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Abstract: In this article, we used a novel semi-analytical
approach, named the optimal auxiliary function method
(OAFM), to solve integro-differential equations (IDEs). The
OAFM includes an auxiliary function and convergence con-
trol parameters, which expedite the convergence of the
method. To apply the proposed method, some assumptions
regarding small or large parameters in the problem are
necessary. We present numerical outcomes acquired via
the OAFM alongside those obtained from other numerical
techniques in tables. Furthermore, we demonstrate the
efficacy and ease of implementing the proposed method
for various IDEs using 2D graphs.

Keywords: optimal auxiliary function method, exact solu-
tions, Fredholm integro-differential equations

1 Introduction

The integral equations are of utmost importance in various
domains of science and technology, with applications ran-
ging from electromagnetics to fluid mechanics. The articles
[1,2] highlight the importance of integral equations in

various fields. However, finding exact solutions to non-
linear integral equations is a challenging task, and
researchers often rely on approximate analytical methods
to solve these problems. The development of these methods
has enabled scientists and engineers to make significant
progress in their respective fields and has led to the dis-
covery of new solutions and phenomena. Therefore, the
study of integral equations and their solutions is crucial to
advancing our understanding of the natural world and
developing new technologies.

A variety of techniques have been developed to solve
challenging problems across various scientific and engi-
neering domains. These methods include the Haar function
approach [3], the homotopy perturbation method [4,5], the
reproducing kernel method [6], the Kudryashov method
[7], the modified variational iteration algorithm-II [8–11],
the Adomian decomposition method [12], the fixed-point
method [13], the use of Genocchi polynomials [14], mesh-
less methods [15–19], the differential transformation tech-
nique [20], the Chebyshev wavelets technique [21], the Sinc-
collocation method [22], the reproducing kernel Hilbert
space methodology [23], and other techniques [24–30].
Each of these methods has its unique advantages and lim-
itations. For instance, perturbation methods are useful for
tackling problems with small or large parameters, but they
may fail to capture the behavior of the system in the pre-
sence of extreme changes. On the other hand, numerical
methods provide accurate solutions to complex problems,
but they may encounter issues related to discretization.
Therefore, it is crucial to select an appropriate artificial
parameter assumption when using these methods to solve
the equation. The choice of a parameter assumption deter-
mines the efficacy and accuracy of the method used to
solve the problem. In summary, researchers must weigh
the pros and cons of each method carefully and select the
most appropriate technique for their specific problem.

Another technique known as the optimal auxiliary
function method (OAFM) has been proposed in the same
research domain in this study. Unlike perturbation and
numerical methods, this method does not require any
assumptions regarding small or large parameters or
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discretization. The approach in the study by Marinca and
Herisanu [31] was applied to obtain a series solution for the
thin-film flow of a fourth-grade fluid down a vertical
cylinder. Subsequently, Zada et al. expanded the applica-
tion of the method to include partial differential equations
that pertain to shallow water waves [32]. As a result of the
modifications, the technique provides a series solution
after just one iteration.

The structure of this article is outlined in the following
paragraphs. In Section 2, the recommended method is
introduced, along with a discussion of its convergence ana-
lysis. Section 3 details the application of this method to var-
ious Fredholm integro-differential equations (IDEs), and in
Section 4, the numerical and graphical results of OAFM will
be showcased.

2 Methodology

To apply the OAFM to solve general IDEs, one can follow
the steps outlined in the following [31,32]. Consider the
following equation as:

∫′ = + = =F η g η Κ η τ F τ τ F F, d 0, 0 ,

a

b

0
( ) ( ) ( ) ( ) ( ) (1)

where K η τ,( ) is the kernel, g η( ) is a source term, and F η( )

is an unknown function that can be determined. Similarly,
a and b are the lower bound and upper bound of the
integral sign.

For the sake of simplicity, we replace some terms in
Eq. (1) with the following expression:
• Here,

η

d

d

can be replaced by L.

• ∫ Κ η τ F τ τ, d

a

b

( ) ( ) can be replaced by N F η( ( )).

