After repeated learning and
training, the network parameters (weights and thresh-
olds) corresponding to the minimum error are deter-
mined [38]. In this case, the trained neural network
processes the input information of similar samples with
the least output error after nonlinear transformation.

The topology of the three-layer neural network is
shown in Figure 8.

There are n nodes in the input layer of BP network, g
nodes in the hidden layer, and m nodes in the output
layer. The weight between the input layer and the hidden

Figure 8: Topology of the three-layer neural network.

layer is vy, and the weight between the hidden layer and
the output layer is wj,. The transfer function of the hidden
layer is fi(-), and the transfer function of the output layer
is f5(-); then, the output of the node of the hidden layer is
shown as follows:

n
Zi = fl(zvkixi} )
i=0
where the range of k is 1, 2, ,q. The output of the node in

the output layer is

q
Y = fz( D ijZk)- (10)
k=0

At this point, BP network has completed the mapp-
ing from N-dimensional space vector to M-dimensional
space. p learning samples are input into the BP network,
and they are denoted by x, X, %3, ---, Xp. The pth sample is
input to the network, and the output yjp( j=12,...,m)is
obtained. The squared error function is used, so the error
E, of the pth is obtained.

1 m
E = Ez(t]p_y]p)z’

j=1

(11)

where t)-p is the expected output. For p samples, the global
error is shown as follows:

1Pm p b
E=522<t; B/

p=1j=1

P
Y Ep. (12)
p=1
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The cumulative error BP algorithm is used to adjust
wjc to make the global error E smaller.

E  «( 0E
Awy = -n—— = ) | -n— |, (13)
] M pgl( aWik)
where 7 is the learning rate. The error signal is §);.
OF, OF, 0%
gy= -2 (14)

S TR AT

where the first term is shown in Eq. (15) and the second
term is the partial of the transfer function of the output
layer, which is shown in the following equation:

aEp a 1 m m
e ED G2 EE X CES 7O ML)
ayl ay] 2; ] ] Z:l ] ]
ay;
a—; = f5(Sp). (16)
j
So, 6,j can be expressed as follows:
m
8= Y (tF — yP(S). (17)
j=1

According to the chain rule,

JE, OE, 05

m
=2 s = =Y - YRS 2
Swe 3, w0 = 2§ D)7 8)

j=1

Therefore, the weight adjustment formula of each
neuron in the output layer is as follows:

P m
D = Y Y n(tP = yDF(S) 2k (19)

p=1j=1

The change of hidden layer weight is given as

follows:
P
OF,
Avy; = Z(—n ’”)- (20)
p=1 Vii
The error signal is given as follows:
OEp 0E, 9z
O = ——2 = 22K, 21
*T T3S Oz oSk @

where the first term is shown in the following equation:

Ok _dfly a dy;
= =5 | 2@ D =X -y @2
0z azk[zgl(f J’z)l j;(] y,)azk (22)

Eq. (23) is obtained by the chain theorem.

X %3 = f2(S)Wik.

= 23
aZk aSj aZk ( )
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The second term in Eq. (21) is the partial derivative of
the transfer function of the hidden layer, which is shown
in the following equation:

aZk ,
— = f{(S). 24
35, fi(S1) (24)
So, Eq. (25) is given as follows:
m
6= ) (tF - YD 5(Spwie f1(Si)- (25)
j=1
According to the chain theorem,
3, _ 3k, a5,
aVki aSk avk,-
= — O (26)

= = 2. (t7 - yP5(S)w fi(Se)x.
j=1

Thus, the weight adjustment formula of each neuron
in the hidden layer is as follows:

P m
Avig = ) Y n(t? - y)f )W fi(Sxi. (27)

p=1j=1

In this study, the BP neural network was adopted for
data fusion, and the data from Figures 3-5 were used as
the data set of the BP neural network [39]. The structured
setting of the neural network is shown in Figure 9.

