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Abstract: In this article, a generalized Hirota–Satsuma
coupled Korteweg–de Vries (KdV) system is investigated
from the group standpoint. This system represents an inter-
play of long waves with distinct dispersion correlations.
Using Lie’s theory several symmetry reductions are per-
formed and the system is reduced to systems of non-linear
ordinary differential equations (NLODEs). Subsequently, the
simplest equation method is invoked to find exact solutions
of the NLODE systems, which then provides the solitary
wave solutions for the system under discussion. Finally,
we construct conservation laws of generalized Hirota–
Satsuma coupled KdV systemwith the aid of general multi-
plier approach.

Keywords: generalized Hirota–Satsuma coupled KdV
system, Lie’s theory, simplest equation method, conser-
vation laws, multiplier method

1 Introduction

Many physical phenomena in numerous disciplines, for
instance, plasma physics, engineering, relativity, fluid
and classical mechanics, control theory and geochem-
istry, are modeled by nonlinear evolution equations (NEEs).
For some of the recent work published in the literature,
see for example refs [1–11], in which conservation laws,
multi-soliton, bright, dark and Gaussons optical solutions
are presented. These equations are studied by various

scientists and engineers from different aspects. One of the
important aspects is the integrability of such NEEs. Because
of the importance of NEEs, in the last several decades, a
number of techniques were developed by researchers to
establish exact closed-form solutions of such NEEs. Some
of the predominant techniques that exist in the literature
include the sine-Gordon expansion method [12], Bäcklund
transformations [13], tanh–coth technique [14], inverse
scattering transform technique [15], Hirota’s bilinear tech-
nique [16], the homogeneous balance of undetermined
coefficient technique [17], Darboux transformation tech-
nique [18], simplest equation technique [19,20], extended
simplest equation technique [21], Kudryashov’s method
[22], bifurcation technique [23], the first integral method
[24], Lie’s theory [25–29] and F-expansion method [30].

It is common knowledge that the renowned Korteweg–
de Vries (KdV) equation [31]

u uu u6 0t x xxx+ + =

models the attributes of solitary waves. It was first for-
mulated as an equation that governed the shallow water
waves in channels. However, subsequently it was discov-
ered that it models an extensive variety of natural phe-
nomena, especially those demonstrating solitons and
travelling waves.

A coupled KdV system [32]

u u uu vv1
2

3 6 0,t xxx x x− + − = (1.1a)

v v uv3 0,t xxx x+ − = (1.1b)

was introduced by Hirota and Satsuma in 1981. In the
literature, this system is called the Hirota–Satsuma
coupled KdV system and portrays an interplay of two
long waves that has distinct dispersion relations.
Subsequently, the authors of ref. [33] introduced a gen-
eralized version of (1.1), called the generalized Hirota–
Satsuma coupled system of KdV equations (gHS-KdVes)
that are given by

u vw u uu3 1
2

6 0,t x xxx x1� ≡ − ( ) − ( − ) = (1.2a)
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v uv v3 0,t x xxx2� ≡ − + = (1.2b)

w uw w3 0.t x xxx3� ≡ − + = (1.2c)

This new system received a great deal of attention from
the researchers and has been extensively studied. For
instance, the decomposition technique [34], the modified
extended tanh function technique [35], the homotopy
analysis method [36], the differential transform method
[37] and the G G( ′/ )-expansion method [38] were utilized
to study the gHS-KdVes (1.2).

In this study, an entirely distinct approach is used to
investigate the gHS-KdVes (1.2). Lie’s theory combined
with the simplest equation technique is employed to find
explicit closed-form solutions of (1.2), Subsequently, con-
served quantities, using the general multiplier approach,
will be computed.

During the eighteenth and nineteenth century, one of
the fundamental problems of differential equations (DEs)
was to find their closed-form explicit solutions. Perhaps
the first explicit solution was the travelling wave solu-
tion of the second-order linear wave equation given by
d’Alembert in 1747. Fourier developed the separation of
variable method during his work on heat conduction pro-
blems. Likewise, several other eminent mathematicians
contributed to finding exact solutions to linear and non-
linear DEs of physics. S. Lie (1842–1899) and F. Klein
(1849–1925) worked on DEs from the point of view of
transformation groups that left the DEs unchanged.
However, Lie further went onto developing the theory
of continuous transformation groups and its applications
to DEs [25–29]. Today, Lie’s theory is widely used by
scientists to find exact closed-form solutions of DEs that
arise in countless fields of research. See for example
refs [5–11].