Therefore, Eq. (1) can be expressed in the following
manner:

= + =L F η g η N F η 0.( ( )) ( ) ( ( )) (2)

Step 1: To obtain a series solution for Eq. (2), we con-
sider a solution that comprises two components in the
following form:

= + =F η F η F η C i p˜
, , 1, 2, 3,… .i0 1

( ) ( ) ( ) (3)

Step 2: Using OAFM, we can obtain the zero-order and
first-order solutions by inserting Eq. (3) into Eq. (2):

+ + + =L F η L F η C g η N F η, 0.i0 1 0
( ( )) ( ( )) ( ) ( ( )) (4)

Step 3: The following linear equations can be used to
obtain the initial approximation and the first value:

+ = =L F τ g τ F0, 0 0,
0 0

[ ( ) ( )] ( ) (5)

+ + = =L F τ C N F τ F τ C F τ, , 0, 0.i i1 0 1 1
( ( )) ( ( ) ( )) ( ) (6)

Step 4: Therefore, the nonlinear expression in Eq. (6)
can be expressed as:

∑+ = +
=

∞

N F η F η C N F η
F

k
N F η,

!

i

k

k

0 1 0

1

1

0
( ( ) ( )) ( ( )) ( ( ( ))) (7)

Step 5: Upon examining Eq. (7), it becomes apparent
that it poses certain difficulties. To address this issue,
we explore an alternative expression for Eq. (7) that can
be readily solved. Specifically, we consider the following
expression:

+ + =

=

L F η C Δ F η N F η Δ F η C

F

, , 0,

0 0.

i j1 1 0 0 2 0

1

( ( )) ( ( )) ( ( )) ( ( ) )

( )
(8)

Remark 1. Here, we consider two auxiliary functions, Α
1

and Α
2
, which are dependent on both the initial approxi-

mation F η
0
( ) and a set of unknown parameters Ci and

Cj, =i 1, 2, 3... , = + +j s s p1, 2,… .

Remark 2. The auxiliary functions Δ
1
and Δ

2
can take on

various forms and may be similar to the form of F η
0
( ),

the form of N F η
0

[ ( )], or a combination of both F η
0
( )

and N F η
0

[ ( )].

Remark 3.
• If either F η

0
( ) or N F η

0
( ( )) is a polynomial function, then

the auxiliary functions must be the sum of polynomial
functions.

• If either F η
0
( ) or N F η

0
( ( )) is an exponential function,

then the auxiliary functions must be the sum of expo-
nential functions.

• If either F η
0
( ) or N F η

0
( ( )) is a trigonometric function,

then the auxiliary functions must be the sum of trigono-
metric functions.

• When =N F η 0
0

( ( )) , it can be deduced that F η
0
( ) will be

an exact solution for Eq. (4).

Step 7: Various numerical methods have been devel-
oped to identify the appropriate values of convergence
control parameters Ci. These methods include the least-
squares method, collocation method, the Ritz method,
and the Galerkin method. In this study, the least-squares
method is used to minimize the errors and compute the
values of convergence control parameters numerically.

∫=J C R ηd .i

0

1

2( ) (9)
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The symbol “R” is used to represent the residual in the
following equation:

= ′ + + =R η C F η g η N F η i n,
˜ ˜

, 1, 2,… .i( ) ( ) ( ) ( ( )) (10)

3 Implementation of OAFM

In this section, we examine the effectiveness of our pro-
posed approach for solving IDEs. To demonstrate the accu-
racy and efficiency of our method, we present both numer-
ical and graphical results. To simplify the process, we used
Mathematica 10 (Figures 1–4).

3.1 Example 1

The linear Fredholm IDE can be expressed as [33]:

∫′ + = − + =−F η F η F τ τ F
1

2

e 1 d , 0 1.

2

0

1

2( ) ( ) ( ) ( ) ( ) (11)

Having exact solution,

= −F η e .

η( ) (12)

The linear and nonlinear terms in Eq. (11) are pre-
sented as follows:

∫

= ′ +

= − = − −−

L F F η F η

N F F τ τ g η

,

d ,

1

2

e 1 .

0

1

2 2

( ) ( ) ( )

( ) ( ) ( ) ( )
(13)

The initial approximate F η
0
( ) is obtained from Eq. (5):

′ + − − = =−F η F η F η
1

2

e 1 0. 1.
0 0

2

0
( ) ( ) ( ) ( ) (14)

The solution for Eq. (14) is written as follows:

= − − +− − +F η
1

2

e 1 3e e e .