In Figure 9, neurons i1, i2, i3, and i4 in input layer L1
of the neural network are soil temperature, soil hardness,
FDR soil humidity sensor, and soil type. There are eight
neurons in hidden layer L2, and neuron Q in output layer
L3 is the output of the network, which is the soil humidity
value after two-stage calibration.

The neural network was trained by the established
data set to determine the weights from the input layer to

3]

Input

Input Layer

Hidden Layer

Figure 9: Structure of neural network.
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Figure 10: Flowchart of BP neural network.

the hidden layer and from the hidden layer to the output
layer and the thresholds of each neuron in the hidden
layer and output layer [40]. Figure 10 shows the flowchart
of the BP neural network based on the algorithm of error
reverse propagation.

After the BP neural network was trained, the weights
of the input layer to the hidden layer, the hidden layer
to the output layer, and the thresholds of neurons of
the hidden layer and neurons of the output layer were

Table 3: Weights and thresholds from input layer to hidden layer
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obtained [41]. Table 3 shows the weights from input to
hidden layers and the thresholds of neurons of the
hidden layer.
Table 4 shows the weights from hidden to output
layers and the thresholds of neurons of the output layer.
Tables 3 and 4 are deployed to the following system
for secondary calibration of the FDR soil humidity sensor.

3 System structure

3.1 System overview

Based on the experimental analysis, a farmland environ-
ment monitoring system with two-stage calibration func-
tion was constructed.

The primary calibration is performed in this system
by measuring historical soil humidity. In the secondary
calibration, accurate soil humidity value is obtained
through the acquisition of the current soil temperature,
soil hardness, humidity output, and network calcula-
tions. The soil humidity value calibrated is closer to
the actual value. It has a real guiding significance for
crop growth monitor and water-saving. The system can
also be used to monitor other environmental parameters
of crop growth, including ambient temperature, air humidity,
carbon dioxide concentration, and light intensity. These
environmental parameters also showed vital guiding signifi-
cance for crop growth and other agricultural activities [42].

3.2 Edge computing

As an extension and supplement of cloud computing,
edge computing is considered a new computing para-
digm that performs computing tasks at the edge of the
network [43]. The core concept of edge computing is to
make computing closer to the edge of the network and
data sources to provide edge services nearby to meet the

Neuron m h2 h3 h4 h5 hé h7 h8

Threshold —2.3545 1.6818 -1.0091 0.3364 -0.3364 -1.0091 0.5343 -1.1011
il 1.4268 -1.3495 1.6309 -1.4247 -0.5631 -1.5113 0.9078 1.5212
i2 -1.4192 1.2833 -0.5860 0.8284 -0.5172 0.4666 -0.9872 1.0212
i3 0.9376 1.4137 1.2027 -0.6019 0.5223 0.2766 0.5612 -0.8967
i4 -0.7841 -0.2781 -1.0459 1.5702 2.1648 -1.7220 -1.0539 0.3436
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Table 4: Weights and thresholds from hidden layer to output layer

Prediction and monitoring model for farmland environmental system =— 11

Neuron h1 h2 h3

h4 h5 hé h7 h8

Q Threshold
0.7707

0.6042 0.9783 -0.866

0.8788 -0.964 0.3677 0.5675 0.0683

needs of users in agile connection [44], real-time data
transmission, data optimization, application intelligence,
security, and privacy protection [45]. The edge computing
consortium defines four domains for edge computing,
that is, device domain, network domain, data domain,
and application domain, as shown in Figure 11. The
application domain, data domain, network domain,
and equipment domain are computing objects of edge
computing. In the device domain, edge computing can
directly process the perceived information. In the network
domain, the automatic conversion of every network pro-
tocol is implemented, and the data format is standardized.
Computing at the edge of the data domain makes data
management more intelligent and flexible. Edge computing
can provide localized controlling logic and application
intelligence [46].

In a traditional cloud computing environment, only
the cloud has a computing function [47]. However, due to
the large amount of data collected by the agricultural
monitoring system, network delays and congestion will
occur if all collected data are uploaded to the cloud [48].
The system constructed in this study adopts the method
of lightweight edge computing. The edge computing in
this system is in the data domain layer in Figure 11. The
humidity sensor saturation value, the calculated soil

Cloud
Application

@ Application
@ Storage

Application Domain

Data Domain

Edge Computing

Equipment Domain
Open Platform

me .