Conservation laws are pivotal in the investigation of
solutions to DEs. These are laws of nature that are expressed
as mathematical expressions. For instance, we have conser-
vation of momentum, energy, angular momentum, charge,
just to mention a few. Conservation laws have been utilized
to determine the existence, uniqueness and moreover,
stability of DEs. Conservation laws are exploited in the
investigation of numerical techniques and can also be
used in the reduction of order and solution process of
DEs [39–44].

This article is organized as follows. In Section 2, we
calculate symmetries and perform symmetry reductions
of gHS-KdVes (1.2) using Lie’s theory and according to
the optimal systems of one-dimensional Lie subalgebras
of (1.2). We then invoke the simplest equation technique
to obtain exact explicit solutions of (1.2). Thereafter, with

the aid of general multiplier method, conservation laws
are obtained in Section 3. Finally, in Section 4 we put
forward concluding remarks.

2 Symmetry reductions and exact
solutions

We first compute symmetry group of gHS-KdVes (1.2).
This is the classical group of point transformations of
the dependent and independent variables that map solu-
tions of (1.2) into new solutions of (1.2). Assume that the
symmetry group is generated by the vector field
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(2.3)

where the infinitesimals ξ1, ξ2, η1, η2, η3 depend on t, x,
u, v, w. The generator (2.3) is a point symmetry of (1.2) if
Lie’s invariance condition
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holds. Here 3�[ ] denotes third prolongation of � [28]. The
above three equations, on expanding, give a system of
linear PDEs, whose solution yields the following four
symmetries of (1.2):
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2.1 Optimal system of Lie subalgebras

We first determine optimal system of one-dimensional Lie
subalgebras for (1.2). The adjoint representations are
given by ref. [27]

Ad exp ϵ ϵ , 1
2

ϵ , , ,i j j i j i i j
2� � � � � � � �( ( )) = − [ ] + [ [ ]]−⋯

where ,i j� �[ ] denotes the commutator of i� and j� and is
defined as

, .i j i j j i� � � � � �[ ] = −
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After computing commutators of all symmetries of (1.2),
we display the results in Table 1. We then calculate
adjoint representations and display them in Table 2.

Using Tables 1 and 2, and following the method
described in ref. [27], we obtain optimal system of Lie
subalgebras as

a a a ν, , , , ,3 4 4 1 1 2 2 3 4 2 1 2� � � � � � � � �{ + + + + } (2.4)

where ν = ±1, a1, a2 and a4 are constants with a4 ≠ 0.

2.2 Symmetry reductions of (1.2)

We now use each element of the set (2.4) and reduce
gHS-KdVes (1.2) to ordinary differential equation (ODE)
systems.

Case 1. a3 4 4� �+

The symmetry a3 4 4� �+ provides the similarity
transformation

u t E ρ v t F ρ
w t G ρ

, ,
,

a a

a

2 3 1 4 3

1 3

4 4

4

= ( ) = ( )

= ( )

− / −( + )/

/

(2.5)

with ρ = t−1/3x as an invariant of a3 4 4� �+ . Substituting
these values of u, v, w from (2.5) into (1.2), we obtain
the ODEs

a E ρ G ρ a G ρ a ρG ρ G ρ
a E ρ F ρ a F ρ a ρF ρ F ρ a F ρ

E ρ E ρ E ρ ρE ρ E ρ G ρ F ρ
F ρ G ρ

9 3 0,
9 3 4

0,
3 18 2 4 18

18 0.