η η η
0

2 2 2( ) ( ) (15)

Upon substituting Eq. (15) into Eq. (13), the nonlinear
term is transformed into:

∫= −N F η F τ td .
0

0

1

0

2[ ( )] ( ) (16)

Eq. (8) gives the first approximation of F η
1
( ):

Figure 1: First-order OAFM’s absolute error for Problem 1.

Figure 2: Residual obtained by the first-order OAFM for Problem 1.

Figure 3: First-order OAFM to calculate the absolute errors for
Problem 2.

Figure 4: Residual resulting from the application of the first-order OAFM
technique to Problem 2.

Solving Fredholm integro-differential equations by new algorithm  3



′ + +

= =

F η Δ F η N F η Δ F η C

F

,

0, 0 0.

j1 1 0 0 2 0

1

( ) ( ( )) [ ( )] ( ( ) )

( )
(17)

Based on the properties of the nonlinear operator, the
appropriate selections for Δ

1
and Δ

2
are made as follows:

⎧
⎨
⎩

= + +
= −

− − −

−

Δ C C η C η

Δ C η

e e e ,

e .

η η η

η

1 1 2 3

2 2

2 4

3 3

( ) ( ) ( )

( )
(18)

Substituting Eqs. (15) and (18) into Eq. (17), we obtain
the first approximation as:

=

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

− +
− + −

− + −

− −

+
−

−
−

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

−

F η C

C C

C C ηC

C C ηC

η C C

C

ηC

η C

η C

,

0.2910006975906242e e e

e e e

0.25e 0.25e 0.5e

0.5e 0.2545494725180366e

0.2545494725180366e

0.7636484175541097e

1.1454726263311648e

1.1454726263311645e

.i

η η η

η η η

η η η

η η

η

η

η

η

1

4 3

1

4

1

3

2

4

2

3

2

2.

3

4.

3

2

3

2 2

3 4

4

4

4

2

4

3

4

( )

(

)

(19)

The first-order approximate solution can be obtained
by adding Eqs. (15) and (19), resulting in:

= +F η F η F η C C C C˜
, , , , .

0 1 1 2 3 4
( ) ( ) ( ) (20)

In order to determine the values of unknown para-
meters, we used the least-squares method. The convergence
control parameter numerical values pertaining to Problem 1
are displayed in the following. By using these values within

Eq. (20), we obtained an approximate solution of first-order
(Tables 1–3):

= = − ×
= ×

= − ×

−

−

−

C C

C

C

1.4856746460109285, 1.6556793446784177 10 ,

9.956020463982691 10 ,

and 4.547365481306824 10 .

1 2

11

3

11

4

11

3.2 Problem 2

The linear Fredholm IDE can be represented as [33]:

∫′ = − − + =− −F η η e η τ F τ τ F2e 1 d , 0 1.

η2 1

0

1

2( ) ( ) ( ) ( ) ( ) (21)

Having exact solution,

= −F η e .

η( ) (22)

The linear and nonlinear terms for Eq. (21) are pro-
vided in the following:

∫= ′ = −

= − − +− −

L F F η N F η τ F τ τ

g η η

, d ,

2e 1 e .

η

0

1

2

2 1

( ) ( ) ( ) ( ) ( )

( ) ( )

(23)

To obtain the initial approximation F η
0
( ), Eq. (5) is used:

′ − − + = =− −F η η F2e 1 e 0, 0 1.

η
0

2 1

0
( ) ( ) ( ) (24)

The solution to Eq. (24) can be expressed as:

Table 1: In Problem 1, the first-order solution of the OAFM is compared with the exact solution, and the absolute errors from the OAFM are compared
with those of the semi-orthogonal B-spline wavelets method, with varying values of η

η OHAM solution Exact solution Kernel Hilbert space method [33] Absolute error OAFM

0.16 0.852144 0.852144 5.51442 × 10−7 1.52656 × 10−15

0.32 0.726149 0.726149 8.40507 × 10−7 6.20337 × 10−15

0.48 0.618783 0.618783 1.14152 × 10−6 2.498 × 10−16

0.64 0.527292 0.527292 7.78753 × 10−6 6.30052 × 10−15

0.8 0.449329 0.449329 8.17887 × 10−6 7.35523 × 10−15

0.96 0.382893 0.382893 1.29618 × 10−5 2.33147 × 10−15

Table 2: In Problem 2, the accuracy of the OAFM is evaluated by comparing its first-order solution with the exact solution. Furthermore, the absolute
errors obtained from the OAFM are compared with those from the kernel Hilbert space method, while varying a parameter η