Figure 11: Field of edge computing.

hardness, the calculation process of the neural network,
and the model of soil classification were deployed to the
edge of the system to finish the process of two-stage
calibration of the FDR soil humidity sensor.

The 32-bit ST microelectronics (STM32) was adopted
as the microcontroller unit of edge calculation, and
Figure 12 shows the connection between STM32 and
the sensors.

The program flowchart of STM32 is shown in Figure 13.
The algorithm of model of bagged tree and the algorithm
of BP neural network were implanted into STM32.

The STM32 collects data from the FDR soil humidity
sensor, soil temperature sensor, and pressure sensor,
which converts pressure data into soil hardness data by
Eq. (3), and stores soil humidity data. Eq. (2) is used to
obtain the soil humidity value after primary calibration.
The model of a bagged tree is used to classify the soil. The
soil temperature, soil hardness, soil humidity after the
primary calibration, and kind of soil are used as a group
of input data for the neural network. The neural network
calculates the accurate soil humidity after the second
calibration. When the STM32 receives the command for
data collecting, it sends the soil humidity data to the
long-range radio (LoRa) sub-nodes in the agriculture
Internet of things (IoT).

Node controller

Pressure
sensor

Soil humidity and ~ Soil humidity and  Soil humidity and
temperature sensor  lemperature sensor  (emperaturc sensor

Figure 12: Connection between STM32 and sensors.



12 — Tao Songetal.

»la
VF

Received read soil
moisture command

v

Read the output of sensors soil temperature,
FDR soil moisture and pressure

v

Convert pressure to soil
hardness by Eq (3) and
preserve soil moisture data

* Scan historical data, find
the saturation value in
| Primary calibration | historical data, and update
* the saturation value
A

Input pressure, temperature,
humidity value after primary
calibration to neural network

Send the network output
humidity value

v
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Figure 13: Controller program flowchart.

3.3 System composition

The system consists of the perception, network, and
application layers [49]. The overall architecture of the
system is shown in Figure 14. The perception layer con-
sists of five sensors and a microprocessor STM32, in
which three sensors are connected to STM32. Modbus
remote terminal unit (RTU) protocol is adopted for com-
munication between LoRa sub-nodes and the perception
layer, and Modbus RTU protocol is also adopted for light,
temperature, humidity, and CO, concentration sensors.
When STM32 receives the data transmission command
from LoRa sub-nodes, the soil humidity data calibrated
are packaged and sent to LoRa sub-nodes by Modbus
RTU protocol [50].

LoRa technology is used for data transmission at the
network layer. LoRa spreads farther than another wireless
mode under the same power consumption, realizing the
unification of low power consumption and long distance
[51]. Compared with traditional wireless communication,
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the distance of LoRa is 3-5 times larger than that of con-
ventional radio frequency communication, up to 2-5 km [52].

In addition, LoRa technology supports the topology
of the star network [53]. LoRa technology is very suitable
for agricultural IOT [54]. The network layer consists of
LoRa sub-nodes and LoRa gateway. LoRa sub-nodes
send the perception layer data to the LoRa gateway,
and then, the data are transferred to the cloud moni-
toring platform by the 4G network, which receives the
data from the sub-nodes and sends the data to the cloud
monitoring platform through the SIM card.

The cloud monitoring platform adopts the cloud plat-
form of the Youren Cloud, Ltd., Shandong Province,
China. The data transmission mode between the cloud
monitoring platform and LoRa gateway is network pass-
through. On the cloud monitoring platform, users can
check the growing environment of crops in the farmland
at any time to take related agricultural activities.