4 4 4

4 4 4 4

( ) ′( ) − ‴( ) + ′( ) − ( ) =

( ) ′( ) − ‴( ) + ′( ) + ( ) + ( )

=

‴( ) − ( ) ′( ) + ′( ) + ( ) + ( ) ′( )

+ ( ) ′( ) =

Case 2. a a1 1 2 2 3� � �+ +

The symmetry generator a a1 1 2 2 3� � �+ + provides
the similarity transformation

u E ρ v t a F ρ
w t a G ρ

, exp ,
exp ,

2

2

= ( ) = (− / ) ( )

= ( / ) ( )

(2.6)

where ρ = (a2x − a1t)/a2 is an invariant of a a1 1 2 2 3� � �+ +

and E, F and G solves

a E ρ F ρ a F ρ a F ρ F ρ
a E ρ G ρ a G ρ a G ρ G ρ

a E ρ a E ρ a E ρ E ρ a G ρ F ρ
a F ρ G ρ

3 0,
3 0,

2 6 6
6 0.

2 2 1

2 2 1

2 1 2 2

2

( ) ′( ) − ‴( ) + ′( ) + ( ) =

( ) ′( ) − ‴( ) + ′( ) − ( ) =

‴( ) + ′( ) − ( ) ′( ) + ( ) ′( )

+ ( ) ′( ) =

Case 3. 4�

The symmetry generator 4� furnishes us with simi-
larity transformation

u t E ρ v t F ρ w G ρ, , ,2 3 4 3
= ( ) = ( ) = ( )

− / − / (2.7)

where invariant of 4� is ρ = t−1/3x and E, F, G solve

E ρ G ρ G ρ ρG ρ
E ρ F ρ F ρ ρF ρ F ρ
E ρ E ρ E ρ ρE ρ E ρ G ρ F ρ

F ρ G ρ

9 3 0,
9 3 4 0,
3 18 2 4 18

18 0.

( ) ′( ) − ‴( ) + ′( ) =

( ) ′( ) − ‴( ) + ′( ) + ( ) =

‴( ) − ( ) ′( ) + ′( ) + ( ) + ( ) ′( )

+ ( ) ′( ) =

Case 4. 2�

The symmetry generator 2� provides ρ = x as an
invariant, and consequently, similarity transformation is

u E ρ v F ρ w G ρ, , ,= ( ) = ( ) = ( ) (2.8)

with E, F, G satisfying

E ρ E ρ E ρ G ρ F ρ F ρ G ρ
F ρ E ρ F ρ
G ρ E ρ G ρ

6 6 6 0,
3 0,
3 0.

‴( ) − ( ) ′( ) + ( ) ′( ) + ( ) ′( ) =

‴( ) − ( ) ′( ) =

‴( ) − ( ) ′( ) =

Case 5. ν 1 2� �+

Finally, the symmetry ν 1 2� �+ gives ρ = x − νt as an
invariant and hence the invariant solution is

u E ρ v F ρ w G ρ, , ,= ( ) = ( ) = ( ) (2.9)

where E, F, G solve

E ρ νE ρ E ρ E ρ G ρ F ρ
F ρ G ρ
2 6 6

6 0,
‴( ) + ′( ) − ( ) ′( ) + ( ) ′( )

+ ( ) ′( ) =

(2.10a)

Table 1: Commutators of Lie algebra of (1.2)

1� 2� 3� 4�

1� 0 0 0 1�

2� 0 0 0 3 2�

3� 0 0 0 0

4� − 1� −3 2� 0 0

Table 2: Adjoint commutators of Lie algebra of (1.2)

1� 2� 3� 4�

1� 1� 2� 3� −ϵ 1 4� �+

2� 1� 2� 3� −3ϵ 2 4� �+

3� 1� 2� 3� 4�

4� eϵ
1� e3ϵ

2� 3� 4�
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E ρ F ρ F ρ νF ρ3 0,( ) ′( ) − ‴( ) + ′( ) = (2.10b)

E ρ G ρ G ρ νG ρ3 0.( ) ′( ) − ‴( ) + ′( ) = (2.10c)

2.3 Exact solutions via the simplest
equation method

The simplest equation technique is an effective and robust
technique, which can be used to construct closed-form solu-
tions of DEs. It was introduced and used by the Russian
mathematician Kudryashov [45,46]. Here we invoke this
technique and use it on the reduced ODE system (2.10).
The technique involves the use of a well-known ODE whose
solution exists in the closed form. In our work, we shall
make use of two famous ODEs, namely Bernoulli and
Riccati equations.

