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Abstract: In this work, we propose the Ritz approxima-
tion approach with a satisfier function to solve fractal-
fractional advection—diffusion-reaction equations. The
approach reduces fractal-fractional advection—diffusion—
reaction equations to a system of algebraic equations;
hence, the system can be solved easily to obtain the numer-
ical solution for fractal-fractional advection—diffusion-reac-
tion equations. With only a few terms of two variables-shifted
Legendre polynomials, this method is capable of providing
high-accuracy solution for fractal-fractional advection-diffu-
sion-reaction equations. Numerical examples show that this
approach is comparable with the existing numerical method.
The proposed approach can reduce the number of terms of
polynomials needed for numerical simulation to obtain the
solution for fractal-fractional advection-diffusion-reaction
equations.

Keywords: fractal-fractional derivative, Ritz approxima-
tion, satisfier function, fractional advection—diffusion-reac-
tion equations, two variables-shifted Legendre polynomials

1 Introduction

Advection—diffusion-reaction equation is an important
class of partial differential equations that have been used
to model various physical processes, such as transport dis-
sipative particle dynamics model for simulating mesoscopic
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problems [1], in anisotropic media [2], transport of chemical
constituents in the Earth’s atmosphere [3], bimolecular
chemical reactions [4], Brusselator system [5], rubella
epidemic [6], tuberculosis transmission modeling [7],
COVID-19 mathematical modeling [8] and many more.

This advection—diffusion-reaction equation has been
extended to include the fractional derivative, which is
called the fractional advection—-diffusion-reaction equa-
tion. The researchers found that the fractional derivative
model was able to describe the transport problems in
Earth surface sciences, which include collective behavior
of particles in transport [9], heat and mass transfer [10],
and the study of the dynamics of cytosolic calcium ion in
astrocytes [11]. In this research direction, Caputo frac-
tional derivative is the most common fractional derivative
that has been used in this fractional advection-diffu-
sion-reaction equation.

Different from most established work, in this work,
we intend to study the fractional advection—-diffusion—
reaction equation in the fractal-fractional sense as follows:

FFMD;"’ﬁu(x, t) = kDJu(x, t) + 1DIu(x, t)
+ O(ux, t)) + f(x,t), 0<x, t<1,
u(x, 0) = fo(x), ulx, 0) = fi(x),
u(0,t) = go(), u@,t)=g(), 0<x<1,

1)

where0 <m; <1,1<m; <2, kK, and ¥ > O are the char-
acteristics speed in advection process and diffusion coef-
ficient, respectively. FFMD{X’B is the fractal-fractional dif-
ferentiation operator of order (a, ) (where 0 < a, 8 < 1)
with respect to t in the sense of Atangana—Riemann-Liouville
[12,13], and ®(u(x, t)) is some reasonable nonlinear function
of u(x, t), which may represent reaction process. The frac-
tional derivatives for DJ and D;® are defined in Caputo sense.
However, to solve the problem as in ref. [14], one can define
the D™ as B“D™, where ABC denotes Atangana-Baleanu
Caputo derivative. This fractional advection—diffusion—
reaction equation in the fractal-fractional sense was proposed
in ref. [14], while the fractional advection—diffusion—reaction
equation’s specific applications are discussed in refs [15-17]
and the real-world interpretations of this fractal-fractional
application are discussed in refs [18-21].
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The fractal-fractional derivatives have been found very
useful in many science and engineering applications, such
as in modeling anomalous diffusion processes [22]. Researchers
found that phenomena that are inherent in abnormal exponen-
tial or the phenomena with heavy tail decay processes are
best described in the fractal-fractional derivatives [23].
Recently, this combination of fractal-fractional derivative
was again shown by Atangana [12,13] that this kind of
derivative takes into account not only the memory effect
but also other characteristics, such as the heterogeneity,
elasco-viscosity of the medium, and the fractal geometry of
the dynamic system. In this research direction, fractal-
fractional derivatives have been used in many phe-
nomena, such as reaction-diffusion model [18], modeling
bank data [19], Shinriki’s oscillator model [20], and
malaria transmission model [21].