Figure 15 shows the data transmission modes among the
cloud monitoring platform, LoRa gateway, LoRa sub-nodes,
and sensors. After completing the network construction,
users log in to the cloud monitoring platform to view the
environmental conditions of the farmland. At this time, the
soil humidity displayed on the platform is the soil humidity
value calibrated by the two-stage calibration method in this
study. Farmers send a command to update the calibration
information in the cloud every time when they irrigate their
fields or during the rainy season. When the STM32 receives
the command, it will update primary calibration data
according to the flowchart in Figure 13. The secondary cali-
bration is performed automatically in the STM32 without the
farmer’s involvement. In addition, light intensity, carbon
dioxide concentration, ambient temperature, and humidity
in the farm are also displayed to the user in the cloud mon-
itoring platform. According to the environmental informa-
tion, users can take related agricultural activities to improve
the growth condition and yield of crops.

4 Results and discussion
This chapter shows discussions about the results of the pri-

mary calibration of soil humidity sensor, the soil classifica-
tion model, and the performance of the BP neural network.

4.1 Primary calibration

If there are m groups of data, the calculation method of
MSE is shown in the following equation:
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Figure 14: Overall architecture of the system.

1 The calculation method of MSE is shown in the fol-
MAE = —3'|fi - %I, (28) . :
mi lowing equation:
where m is the number of groups of data, f; is the pre- MSE = 1 i( fi—y)? (30)
= © — )2,
dicted value, and y; is the real value. The calculation m '

method of RMSE is shown in the following equation:
Table 5 shows the MSE, the root mean squared error
N ey RMSE), and th bsolut MAE) and th f
RMSE — Zi:l( fi-w (29) ( ), an e mean absolute error ( ) an ose 0
N : sensor B and sensor A and the error of sensor C and

sensor A before and after calibration in Eqgs (1) and (2).

Gateway Server

el | scrial port , EEWe): 9Nl . LORA t 4G
device | S sub-node —y B \ o '
communication communication | | communication

L Internet
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Figure 15: Way in which parts of a system communication.
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Table 5: Error comparison of sensors before and after first-stage calibration

Error types MSE RMSE MAE

Errors between sensor B and sensor A Before calibration 73.4681 0.8571% 8.5509%
After calibration 0.7208 0.0849% 0.6929%

Errors between sensor C and sensor A Before calibration 145.4828 1.2062% 12.0460%
After calibration 0.5139 0.0717% 0.5102%

Compared with sensor A, the RMSE of sensor B and
sensor C is reduced to a value below 0.0849% after first-
stage calibration. For the MSE and the MAE, sensors B
and C show the highest values of 0.7208 and 0.6929%.
After first calibration, the output value of soil sensor is
closer to the standard soil sensor output value.

4.2 Soil classification model

The accuracy of data classification reaches 90.0% using
the bagged tree model with the training set. Regarding
the data characteristics in the dataset, the bagged tree

True-positive rate

True class

1 2 3
Predicted class

(a)

classification model is much more accurate than other
methods.

There are some accuracies of some other methods.
The linear discriminant, the support vector machine,
the decision tree, the k nearest neighbors, and the bagged
tree algorithms show classification accuracies of 34.4,
33.1, 42.6, and 52.8%. Figure 16 shows the confusion
matrix and receiver operating characteristic (ROC) curves
using the bagged tree training dataset.

A total of 2,952 groups of test samples were tested for
the bagged tree classification model. In confusion matrix
of bagged tree classification model, a total of 2,657 groups
of test samples were accurately classified and a total of

1+
0.04,0.92
081 ( )
06
AUC =0.98
04+
02+ ROC curve
Area under curve (AUC)
@®  Current classifier
0 [ 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1
False-positive rate

Figure 16: Confusion matrix and ROC curves for the bagged tree model. (a) The confusion matrix of bagged tree and (b) the ROC curves of the

bagged tree.

error

-0.05

-0.1

-0.13
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8

16
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Figure 17: Output error between the neural network and actual soil humidity.
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295 groups of test samples were inaccurately classified.
The classification accuracy of bagged tree classification
model is 90%. In ROC curves, false-positive rate is the
probability that a wrong sample is predicted to be posi-
tive and true-positive rate is the probability that a correct
sample is predicted to be positive. Area under curve
(AUC) is the area under the ROC curve. AUC is an evalua-
tion index of classification model, and the closer it is to
the 1, the better the effect of classification model. Among
the above classification algorithms, the bag tree algo-
rithm has the largest AUC value, which is as high as 0.98.
The bagged tree is the most suitable algorithm for
this data set. Using the bagged tree algorithm, soil clas-
sification prepares for the BP neural network and sec-
ondary calibration of the FDR soil humidity sensor.