We consider Bernoulli’s equation

ρ r ρ s ρ2� � �′( ) = ( ) + ( ) (2.11)

with r and s constants, whose solution is






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

ρ r ρ C r ρ C r
s ρ C r s ρ C r
cosh sinh

1 cosh sinh
,�( ) =

[( + ) ] + [( + ) ]

− [( + ) ] − [( + ) ]

where C is an arbitrary integration constant. For Riccati’s
equation

ρ r ρ s ρ c2� � �′( ) = ( ) + ( ) + (2.12)

(r, s, c constants) the two solutions we use are
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with ϑ2 = s2 − 4rc > 0 and C an integration constant.
For the system of three ODEs (2.10), we consider its

solutions in the form
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where ρ�( ) solves Bernoulli or Riccati equation, K > 0
is an integer and μ� , μ� and μ K0, 1, ,μ� ( = … ) are
unknown constants.

Solutions of (1.2) with Bernoulli’s equation as simplest
equation

From (2.10) by balancing the highest order deriva-
tives with the nonlinear terms [45] yields K = 2, so (2.13)
takes the form

E ρ ,0 1 2
2� � � � �( ) = + + (2.14a)

F ρ ,0 1 2
2� � � � �( ) = + + (2.14b)

G ρ .0 1 2
2� � � � �( ) = + + (2.14c)

We substitute (2.14) into (2.10) and invoke (2.11) and
then equate the coefficients of like powers of � to zero.
This gives a system of algebraic equations in i� , i� ,

i 0, 1, 2i� ( = ). Using Mathematica to solve the above
system, one obtains
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As a result, we obtain a solution of (1.2) as
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(2.15a)
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with ρ = x − νt and C an integration constant.
Solutions of (1.2) with the Riccati equation as simplest

equation
As before, for this case, K = 2 and so

E ρ ,0 1 2
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F ρ ,0 1 2
2� � � � �( ) = + + (2.16b)
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Following the same procedure as above, but using (2.12),
we obtain
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Thus, the two solutions of (1.2) are
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with ρ = x − νt and C an integration constant.
Solution (2.18) is sketched in Figure 1.

3 Conservation laws

We now determine conservation laws for gHS-KdVes (1.2)
by employing the general multiplier technique [27,40–42].
Here we seek second-order multipliers Λ1, Λ2 and Λ3 that
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depend on (t, x, u, v, w, ux, vx, wx, uxx, vxx, wxx). The multi-
pliers are obtained from the equations

δ
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(3.19)

where δ/δul is the Euler operator
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with u1 = u, u2 = v, u3 = w and
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is the total differentiation operator. Expanding (3.19) and
after some calculations, we obtain five conservation law
multipliers

C u C vw C t C u C u C x C

C uw C t C w C w C w
C uv C t C v C v C v

Λ 3
2

1
2 3

,

Λ ,
Λ ,

xx

xx x

xx x

1 1
2

1 3 4 1
3

5

2 1 3 4 1 2

3 1 3 4 1 2

= − + + ( + ) + − +

= − ( + ) − −

= − ( + ) − +

where Ci, i = 1, 2,…, 5 are constants. Thus, the correspond-
ing five local conserved vectors of (1.2) are as follows
[27,44,47]

Figure 1: Profile of solitary wave solution (2.18).
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Remark. As far as the physical meaning of the conserva-
tion laws derived above are concerned, we observe that
the first four of them are purely mathematical, whereas
the fifth describes mass density and the flux representing
conserved currents for the mass. Also, note that by
raising the order of multipliers, higher-order conserved
vectors of gHS-KdVes (1.2) can be derived.

4 Concluding remarks

In this article, we investigated the generalized system of
Hirota–Satsuma coupled KdV equations (1.2) from the
group standpoint. The symmetries of the system were
found and then used to build optimal system of one-
dimensional Lie subalgebras. With the assistance of these
subalgebras, system (1.2) was reduced to systems of
ODEs and thereafter the simplest equation technique
was invoked to manufacture closed-form solutions of
(1.2). Moreover, conserved vectors were derived for
system (1.2) using the general multiplier method. Five
multipliers were computed and accordingly five conser-
vation laws were constructed. The advantages of conser-
vation laws were mentioned in Section 1.
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