On top of that, numerical methods are always needed
to solve fractional calculus problems that arise in engi-
neering applications [24-28]. Furthermore, the differential
equations that arise from the modeling process, especially
in science and engineering applications involving fractal-
fractional operators, are often very complex, especially
when we intend to obtain their analytical solution. Hence,
numerical methods are more applicable and suitable for
solving fractal-fractional differential equations. Some
numerical methods have been derived to tackle this pro-
blem, such as Chebyshev polynomials for solving the
model of the nonlinear Ginzburg-Landau equation in a
fractal-fractional sense [29], the Crank-Nicolson finite dif-
ference scheme is extended to solve the fractal-fractional
Boussinesq equation [30], and a numerical method based
on the Lagrangian piece-wise interpolation is used to
obtain the solution of variable-order fractal-fractional
time delay equations [31]. Besides that, the wavelet-based
approximation method was used for solving the coupled
nonlinear 2D Schrédinger equations in a fractal-fractional
sense [32]. Different from the existing methods for solving
fractal-fractional differential equations, here we extend
the Ritz method to obtain the solution of these fractal-
fractional differential equations. More specifically, we
use the Ritz approximation approach to solve the fractal-
fractional advection—diffusion-reaction equation as in Eq.
(1). The approach is very easy to use and able to give high
accuracy numerical solutions.

The Ritz approximation approach had been used in
solving considerable problems previously. Among those,
Rashedi et al. used the Ritz-Galerkin approach to handle
inverse wave problem [33]. Apart from this, the satisfier
function was used in Ritz—Galerkin for the identification
of a time-dependent diffusivity [34], the Ritz approxima-
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tion has also been applied to solve some fractional partial
differential equations [35,36]. Exact and approximation
solutions of the heat equation with nonlocal boundary
conditions were found in ref. [37] using the Ritz—Galerkin
method with Bernoulli polynomials as the basis. Besides
that, Genocchi polynomials had been used in the Ritz—
Galerkin method for solving the fractional Klein—Gordon
equation and fractional diffusion wave equation [38].
Here, for the first time, we propose to use this Ritz
approximation approach to solve the fractal-fractional
advection—diffusion-reaction equation as in Eq. (1). Apart
from this, two variables-shifted Legendre polynomials,
which were derived by Khan and Singh [39], will be used.
This is different from two-dimensional-shifted Legendre
polynomials. In short, the main objective of this article is
to solve the fractal-fractional advection—diffusion-reaction
equation using the Ritz approximation via two variables-
shifted Legendre polynomials.

The rest of the article is organized as follows: Section 2
provides the basic definitions and notations for fractal-
fractional derivative and two variables-shifted Legendre
polynomials. Section 3 presents the main tool that is
used in this article, which is the Ritz approximation and
satisfier function for solving fractal-fractional advection—
diffusion-reaction equations. Error analysis will also be
presented. Section 4 gives some numerical examples to
show that the approach is better than some existing
methods. Section 5 gives summary and recommendation
for future work.

2 Preliminaries

2.1 Fractal-fractional derivative

In this section, we will briefly present some basic defini-
tions related to fractal-fractional derivative.

Definition 1. The Mittag-Leffler function

o k
E (x) = kzz)ﬁ, where Re(a) > 0,
N (@)
E p(x) = kzzom, where Re(a), Re(b) > 0.

Definition 2. The fractal-fractional derivative of order
(a, B) of the continuous function f(x) in the Atangana-
Riemann-Liouville sense with Mittag—Leffler kernel [12]
is given as follows:
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M(a) d

FEMD)BE () = J.f(t)E( —a(x — t)* )dt
-a
3)

3 M(a)x'-# alx — t)*
- If(t)E (7{1 )dt

where a, § € (0, 1), M(a) is a normalization function with
MO)=MQ) =1,and M(@) =1 - a + %

Lemma 1. The fractal-fractional derivative of order 0 < a, § < 1
for f(x) = xP can be defined as follows:

FMpayp - _M(@) Z (-Diaip!x@i+p+1-p
i BA- &0 -alGa+p+1)

(%)

Proof. By using Definition in Egs. (2) and (3),

i t)m
F(za +1)

1-
FRMpa s, M@OX

il B - ) O D

M@ d
dX i=0
M(a)x!#

M@ d [ (D= 0F
Bl - a) dx

= a- a)T(ia + 1)

(5)

Iz
I

_ M@x*d ¥ (_1)]“1_[) tP(x — t)udt
S BA-a) dx &

’