η OAFM solution Exact solution Kernel Hilbert space method [33] Absolute error OAFM

0.16 0.852144 0.852144 1.61428 × 10−8 1.28272 × 10−8

0.32 0.726149 0.726149 3.04839 × 10−8 9.64626 × 10−9

0.48 0.618783 0.618783 4.33347 × 10−8 4.7838 × 10−9

0.64 0.527292 0.527292 5.49647 × 10−8 1.56199 × 10−8

0.8 0.449329 0.449329 6.56068 × 10−8 6.8857 × 10−9

0.96 0.382893 0.382893 7.54625 × 10−8 1.42266 × 10−8
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= − +−F η
η η

e

3

2

3e

.

η
0

3 3

( ) (25)

By inserting Eq. (25) into Eq. (23), the nonlinear com-
ponent is transformed into:

∫= −N F η η τ F τ τd .
0

0

1

2

0
[ ( )] ( ) ( ) (26)

Eq. (8) provides the initial estimate or first approxima-
tion F η

1
( ):

′ + +

= =

F η Δ F η N F η Δ F η C

F

,

0, 0 0.

j1 1 0 0 2 0

1

( ) ( ( )) [ ( )] ( ( ) )

( )
(27)

Choosing Δ
1
and Δ

2
, based on the nonlinear operator,

⎧

⎨
⎪

⎩⎪

= + + +

+
= −

− − − −

−

Δ C C η C η C η

C η

Δ C η

e e e e

e ,

.

η η η η

η

1 1 2 3

2

4

3

5

4

2 6

3

( ) ( ) ( ) ( )

( )

( )

(28)

Using Eqs. (25) and (28) into Eq. (27), we obtain the first
approximation as:

=

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

− + +
+ + −

− −
− − +

+ + + + +

+ + +

+ + + +

+ + +

+ −

+ + +

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

−

F η C

C C C

C C C

C C

C C C η

C η C η C η C η C η

C η C η C

η C η C η C η C η

C η C η C η

C η C η

C η C η C η

,

0.246625043146641e 2 6 24

120 720 2 e

6.000000000000001 e 24 e

120 e 720 e 2

6 24 120 720

3 12 60

360 4 20

120 5

30 1.0136845667021426 e

6

.i

η

η

η η

η η

η

1

1 2 3

4 5 1

2 3

4 5 1

2 3 4 5 1

2

2

2

3

2

4

2

5

2

2

3

3

3

4

3

5

3

3

4

4

4

5

4

6

4

4

5

5

5

5

6

( )

(

)

(29)

The first-order approximate solution can be obtained
by adding Eqs. (25) and (29), resulting in:

= +F η F η F η C C C C C C˜
, , , , , , .

0 1 1 2 3 4 5 6
( ) ( ) ( ) (30)

To compute the unknown parameters, we used the
least–squares method. The convergence control parameters
were obtained using numerical values:

= =
= =
= =

C C

C C

C C

1.0716181266089877, 0.9236853396995555,

0.39757730004729536, 0.09242573846085574,

0.030962705288356332, and 0.03594407264216984.

1 2

3 4

5 6

The first-order approximate solution for Problem 2 can
be obtained by applying the values to Eq. (30).

3.3 Problem 3

The nonlinear Fredholm IDE [33] is as follows:

∫‴ = − − ′

= ′ = ″ = −

F η η η ητF τ τ

F F and F

sin d ,

0 1, 0 0, 0 1.

π

0

2

( ) ( ) ( )

( ) ( ) ( )

(31)

Having exact solution,

=F η ηcos .( ) ( ) (32)

The linear and nonlinear terms in Eq. (31) are pre-
sented as follows:

∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

= ‴

= − + ′

=

L F F η

N F η ητF τ τ

g η η

,

sin d ,

.