4.3 Secondary calibration

After the neural network training was completed, 20 sets
of data were verified. Figure 17 shows the output error
between the network and the actual soil humidity.

The absolute error between the output of neural net-
work and actual soil humidity is controlled within 0.13%
in Figure 17. This absolute error meets the needs of agri-
cultural soil humidity measurement.

Table 6 shows the error between output of the net-
work and the actual soil humidity and the error between
input of the network and the actual soil humidity.

MAE, MSE, and RMSE between the output of the net-
work and actual soil humidity are 1.37%, 3.79, and 1.86%.
less than those between the input of network and actual
soil humidity. The output of the neural network almost
eliminates the effects of soil temperature, soil hardness,
and soil type on the output of the FDR soil humidity
sensor. The accuracy of soil humidity measurement is
improved by using the FDR soil humidity sensor in agri-
culture. This result improves the utilization rate of agricul-
tural water and saves agricultural water resources, which
accurately determines the process of crop irrigation.

Various algorithms have been tried for the soil clas-
sification models, but only the bagged tree algorithm

Table 6: Error among network input, output, and real soil humidity

Error classification MAE MSE RMSE
Error between output and actual value 0.08% 0.01 0.09%
Error between input and actual value 1.45% 3.80 1.95%
difference value 1.37% 3.79 1.86%

Prediction and monitoring model for farmland environmental system =— 15

accurately classifies soil based on the mechanism of
voting. For the BP neural network model, the value of
soil humidity is closer to the real soil humidity according
to the input, and its training results meet the expected
expectations. The effects of soil temperature, soil hard-
ness, and soil type on the FDR soil humidity sensor are
removed by the calibration method in this study, and the
accurate soil humidity value is obtained.

5 Conclusions

A two-stage calibration method for the measurement of
FDR soil humidity sensor is proposed in this study. Linear
and nonlinear data drifts of the FDR soil humidity sensor
are analyzed.

The RMSE between measured values of sensor B and
sensor C after first-stage calibration and that of standard
sensor A is reduced to less than 0.0849%. Both the
MSE and the MAE are reduced to less than 0.7208 and
0.6929%. In the secondary calibration, the data sets of
soil temperature, soil hardness, soil types, soil humidity
sensor output, and actual soil humidity are established
experimentally. The data set trains the bagged tree for
soil classification model and the BP neural network.
The accuracy of the soil classification model reaches
90%. The output of the trained neural network is closer
to the actual soil humidity than that of the FDR soil
humidity sensor. The MAE, MSE, and RMSE decrease by
1.37%, 3.79, and 1.86%. The calibrated soil humidity
value is indispensable for agricultural activities and
saving agricultural water.

The dynamic monitoring system of the crop growth
environment is built based on the two-stage calculation.
The process of sensor secondary calibration is deployed
to the edge of the network so that the calibrated soil
humidity is collected in real time to guide the user to
carry out corresponding agricultural irrigation activities
in time, which reduces unnecessary water consumption
in agriculture. The system adds the function of collecting
the growth environment parameters of crops, which is
convenient for users to carry out other agricultural activ-
ities according to environmental changes.

A novel idea for water-saving irrigation and water-
resource saving globally is provided in this study, but
some shortcomings exist in this study. The hardness mea-
surement of soil in this experiment was insufficient. The
soil was only roughly divided into three categories, and
the measurement range of soil hardness was limited. In
the subsequent work, soil classifications in both China
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and around the world will be shown in detail, and the
measurement range of soil hardness will be further
expanded.
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