(1 - a)T(ia +1)

)mdt T(ai + 1)p ! x%i+p+1
- I(ai+p+2)

and knowing that JZ tP(x — , We obtain

T(ai + 1)p ! xd+p+1

M@x# d & (-Da T@i+p+2)
B - a) dx = (- a)T(a +1)
M(a)xl—ﬁi © (_1)iaip!xai+p+1
BA - a) dx S (1 - a)T(a + p + 2)
_ M(OOX1 o (-
- pa- Z
M(a2)
Bl -a) = Z

FEMpaByp

- )
Dia'p!(ai + p + Dx*+P
(1 - a)T(ia +p + 2)

( 1)ia'plxm‘+p+l—/3

51 - a)T(la+p +1)

Eq. (6) can also be written in Mittag—Leffler form, as
shown in ref. [29].

2.2 Two variables-shifted Legendre
polynomials

The Legendre polynomials, L,(x), can be defined as the
coefficients in a formal expansion in powers of t of the
generating function as follows:

Fractal-fractional advection—diffusion-reaction equations by Ritz approximation approach =— 3

= Y La(ot". (7)

n=0

S S
N1 = 2xt + t2

There are few different ways for the extension of this
Legendre polynomials L,(x, y) (or shifted Legendre poly-
nomials, By(x, y)) in several variables, such as

(1) Two-variable Legendre polynomials [40]

= Y L(x, yt". (8)

n=0

1
J1—2xt + yt?

(2) Two-dimensional-shifted Legendre polynomials are
defined as [41,42] follows:

Bi(x,y) = BOO)P(y). )
(3) Two variables Legendre polynomials [39]

1
J1-2xs + 52 -

= > ) Lox(x, y)s'tk(10)

t+ 2 Tokoo

The significant advantage for the two variables Legendre
polynomials derived by Khan and Singh [39] in 2010 is
that the polynomials can be obtained via generating func-
tion in two variables form as shown in Eq. (10). Here, we
apply the definition of two variables Legendre polynomials
derived by Khan and Singh [39] to define the two variables-
shifted Legendre polynomials, B, x(x, y), as follows:

1
\/1—2(2)(—1)s+sz—2(2y—1)t+t2

Y Y Bukx, y)sttk,

n=0k=0

(11)

As discussed in Section 3 of ref. [39], we have the fol-
lowing analytical expression for two variables-shifted
Legendre polynomials.

k
[E](w)n‘i’k r— ](4X 2)" 2’(4)/ 2)k 2]( 1)”1 (12)

rji(n — 2r)!(k — 2j)!

where (12)n.k-r-; denotes the falling factorial. When
k=0, we have B, o(x, y) = B(x), where P, (x) is the well
known shifted Legendre polynomials. These two vari-
ables-shifted Legendre polynomials also can be
expressed in terms of hypergeometric function as follows:

B i(x, y)
_ 2 K(R2)n (20 - DMy - DF
n'k!
-n 1-n_-k 1-k, (13)
« FO.L1 N 2 2 27 2 ’;;
L0001 —on -2k @ -12Qy-12|
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For function f(x, y) = x%® with a and b as positive inte-
gers, it is easy to see that it can be obtained via

Y Y cuiBuix, ),(14)

n=0k=0

_ yayb _ 1
Jey) =Xy = o+ D)

where

[} [1£ 06 )P, yydxdy

= : (15)
[, J, B, yRur, y)dxdy

Cn,k

3 Ritz method

3.1 Ritz approximation approach and
satisfier function for fractal-fractional
advection—diffusion-reaction equation

In this Ritz approximation approach, we use two variables-
shifted Legendre polynomials P, 4(x, t), as explained in
Section 2 and the approximate solution u(x, t) for fractal-
fractional advection—diffusion-reaction Eq. (1) is denoted
as ti(x, t). Hence, we have

M M
GG 1) =Y Y Kpgwpg(x, t) + {(x, 1),

p=0g=0
(x, t) € [0,L] x [0, T],

(16)

where wpq(x, t) = x(x — L)t?P, 4(x, t) and the satisfier func-
tion is represented by { (x, t). Py, 4(x, t) denotes two variables-
shifted Legendre polynomials, and K, is the coefficient that
needs to be calculated. The main purpose of using the satisfier
function is that the satisfier function satisfies all the initial and
boundary conditions.