π

0

2

( ) ( )

( ) ( ) ( )

( )

(33)

We obtain the initial approximation F η
0
( ) from Eq. (5):

Table 3: Comparative analysis of the first-order OAFM solution with the exact as well as with the semi-orthogonal spline wavelet method with the
variation of η for Problem 3

η OAFM solution Exact solution Method in [34] Absolute error OAFM

0.0 1. 1. 0.0 0.
0.1 0.995043 0.995004 0.0 3.84199 × 10−5

0.2 0.980308 0.980067 4.63105000 × 10−4 2.41174 × 10−4

0.3 0.95593 0.955336 1.42980700 × 10−3 5.93344 × 10−4

0.4 0.921954 0.921061 2.94384300 × 10−3 8.93085 × 10−4

0.5 0.878348 0.877583 5.05241100 × 10−3 7.6591 × 10−4

0.6 0.825019 0.825336 7.80640100 × 10−3 3.16757 × 10−4

0.7 0.761826 0.764842 1.12606240 × 10−2 3.01612 × 10−3

0.8 0.688603 0.696707 1.54740510 × 10−2 8.10341 × 10−3

0.9 0.605172 0.62161 2.05100590 × 10−2 1.6438 × 10−2

1.0 0.511353 0.540302 2.64366750 × 10−2 2.8949 × 10−2
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′′′ + = = ′ = ′′ = −F η η F F F0. 0 1, 0 0, 0 1.
0 0 0 0

( ) ( ) ( ) ( ) (34)

The solution for Eq. (34) is written as follows:

= − −F η η η
1

24

24 12 .
0

2 4( ) ( ) (35)

The nonlinear term can be expressed by inserting Eq.
(35) into Eq. (33):

∫= − + ′N F η ητF τ τsin d .

π

0

2

( ) ( ) ( ) (36)

Eq. (8) provides an initial approximation F η
1
( ):

′′′ + + =

= ′ = ′′ =

F η Δ F η N F η Δ F η C

F F F

, 0,

0 1, 0 0, 0 0.

j1 1 0 0 2 0

1 1 1

( ) ( ( )) [ ( )] ( ( ) )

( ) ( ) ( )
(37)

Choosing Δ
1
and Δ

2
, based on the nonlinear operator,

⎧
⎨
⎩

= +
= −

Δ C η C η

Δ C

,

.

1 1

2

2

4

2 3

( ) ( ) (38)

Using Eqs (35) and (38) into Eq. (37), we obtain the first
approximation as:

=

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

−

+ −

+

−

−
+

+

+

−

+

+

−

+

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

F η

C

η C

η C η C

η η C

η η C

C

η C

η C

η C

η η C

η η C

η η C

η η C

η C

0.013422489166643006 894.0219545732162

74.50182954776801

894.0219545732162 cos

74.50182954776801 cos

447.0109772866081 sin

26820.658637196488

894.0219545732141

0.3571428571428571

26820.658637196488 cos

5364.131727439297 cos

74.50182954776801 cos

17880.439091464326 sin

894.0219545732162 sin

12.416971591294667 .

1

1

2

1

6

1 1

2

1

1

2

2

2

8

2

2

2

2

4

2

2

3

2

3

3

( )

(

( )

( )

( )

( )

( )

( )

( )

( )

)

(39)

The first-order approximate solution can be obtained
by adding Eqs. (35) and (39), resulting in:

= +F η F η F η C C C˜
, , , .

0 1 1 2 3
( ) ( ) ( ) (40)

To compute the unknown parameters, we used the
least–squares method. The convergence control parameters
were then obtained numerically:

= = −
=

C C

C

0.33393443948168094, 0.10972453346288534,

and 0.28046744091671133.

1 2

3

The initial solution of the first-order approximation
can be obtained by applying the values to Eq. (40).

4 Conclusion

The OAFM technique is used to address IDEs, including
those belonging to the family of IDEs. The numerical
results are compared with those obtained by the kernel
Hilbert space and other numerical methods used in the
literature. Based on the numerical and graphical findings,
it can be stated that the suggested approach offers several
benefits. First, the method is simple to execute and delivers
an approximate solution in a single iteration. Additionally,
the method comprises convergence control parameters and
auxiliary functions that regulate its convergence. There is no
requirement for assumptions regarding small or large para-
meters in the equation being solved. Furthermore, enhan-
cing the precision of the method is achievable by increasing
the number of convergence control parameters. Based on
the evidence presented, it appears that the method used in
this study is highly efficient and could potentially be applied
to address other complex, nonlinear problems encountered
in various scientific and technological domains.
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