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Abstract: The attachment oscillator, which plays an impor-
tant role in the nanophysics such as nano/microelectro-
mechanical systems, molecular devices, and nanofibers, is
studied in this work. With the help of the semi-inverse
method, the variational principle is established, and the
Hamiltonian of the system is correspondingly constructed
based on the obtained variational principle. Then, according
to the principle of energy conservation, the energy balance
theory is implemented to seek for the amplitude–frequency
relationship. As predicted, the obtained solution has a good
agreement with the existing results, which shows that the
presented method is simple but effective, and is expected
to provide a new idea for the study of the nonlinear oscillator
arising in the nanophysics.
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1 Introduction

Many complex phenomena arising in nature, such as
thermodynamics [1–3], optics [4–10], water waves [11–13],
electronic circuit [14,15], and so on [16–19], can bemodelled
by nonlinear partial differential equations. As an interesting
phenomenon, nonlinear vibration occurs everywhere in our
daily life and how to determine the amplitude–frequency
relationship has always been the focus of research. The
amplitude–frequency relationship can help us better under-
stand the nature of vibration. Up to now, some effective
methods have been proposed to inquire into the nonlinear
vibration such as homotopy perturbation method (HPM)
[20–26], variational method [27,28], variational iteration

method [29,30], Hamiltonian-based method [31–33],
Gamma function method [34], He’s frequency formula
[35–37], average residual method [38], and others [39].
In this study, we will pay attention to the attachment
oscillator which reads as [40]:
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with the following conditions:
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Eq. (1.1) is used to express the molecular oscillation
induced by geometrical potential during electrospinning
to produce the nanofibrousmembranes and plays an impor-
tant role in the nanotechnology, especially in nano/micro-
electromechanical systems and molecular devices.

For λ 02 = , Eq. (1.1) becomes the classic Duffing oscil-
lator as:
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Eq. (1.1) has been studied by the residual theory in ref.
[40]. In ref. [41], the HPM is employed to find the frequency–
amplitude formulation. Here in this work, we apply the
energy balance theory (EBT) to study it. The rest of this
article is organized as follows. In Section 2, the variational
principle is established via the semi-inverse method and
Hamiltonian is constructed. In Section 3, the EBT is adopted
to find the amplitude–frequency relation. Finally, the con-
clusion is reached in Section 4.

2 Variational principle and
Hamiltonian

The objective of this section is to construct the variational
principle and Hamiltonian of the system.

By means of the semi-inverse method [42–50], the
variational principle of Eq. (1.1) can be found as:
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which can be rewritten as:
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where 2.2R represents the kinetic energy andℵ indicates
the potential energy. They are obtained as follows [51]:
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Thus, the Hamiltonian of the system can be obtained as
[52,53]:
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Figure 1: Comparison of results of the two methods for =Π 1, =λ 11 , and =λ 0.52 .

Figure 2: Comparison of results of the two methods for =Π 1, =λ 21 , and =λ 12 .
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3 Application of the EBT

In this section, the EBT will be used to seek for the ampli-
tude–frequency relation.

Here we can suppose the solution of Eq. (1.1) as:

φ t Π Ωtcos ,( ) ( )= (3.1)

where Π represents the amplitude and Ω represents the
frequency.

Based on the conditions given by Eq. (1.2), we can
determine the Hamiltonian constant of the system as:
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On the basis of the EBT, the energy of the system remains
constant throughout the whole process of the vibration,
so substituting Eq. (3.1) into Eq. (2.5), there should be:
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which is
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We can set [54]:
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Thus, Eq. (3.4) becomes
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On solving it, we can obtain the amplitude–frequency
relationship as:
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which has a good agreement with results given in ref. [41]
by using the HPM.

By using Π 1= , λ 11 = , and λ 0.52 = , we compare the
results of the EBT and HPM in Figure 1 with the help of
MATLAB, from which, we can find a good agreement
between the two methods. The results reveal the correct-
ness and effectiveness of our method.

If we select Π 1= , λ 21 = , and λ 12 = , the comparison
of results of the two methods is presented in Figure 2. A
good agreement is also reached in this case. Thus, we can
confirm that the EBT is correct and effective.

4 Conclusion

In this article, the attachment oscillator is studied by
using the EBT, which is based on the variational principle
and Hamiltonian theory. The frequency–amplitude rela-
tion is obtained and a comparative analysis between the
proposed method and the existing results is presented.
The results show that the presented method is simple but
effective and is expected to provide a new idea for the
nonlinear oscillator theory arising in the nanophysics.
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