Based on the initial and boundary condition as in Eq.
(1), the satisfier equation, {(x, t) can be found using the
following procedure:
Step 1: First, we find

0,0 = (1 FJa(®) + 75,0 a7
Step 2: Next, we determine
Fo(x) = fo(x) - ¢(x, 0), 18)
F() = () - ¢(x, 0).
Step 3: Calculate
R(x, t) = Fy(x) + tFi(x). (19)
Step 4: Finally, we determine
C(x,t) = R(x, t) + o(x, t). (20)
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Furthermore, the coefficients K,, in Eq. (16) can also
be calculated by using the following inner product as
follows:

(F(@1), Byq(x, 1)) =0, (21
where
F(ii) = F™MD®Aii(x, t) — iDMii(x, t) 2
- 1D7(x, t) — O((x, 1)) - f(x, t)
and
LT
(F(@), Pygx, £)) = ”F(a)Pp,q(x, Hdedx,  (23)
00

where P, ,(x, t) are the two variables-shifted Legendre
polynomials. A linear system of equations can be formed
by using Eq. (21). Solving this linear system, we can obtain
the entries of K,, where p=0,...,M,andq =0,..., M.
Hence, by putting the value obtained for K, into Eq.
(16), we can obtain the approximate solution for fractal-
fractional advection—diffusion-reaction equation in (1).

3.2 Error analysis

Lemma 2. Let the solution of fractal-fractional

advection—-diffusion-reaction equation is u(x,t),
where  u(x,t) € C™10,1] x [0,1], suppose Y=
span{Py (), Pm(X),..., Bum(O} ¢ I?[0,1] and Y'=
span{Py u(t), Pum(t),..., Bum(t)} ¢ L}[0,1]. We have

um(x, t) = Y x Y' is the best approximation of u(x, t) by
means of two variables-shifted Legendre polynomials,
the error bound is given as follows:

M J§2m+1

(m+D!J2m+3)(m+2)

Proof. By using the Taylor series, we have

lulx, t) — um(x, )l <

(24)

(o)

u(x, t) = z

j=0 )

1 R} oY
7'[(x - a)& + (t - b)a—t] u(x, t) (25)

For simplicity, leta = b = 0, and in practical, we estimate
u(x, t) up to m order as follows:
0

i
X— + ti] u(x, t).

x ot (26)

w1
Un(X, £) = )~
j=ol"

Since u,(x, t) is the best approximation u(x, t) out of
Y x Y’, we have
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Table 1: Absolute errors obtained by proposed method with
M = 2, 3 for Example 1 for 6 = 0.5

(x, t)

Exact

Abs. error, M = 2

Abs. error, M =3

0.1, 0.1)
0.2,0.2)
0.3,0.3)
0.4, 0.4)
0.5, 0.5)
0.6, 0.6)
(0.7, 0.7)
(0.8, 0.8)
(0.9, 0.9)

(
(
(
(
(
(

0.00000081
0.00016384
0.00321489
0.02359296
0.09765625
0.26873856
0.51883209
0.67108864
0.43046721

9.85884 x 1075
7.45007 x 107
4.95369 x 1073
3.82750 x 1073
1.70405 x 1072
4.86057 x 1072
5.01841 x 1072
5.28156 x 1073
7.89781 x 1073

2.29895 x 1078
1.22948 x 1077
1.56609 x 1077
8.62400 x 1078
8.87000 x 1078
2.29700 x 10~/
3.15500 x 1077
1.92000 x 10~/
2.74000 x 1078

luCx, £) = um(x, Oz

m+1
__+téi
ot

where0 < &< xand0 <n

bound.

<

IN

m+1

m 1 ! [X

11
II((m+1)'
00

12

9 m+1 2
[ ™ t&] u({,n))dxdt

(T) am+1u(£’ n)trxmﬂfr

2 12

dxdt

r=0

O e
© t—_—

O e =
O C—

ool

M

Z (m + 1)!

((m + 1!
11

I(x + £ 2dxde

2
x+ t)’"*l) dxdt

12

\/—2m+1

m+1! Jom+3)m+2)

atraxm-ﬂ—r

(27)

< t, we obtain the above error
O

0.6

0.4

0.2

Figure 1: Diagram of the approximate solution for Example 1 using

M =3and 6 = 0.5.

t

3.x107

2.x107

1.x107

t

Figure 2: Diagram of the absolute error for Example 1 using M = 3
and 6 = 0.5.

4 Numerical examples

In this section, we solve two benchmark examples taken
from published work. Our calculation shows that the proposed
method is comparable with the published work. Here, we
conduct numerical experiments using Ritz approximation
via satisfier function as explained in Section 3 for solving
the fractal-fractional advection-diffusion-reaction equa-
tion. Here, we use Maple to perform all the computations.

Example 1. Consider a fractal-fractional advection—diffu-
sion—-reaction equation as in Example 3 [14]:

FEMD0.65.035, (y )
= ABCDOu(x, t) + CDMu(x, t) + sin(u(x, t))
+ sinQu(x, t)) + f(x, t), t<1,
u(x,0) =0, u(x,0)=0
u(0,t) =0, u(l,t)=0

0<x, (28)

Here, we refer the reader to Example 3 [14] for the long
expression of f(x,t). The exact solution is given by
u(x, t) = 100x“t*(1 - x)(1 - ¢).

Table 2: Comparison of the maximum absolute errors obtained by
proposed method with M = 2 for Example 2 with ref. [14]

m n MAE [14] M MAE (proposed method)

(@, B)

(0.75,0.25)
(0.75,0.5)

(0.45,0.35)
(0.65,0.35)

8.99969 x 1076
9.16790 x 107°
9.15874 x 107¢
9.12105 x 107¢

5.9238 x 106 2
7.0270 x 1076 2
2.5772 x 1076 2
4.3460 x 1076 2

NN NN
NN NN
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When 8 = 0.5, we obtained the numerical result as in
Table 1. In this example, we are using M = 2, which
means the two variables-shifted Legendre polynomials
is only up to quadratic power. The approximation solu-
tion is increasing in terms of accuracy as M is increased
to M = 3. The calculation is done by using Maple and
applying Lemma 2.4 and Corollary 2.5 in ref. [32] and
Corollary 2.5 in ref. [43]. Figures 1 and 2 show the graph
for the approximate solution and absolute error using
M = 3 for the Ritz approximation and 6 = 0.5 for Example 1.

Example 2. Consider a fractal-fractional advection—dif-
fusion-reaction equation as in Example 1 [14]:

FFMDf"ﬁu(x, t)
= 3ABCD,?'25u(x, t) + ZCD,l('%u(x, t)
+ exp(u(x, t)) + f(x,t), O<x, t<1,
u(x,0) =0, ux,0) = sin(x),
u(0,t) =0, u(l,t) = sin(1)sin(t).

(29)

Here, again, we refer the reader to Example 1 [14]
for the long expression of f(x, t). The exact solution is
given by u(x, t) = sin(x) sin(t). By using the procedure as
explained in Section 3.1, the satisfier function, {(x, t) is
x sin(1) sin(t) — tx sin(1) + t sin(x).

In order to obtain the numerical solution, we need
Lemma (2.4) as in ref. [32]. From the numerical result as
shown in Table 2, with only few terms of two variables-
shifted Legendre polynomials via Ritz approximation,
our proposed method is comparable with the method
via Berstein polynomials and its operational matrix as
in ref. [14], using more terms of polynomials. Similar to
Example 1, the calculation is done by using Maple and
applying Lemma 2.4 and Corollary 2.5 in ref. [32] and
Corollary 2.5 in [43].

5 Conclusion

In this article, we successfully used the Ritz approximation
approach to solve fractal-fractional advection—diffusion—
reaction equations via two variables-shifted Legendre
polynomials. With Ritz approximation, greatly reduces
the number of terms of polynomials needed for numerical
simulation to obtain the solution for fractal-fractional
advection—diffusion—reaction equations. With only few terms
of two variables-shifted Legendre polynomials, we were able
to obtain the numerical solution with high accuracy. The
proposed procedure can be easily extended to solve fractal-
fractional advection—diffusion—reaction equations in variable
order. Furthermore, we hope to extend the method to tackle
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the inverse problems related to fractional partial differential
equations such as those in ref. [44-46], or more complicated
scenarios and problems, such as those in ref. [47].
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